1
|
Xue C, Tian J, Chen Y, Liu Z. Structural insights into human ELAC2 as a tRNA 3' processing enzyme. Nucleic Acids Res 2024; 52:13434-13446. [PMID: 39494506 PMCID: PMC11602120 DOI: 10.1093/nar/gkae1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Human elaC ribonuclease Z 2 (ELAC2) removes the 3' trailer of precursor transfer ribonucleic acid (pre-tRNA). Mutations in ELAC2 are highly associated with the development of prostate cancer and hypertrophic cardiomyopathy. However, the catalytic mechanism of ELAC2 remains unclear. We determined the cryogenic electron microscopy structures of human ELAC2 in various states, including the apo, pre-tRNA-bound and tRNA-bound states, which enabled us to identify the structural basis for its binding to pre-tRNA and cleavage of the 3' trailer. Notably, conformational rearrangement of the C-terminal helix was related to feeding of the 3' trailer into the cleavage site, possibly explaining why its mutations are associated with disease. We further used biochemical assays to analyse the structural effects of disease-related mutations of human ELAC2. Collectively, our data provide a comprehensive structural basis for how ELAC2 recruits pre-tRNA via its flexible arm domain and guides the 3' trailer of pre-tRNA into the active centre for cleavage by its C-terminal helix.
Collapse
Affiliation(s)
- Chenyang Xue
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Junshan Tian
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Yanhong Chen
- Department Of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Zhongmin Liu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| |
Collapse
|
2
|
Migunova E, Theophilopoulos J, Mercadante M, Men J, Zhou C, Dubrovsky EB. ELAC2/RNaseZ-linked cardiac hypertrophy in Drosophila melanogaster. Dis Model Mech 2021; 14:271965. [PMID: 34338278 PMCID: PMC8419712 DOI: 10.1242/dmm.048931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
A severe form of infantile cardiomyopathy (CM) has been linked to mutations in ELAC2, a highly conserved human gene. It encodes Zinc phosphodiesterase ELAC protein 2 (ELAC2), which plays an essential role in the production of mature tRNAs. To establish a causal connection between ELAC2 variants and CM, here we used the Drosophila melanogaster model organism, which carries the ELAC2 homolog RNaseZ. Even though RNaseZ and ELAC2 have diverged in some of their biological functions, our study demonstrates the use of the fly model to study the mechanism of ELAC2-related pathology. We established transgenic lines harboring RNaseZ with CM-linked mutations in the background of endogenous RNaseZ knockout. Importantly, we found that the phenotype of these flies is consistent with the pathological features in human patients. Specifically, expression of CM-linked variants in flies caused heart hypertrophy and led to reduction in cardiac contractility associated with a rare form of CM. This study provides first experimental evidence for the pathogenicity of CM-causing mutations in the ELAC2 protein, and the foundation to improve our understanding and diagnosis of this rare infantile disease. This article has an associated First Person interview with the first author of the paper. Summary: A newly established Drosophila model recapitulates key features of human heart pathology linked to mutations in ELAC2, thus providing experimental evidence of the pathogenicity of ELAC2 variants.
