Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.
PLoS Comput Biol 2010;
6:e1001009. [PMID:
21124865 PMCID:
PMC2991250 DOI:
10.1371/journal.pcbi.1001009]
[Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 10/25/2010] [Indexed: 11/19/2022] Open
Abstract
Biomolecular pathways are built from diverse types of pairwise interactions, ranging from physical protein-protein interactions and modifications to indirect regulatory relationships. One goal of systems biology is to bridge three aspects of this complexity: the growing body of high-throughput data assaying these interactions; the specific interactions in which individual genes participate; and the genome-wide patterns of interactions in a system of interest. Here, we describe methodology for simultaneously predicting specific types of biomolecular interactions using high-throughput genomic data. This results in a comprehensive compendium of whole-genome networks for yeast, derived from ∼3,500 experimental conditions and describing 30 interaction types, which range from general (e.g. physical or regulatory) to specific (e.g. phosphorylation or transcriptional regulation). We used these networks to investigate molecular pathways in carbon metabolism and cellular transport, proposing a novel connection between glycogen breakdown and glucose utilization supported by recent publications. Additionally, 14 specific predicted interactions in DNA topological change and protein biosynthesis were experimentally validated. We analyzed the systems-level network features within all interactomes, verifying the presence of small-world properties and enrichment for recurring network motifs. This compendium of physical, synthetic, regulatory, and functional interaction networks has been made publicly available through an interactive web interface for investigators to utilize in future research at http://function.princeton.edu/bioweaver/.
To maintain the complexity of living biological systems, many proteins must interact in a coordinated manner to integrate their unique functions into a cooperative system. Pathways are typically constructed to capture modular subsets of this dynamic network, each made up of a collection of biomolecular interactions of diverse types that together carry out a specific cellular function. Deciphering these pathways at a global level is a crucial step for unraveling systems biology, aiding at every level from basic biological understanding to translational biomarker and drug target discovery. The combination of high-throughput genomic data with advanced computational methods has enabled us to infer the first genome-wide compendium of bimolecular pathway networks, comprising 30 distinct bimolecular interaction types. We demonstrate that this interaction network compendium, derived from ∼3,500 experimental conditions, can be used to direct a range of biomedical hypothesis generation and testing. We show that our results can be used to predict novel protein interactions and new pathway components, and also that they enable system-level analysis to investigate the network characteristics of cell-wide regulatory circuits. The resulting compendium of biological networks is made publicly available through an interactive web interface to enable future research in other biological systems of interest.
Collapse