1
|
Doucouré H, Pérez-Quintero AL, Reshetnyak G, Tekete C, Auguy F, Thomas E, Koebnik R, Szurek B, Koita O, Verdier V, Cunnac S. Functional and Genome Sequence-Driven Characterization of tal Effector Gene Repertoires Reveals Novel Variants With Altered Specificities in Closely Related Malian Xanthomonas oryzae pv. oryzae Strains. Front Microbiol 2018; 9:1657. [PMID: 30127769 PMCID: PMC6088199 DOI: 10.3389/fmicb.2018.01657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/03/2018] [Indexed: 11/13/2022] Open
Abstract
Rice bacterial leaf blight (BLB) is caused by Xanthomonas oryzae pv. oryzae (Xoo) which injects Transcription Activator-Like Effectors (TALEs) into the host cell to modulate the expression of target disease susceptibility genes. Xoo major-virulence TALEs universally target susceptibility genes of the SWEET sugar transporter family. TALE-unresponsive alleles of OsSWEET genes have been identified in the rice germplasm or created by genome editing and confer resistance to BLB. In recent years, BLB has become one of the major biotic constraints to rice cultivation in Mali. To inform the deployment of alternative sources of resistance in this country, rice lines carrying alleles of OsSWEET14 unresponsive to either TalF (formerly Tal5) or TalC, two important TALEs previously identified in West African Xoo, were challenged with a panel of strains recently isolated in Mali and were found to remain susceptible to these isolates. The characterization of TALE repertoires revealed that talF and talC specific molecular markers were simultaneously present in all surveyed Malian strains, suggesting that the corresponding TALEs are broadly deployed by Malian Xoo to redundantly target the OsSWEET14 gene promoter. Consistent with this, the capacity of most Malian Xoo to induce OsSWEET14 was unaffected by either talC- or talF-unresponsive alleles of this gene. Long-read sequencing and assembly of eight Malian Xoo genomes confirmed the widespread occurrence of active TalF and TalC variants and provided a detailed insight into the diversity of TALE repertoires. All sequenced strains shared nine evolutionary related tal effector genes. Notably, a new TalF variant that is unable to induce OsSWEET14 was identified. Furthermore, two distinct TalB variants were shown to have lost the ability to simultaneously induce two susceptibility genes as previously reported for the founding members of this group from strains MAI1 and BAI3. Yet, both new TalB variants retained the ability to induce one or the other of the two susceptibility genes. These results reveal molecular and functional differences in tal repertoires and will be important for the sustainable deployment of broad-spectrum and durable resistance to BLB in West Africa.
Collapse
Affiliation(s)
- Hinda Doucouré
- IRD, Cirad, Université de Montpellier, IPME, Montpellier, France
- Laboratoire de Biologie Moléculaire Appliquée, Faculté des Sciences et Techniques, Université des Sciences Techniques et Technologiques de Bamako, Bamako, Mali
| | | | - Ganna Reshetnyak
- IRD, Cirad, Université de Montpellier, IPME, Montpellier, France
| | - Cheick Tekete
- IRD, Cirad, Université de Montpellier, IPME, Montpellier, France
- Laboratoire de Biologie Moléculaire Appliquée, Faculté des Sciences et Techniques, Université des Sciences Techniques et Technologiques de Bamako, Bamako, Mali
| | - Florence Auguy
- IRD, Cirad, Université de Montpellier, IPME, Montpellier, France
| | - Emilie Thomas
- IRD, Cirad, Université de Montpellier, IPME, Montpellier, France
| | - Ralf Koebnik
- IRD, Cirad, Université de Montpellier, IPME, Montpellier, France
| | - Boris Szurek
- IRD, Cirad, Université de Montpellier, IPME, Montpellier, France
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Faculté des Sciences et Techniques, Université des Sciences Techniques et Technologiques de Bamako, Bamako, Mali
| | - Valérie Verdier
- IRD, Cirad, Université de Montpellier, IPME, Montpellier, France
| | - Sébastien Cunnac
- IRD, Cirad, Université de Montpellier, IPME, Montpellier, France
| |
Collapse
|
2
|
Pérez-Quintero AL, Lamy L, Gordon JL, Escalon A, Cunnac S, Szurek B, Gagnevin L. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically. FRONTIERS IN PLANT SCIENCE 2015; 6:545. [PMID: 26284082 PMCID: PMC4522561 DOI: 10.3389/fpls.2015.00545] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/06/2015] [Indexed: 05/20/2023]
Abstract
Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi.
Collapse
Affiliation(s)
| | - Léo Lamy
- UMR IPME, IRD-CIRAD-Université MontpellierMontpellier, France
| | | | - Aline Escalon
- UMR PVBMT, CIRAD-Université de la RéunionSaint-Pierre, France
| | | | - Boris Szurek
- UMR IPME, IRD-CIRAD-Université MontpellierMontpellier, France
- *Correspondence: Boris Szurek and Lionel Gagnevin, UMR IPME, IRD-CIRAD-UM, 911, Av. Agropolis BP 64501, 34394 Montpellier, France ;
| | - Lionel Gagnevin
- UMR IPME, IRD-CIRAD-Université MontpellierMontpellier, France
- *Correspondence: Boris Szurek and Lionel Gagnevin, UMR IPME, IRD-CIRAD-UM, 911, Av. Agropolis BP 64501, 34394 Montpellier, France ;
| |
Collapse
|