Collapse
Affiliation(s)
- Ekaterina Migunova
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | | | - Marisa Mercadante
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| | - Jing Men
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63105, USA.,Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63105, USA
| | - Edward B Dubrovsky
- Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA.,Center for Cancer, Genetic diseases, and Gene Regulation, Department of Biological Sciences, Fordham University, Bronx, NY 10458, USA
| |
Collapse
|
3
|
Shang J, Yang Y, Wu L, Zou M, Huang Y. The S. pombe mitochondrial transcriptome. RNA (NEW YORK, N.Y.) 2018; 24:1241-1254. [PMID: 29954949 PMCID: PMC6097661 DOI: 10.1261/rna.064477.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/26/2018] [Indexed: 05/22/2023]
Abstract
Mitochondrial gene expression is largely controlled through post-transcriptional processes including mitochondrial RNA (mt-RNA) processing, modification, decay, and quality control. Defective mitochondrial gene expression results in mitochondrial oxidative phosphorylation (OXPHOS) deficiency and has been implicated in human disease. To fully understand mitochondrial transcription and RNA processing, we performed RNA-seq analyses of mt-RNAs from the fission yeast Schizosaccharomyces pombe RNA-seq analyses show that the abundance of mt-RNAs vary greatly. Analysis of data also reveals mt-RNA processing sites including an unusual RNA cleavage event by mitochondrial tRNA (mt-tRNA) 5'-end processing enzyme RNase P. Additionally, this analysis reveals previously unknown mitochondrial transcripts including the rnpB-derived fragment, mitochondrial small RNAs (mitosRNAs) such as mt-tRNA-derived fragments (mt-tRFs) and mt-tRNA halves, and mt-tRNAs marked with 3'-CCACCA/CCACC in S. pombe Finally, RNA-seq reveals that inactivation of trz2 encoding S. pombe mitochondrial tRNA 3'-end processing enzyme globally impairs mt-tRNA 3'-end processing, inhibits mt-mRNA 5'-end processing, and causes accumulation of unprocessed transcripts, demonstrating the feasibility of using RNA-seq to examine the protein known or predicted to be involved in mt-RNA processing in S. pombe Our work uncovers the complexity of a fungal mitochondrial transcriptome and provides a framework for future studies of mitochondrial gene expression using S. pombe as a model system.
Collapse
Affiliation(s)
- Jinjie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yanmei Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lin Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Mengting Zou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
4
|
Saoura M, Pinnock K, Pujantell-Graell M, Levinger L. Substitutions in conserved regions preceding and within the linker affect activity and flexibility of tRNase ZL, the long form of tRNase Z. PLoS One 2017; 12:e0186277. [PMID: 29045449 PMCID: PMC5646807 DOI: 10.1371/journal.pone.0186277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/28/2017] [Indexed: 11/19/2022] Open
Abstract
The enzyme tRNase Z, a member of the metallo-β-lactamase family, endonucleolytically removes 3' trailers from precursor tRNAs, preparing them for CCA addition and aminoacylation. The short form of tRNase Z, tRNase ZS, functions as a homodimer and is found in all prokaryotes and some eukaryotes. The long form, tRNase ZL, related to tRNase ZS through tandem duplication and found only in eukaryotes, possesses ~2,000-fold greater catalytic efficiency than tRNase ZS. tRNase ZL consists of related but diverged amino and carboxy domains connected by a flexible linker (also referred to as a flexible tether) and functions as a monomer. The amino domain retains the flexible arm responsible for substrate recognition and binding while the carboxy domain retains the active site. The linker region was explored by Ala-scanning through two conserved regions of D. melanogaster tRNase Z: NdomTprox, located at the carboxy end of the amino domain proximal to the linker, and Tflex, a flexible site in the linker. Periodic substitutions in a hydrophobic patch (F329 and L332) at the carboxy end of NdomTprox show 2,700 and 670-fold impairment relative to wild type, respectively, accompanied by reduced linker flexibility at N-T inside the Ndom- linker boundary. The Ala substitution for N378 in the Tflex region has 10-fold higher catalytic efficiency than wild type and locally decreased flexibility, while the Ala substitution at R382 reduces catalytic efficiency ~50-fold. These changes in pre-tRNA processing kinetics and protein flexibility are interpreted in light of a recent crystal structure for S. cerevisiae tRNase Z, suggesting transmission of local changes in hydrophobicity into the skeleton of the amino domain.
