1
|
Si X, Zhang X, Hao X, Li Y, Chen Z, Ding Y, Shi H, Bai J, Gao Y, Cheng T, Yang FC, Zhou Y. Upregulation of miR-99a is associated with poor prognosis of acute myeloid leukemia and promotes myeloid leukemia cell expansion. Oncotarget 2018; 7:78095-78109. [PMID: 27801668 PMCID: PMC5363646 DOI: 10.18632/oncotarget.12947] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023] Open
Abstract
Leukemia stem cells (LSCs) can resist available treatments that results in disease progression and/or relapse. To dissect the microRNA (miRNA) expression signature of relapse in acute myeloid leukemia (AML), miRNA array analysis was performed using enriched LSCs from paired bone marrow samples of an AML patient at different disease stages. We identified that miR-99a was significantly upregulated in the LSCs obtained at relapse compared to the LSCs collected at the time of initial diagnosis. We also found that miR-99a was upregulated in LSCs compared to non-LSCs in a larger cohort of AML patients, and higher expression levels of miR-99a were significantly correlated with worse overall survival and event-free survival in these AML patients. Ectopic expression of miR-99a led to increased colony forming ability and expansion in myeloid leukemia cells after exposure to chemotherapeutic drugs in vitro and in vivo, partially due to overcoming of chemotherapeutic agent-mediated cell cycle arrest. Gene profiling and bioinformatic analyses indicated that ectopic expression of miR-99a significantly upregulated genes that are critical for LSC maintenance, cell cycle, and downstream targets of E2F and MYC. This study suggests that miR-99a has a novel role and potential use as a biomarker in myeloid leukemia progression.
Collapse
Affiliation(s)
- Xiaohui Si
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoyun Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xing Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yunan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yahui Ding
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hui Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Bai
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Collaborative Innovation Center for Cancer Medicine, Tianjin, China
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
2
|
Varagnolo L, Lin Q, Obier N, Plass C, Dietl J, Zenke M, Claus R, Müller AM. PRC2 inhibition counteracts the culture-associated loss of engraftment potential of human cord blood-derived hematopoietic stem and progenitor cells. Sci Rep 2015. [PMID: 26198814 PMCID: PMC4510577 DOI: 10.1038/srep12319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cord blood hematopoietic stem cells (CB-HSCs) are an outstanding source for transplantation approaches. However, the amount of cells per donor is limited and culture expansion of CB-HSCs is accompanied by a loss of engraftment potential. In order to analyze the molecular mechanisms leading to this impaired potential we profiled global and local epigenotypes during the expansion of human CB hematopoietic stem and progenitor cells (HPSCs). Human CB-derived CD34+ cells were cultured in serum-free medium together with SCF, TPO, FGF, with or without Igfbp2 and Angptl5 (STF/STFIA cocktails). As compared to the STF cocktail, the STFIA cocktail maintains in vivo repopulation capacity of cultured CD34+ cells. Upon expansion, CD34+ cells genome-wide remodel their epigenotype and depending on the cytokine cocktail, cells show different H3K4me3 and H3K27me3 levels. Expanding cells without Igfbp2 and Angptl5 leads to higher global H3K27me3 levels. ChIPseq analyses reveal a cytokine cocktail-dependent redistribution of H3K27me3 profiles. Inhibition of the PRC2 component EZH2 counteracts the culture-associated loss of NOD scid gamma (NSG) engraftment potential. Collectively, our data reveal chromatin dynamics that underlie the culture-associated loss of engraftment potential. We identify PRC2 component EZH2 as being involved in the loss of engraftment potential during the in vitro expansion of HPSCs.
Collapse
Affiliation(s)
- Linda Varagnolo
- Institute of Medical Radiology and Cell Research (MSZ) in the Center for Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg, Germany
| | - Qiong Lin
- Department of Cell Biology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nadine Obier
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christoph Plass
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Dietl
- Department of Gynecology and Obstetrics, Medical University of Würzburg, Germany
| | - Martin Zenke
- Department of Cell Biology, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Rainer Claus
- 1] Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany [2] Department of Medicine, Div. Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Freiburg, Germany
| | - Albrecht M Müller
- Institute of Medical Radiology and Cell Research (MSZ) in the Center for Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg, Germany
| |
Collapse
|