Collapse
Affiliation(s)
- Makenzie Saoura
- York College of The City University of New York, Jamaica, New York, United States of America
| | - Kyla Pinnock
- York College of The City University of New York, Jamaica, New York, United States of America
| | - Maria Pujantell-Graell
- York College of The City University of New York, Jamaica, New York, United States of America
| | - Louis Levinger
- York College of The City University of New York, Jamaica, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Liu J, Huang L, Wang Y, Huang Y. Characterization of cis-elements in the promoter of trz2 encoding Schizosaccharomyces pombe mitochondrial tRNA 3′-end processing enzyme. Microbiology (Reading) 2017; 163:75-85. [DOI: 10.1099/mic.0.000398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Jinyu Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Linting Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| |
Collapse
|
6
|
Zhao Q, Su Y, Wang Z, Chen C, Wu T, Huang Y. Identification of glutathione (GSH)-independent glyoxalase III from Schizosaccharomyces pombe. BMC Evol Biol 2014; 14:86. [PMID: 24758716 PMCID: PMC4021431 DOI: 10.1186/1471-2148-14-86] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive carbonyl species (RCS), such as methylglyoxal (MG) and glyoxal (GO), are synthesized as toxic metabolites in living systems. Mechanisms of RCS detoxification include the glutathione (GSH)-dependent system consisting of glyoxalase I (GLO1) and glyoxalase II (GLO2), and GSH-independent system involving glyoxalase III (GLO3). Hsp31 and DJ-1 proteins are weakly homologous to each other and belong to two different subfamilies of the DJ-1/Hsp31/PfpI superfamily. Recently, the Escherichia coli Hsp31 protein and the DJ-1 proteins from Arabidopsis thaliana and metazoans have been demonstrated to have GLO3 activity. RESULTS We performed a systematic survey of homologs of DJ-1 and Hsp31 in fungi. We found that DJ-1 proteins have a very limited distribution in fungi, whereas Hsp31 proteins are widely distributed among different fungal groups. Phylogenetic analysis revealed that fungal and metazoan DJ-1 proteins and bacterial YajL proteins are most closely related and together form a sister clade to bacterial and fungal Hsp31 proteins. We showed that two Schizosaccharomyces pombe Hsp31 proteins (Hsp3101 and Hsp3102) and one Saccharomyces cerevisiae Hsp31 protein (ScHsp31) displayed significantly higher in vitro GLO3 activity than S. pombe DJ-1 (SpDJ-1). Overexpression of hsp3101, hsp3102 and ScHSP31 could confer MG and GO resistance on either wild-type S. pombe cells or GLO1 deletion of S. pombe. S. pombe DJ-1 and Hsp31 proteins exhibit different patterns of subcellular localization. CONCLUSIONS Our results suggest that fungal Hsp31 proteins are the major GLO3 that may have some role in protecting cells from RCS toxicity in fungi. Our results also support the view that the GLO3 activity of Hsp31 proteins may have evolved independently from that of DJ-1 proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
7
|
Zhang X, Zhao Q, Huang Y. Partitioning of the nuclear and mitochondrial tRNA 3'-end processing activities between two different proteins in Schizosaccharomyces pombe. J Biol Chem 2013; 288:27415-27422. [PMID: 23928301 DOI: 10.1074/jbc.m113.501569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
tRNase Z is an essential endonuclease responsible for tRNA 3'-end maturation. tRNase Z exists in a short form (tRNase Z(S)) and a long form (tRNase Z(L)). Prokaryotes have only tRNase Z(S), whereas eukaryotes can have both forms of tRNase Z. Most eukaryotes characterized thus far, including Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and humans, contain only one tRNase Z(L) gene encoding both nuclear and mitochondrial forms of tRNase Z(L). In contrast, Schizosaccharomyces pombe contains two essential tRNase Z(L) genes (trz1 and trz2) encoding two tRNase Z(L) proteins, which are targeted to the nucleus and mitochondria, respectively. Trz1 protein levels are notably higher than Trz2 protein levels. Here, using temperature-sensitive mutants of trz1 and trz2, we provide in vivo evidence that trz1 and trz2 are involved in nuclear and mitochondrial tRNA 3'-end processing, respectively. In addition, trz2 is also involved in generation of the 5'-ends of other mitochondrial RNAs, whose 5'-ends coincide with the 3'-end of tRNA. Thus, our results provide a rare example showing partitioning of the nuclear and mitochondrial tRNase Z(L) activities between two different proteins in S. pombe. The evolution of two tRNase Z(L) genes and their differential expression in fission yeast may avoid toxic off-target effects.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing 210023; Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Qiaoqiao Zhao
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing 210023
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing 210023.
| |
Collapse
|
8
|
Identification and sequence analysis of metazoan tRNA 3'-end processing enzymes tRNase Zs. PLoS One 2012; 7:e44264. [PMID: 22962606 PMCID: PMC3433465 DOI: 10.1371/journal.pone.0044264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/31/2012] [Indexed: 11/19/2022] Open
Abstract
tRNase Z is the endonuclease responsible for removing the 3'-trailer sequences from precursor tRNAs, a prerequisite for the addition of the CCA sequence. It occurs in the short (tRNase ZS) and long (tRNase ZL) forms. Here we report the identification and sequence analysis of candidate tRNase Zs from 81 metazoan species. We found that the vast majority of deuterostomes, lophotrochozoans and lower metazoans have one tRNase ZS and one tRNase ZL genes, whereas ecdysozoans possess only a single tRNase ZL gene. Sequence analysis revealed that in metazoans, a single nuclear tRNase ZL gene is likely to encode both the nuclear and mitochondrial forms of tRNA 3′-end processing enzyme through mechanisms that include alternative translation initiation from two in-frame start codons and alternative splicing. Sequence conservation analysis revealed a variant PxKxRN motif, PxPxRG, which is located in the N-terminal region of tRNase ZSs. We also identified a previously unappreciated motif, AxDx, present in the C-terminal region of both tRNase ZSs and tRNase ZLs. The AxDx motif consisting mainly of a very short loop is potentially close enough to form hydrogen bonds with the loop containing the PxKxRN or PxPxRG motif. Through complementation analysis, we demonstrated the likely functional importance of the AxDx motif. In conclusion, our analysis supports the notion that in metazoans a single tRNase ZL has evolved to participate in both nuclear and mitochondrial tRNA 3′-end processing, whereas tRNase ZS may have evolved new functions. Our analysis also unveils new evolutionarily conserved motifs in tRNase Zs, including the C-terminal AxDx motif, which may have functional significance.
Collapse
|
9
|
Levinger L, Serjanov D. Pathogenesis-related mutations in the T-loops of human mitochondrial tRNAs affect 3' end processing and tRNA structure. RNA Biol 2012; 9:283-91. [PMID: 22336717 PMCID: PMC3384583 DOI: 10.4161/rna.19025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Numerous mutations in the mitochondrial genome are associated with maternally transmitted diseases and syndromes that affect muscle and other high energy-demand tissues. The mitochondrial genome encodes 13 polypeptides, 2 rRNAs and 22 interspersed tRNAs via long bidirectional polycistronic primary transcripts, requiring precise excision of the tRNAs. Despite making up only ~10% of the mitochondrial genome, tRNA genes harbor most of the pathogenesis-related mutations. tRNase Z endonucleolytically removes the pre-tRNA 3' trailer. The flexible arm of tRNase Z recognizes and binds the elbow (including the T-loop) of pre-tRNA. Pathogenesis-related T-loop mutations in mitochondrial tRNAs could thus affect tRNA structure, reduce tRNase Z binding and 3' processing, and consequently slow mitochondrial protein synthesis. Here we inspect the effects of pathogenesis-related mutations in the T-loops of mitochondrial tRNAs on pre-tRNA structure and tRNase Z processing. Increases in K(M) arising from 59A > G substitutions in mitochondrial tRNA(Gly) and tRNA(Ile) accompany changes in T-loop structure, suggesting impaired substrate binding to enzyme.
Collapse
Affiliation(s)
- Louis Levinger
- York College of The City University of New York, Jamaica, NY, USA.
| | | |
Collapse
|
10
|
Fan L, Wang Z, Liu J, Guo W, Yan J, Huang Y. A survey of green plant tRNA 3'-end processing enzyme tRNase Zs, homologs of the candidate prostate cancer susceptibility protein ELAC2. BMC Evol Biol 2011; 11:219. [PMID: 21781332 PMCID: PMC3161902 DOI: 10.1186/1471-2148-11-219] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/23/2011] [Indexed: 11/10/2022] Open
Abstract
Background tRNase Z removes the 3'-trailer sequences from precursor tRNAs, which is an essential step preceding the addition of the CCA sequence. tRNase Z exists in the short (tRNase ZS) and long (tRNase ZL) forms. Based on the sequence characteristics, they can be divided into two major types: bacterial-type tRNase ZS and eukaryotic-type tRNase ZL, and one minor type, Thermotoga maritima (TM)-type tRNase ZS. The number of tRNase Zs is highly variable, with the largest number being identified experimentally in the flowering plant Arabidopsis thaliana. It is unknown whether multiple tRNase Zs found in A. thaliana is common to the plant kingdom. Also unknown is the extent of sequence and structural conservation among tRNase Zs from the plant kingdom. Results We report the identification and analysis of candidate tRNase Zs in 27 fully sequenced genomes of green plants, the great majority of which are flowering plants. It appears that green plants contain multiple distinct tRNase Zs predicted to reside in different subcellular compartments. Furthermore, while the bacterial-type tRNase ZSs are present only in basal land plants and green algae, the TM-type tRNase ZSs are widespread in green plants. The protein sequences of the TM-type tRNase ZSs identified in green plants are similar to those of the bacterial-type tRNase ZSs but have distinct features, including the TM-type flexible arm, the variant catalytic HEAT and HST motifs, and a lack of the PxKxRN motif involved in CCA anti-determination (inhibition of tRNase Z activity by CCA), which prevents tRNase Z cleavage of mature tRNAs. Examination of flowering plant chloroplast tRNA genes reveals that many of these genes encode partial CCA sequences. Based on our results and previous studies, we predict that the plant TM-type tRNase ZSs may not recognize the CCA sequence as an anti-determinant. Conclusions Our findings substantially expand the current repertoire of the TM-type tRNase ZSs and hint at the possibility that these proteins may have been selected for their ability to process chloroplast pre-tRNAs with whole or partial CCA sequences. Our results also support the coevolution of tRNase Zs and tRNA 3'-trailer sequences in plants.
Collapse
Affiliation(s)
- Lijuan Fan
- Laboratory of Yeast Genetics and Molecular Biology, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | | | | | | | | | | |
Collapse
|
11
|
The fission yeast Schizosaccharomyces pombe has two distinct tRNase ZLs encoded by two different genes and differentially targeted to the nucleus and mitochondria. Biochem J 2011; 435:103-11. [DOI: 10.1042/bj20101619] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
tRNase Z is the endonuclease that is involved in tRNA 3′-end maturation by removal of the 3′-trailer sequences from tRNA precursors. Most eukaryotes examined to date, including the budding yeast Saccharomyces cerevisiae and humans, have a single long form of tRNase Z (tRNase ZL). In contrast, the fission yeast Schizosaccharomyces pombe contains two candidate tRNase ZLs encoded by the essential genes sptrz1+ and sptrz2+. In the present study, we have expressed recombinant SpTrz1p and SpTrz2p in S. pombe. Both recombinant proteins possess precursor tRNA 3′-endonucleolytic activity in vitro. SpTrz1p localizes to the nucleus and has a simian virus 40 NLS (nuclear localization signal)-like NLS at its N-terminus, which contains four consecutive arginine and lysine residues between residues 208 and 211 that are critical for the NLS function. In contrast, SpTrz2p is a mitochondrial protein with an N-terminal MTS (mitochondrial-targeting signal). High-level overexpression of sptrz1+ has no detectable phenotypes. In contrast, strong overexpression of sptrz2+ is lethal in wild-type cells and results in morphological abnormalities, including swollen and round cells, demonstrating that the correct expression level of sptrz2+ is critical. The present study provides evidence for partitioning of tRNase Z function between two different proteins in S. pombe, although we cannot rule out specialized functions for each protein.
Collapse
|