1
|
Del Amparo R, Arenas M. HIV Protease and Integrase Empirical Substitution Models of Evolution: Protein-Specific Models Outperform Generalist Models. Genes (Basel) 2021; 13:61. [PMID: 35052404 PMCID: PMC8774313 DOI: 10.3390/genes13010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Diverse phylogenetic methods require a substitution model of evolution that should mimic, as accurately as possible, the real substitution process. At the protein level, empirical substitution models have traditionally been based on a large number of different proteins from particular taxonomic levels. However, these models assume that all of the proteins of a taxonomic level evolve under the same substitution patterns. We believe that this assumption is highly unrealistic and should be relaxed by considering protein-specific substitution models that account for protein-specific selection processes. In order to test this hypothesis, we inferred and evaluated four new empirical substitution models for the protease and integrase of HIV and other viruses. We found that these models more accurately fit, compared with any of the currently available empirical substitution models, the evolutionary process of these proteins. We conclude that evolutionary inferences from protein sequences are more accurate if they are based on protein-specific substitution models rather than taxonomic-specific (generalist) substitution models. We also present four new empirical substitution models of protein evolution that could be useful for phylogenetic inferences of viral protease and integrase.
Collapse
Affiliation(s)
- Roberto Del Amparo
- Centro de Investigacións Biomédicas (CINBIO), University of Vigo, 36310 Vigo, Spain;
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Miguel Arenas
- Centro de Investigacións Biomédicas (CINBIO), University of Vigo, 36310 Vigo, Spain;
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| |
Collapse
|
2
|
Norn C, André I, Theobald DL. A thermodynamic model of protein structure evolution explains empirical amino acid substitution matrices. Protein Sci 2021; 30:2057-2068. [PMID: 34218472 PMCID: PMC8442976 DOI: 10.1002/pro.4155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022]
Abstract
Proteins evolve under a myriad of biophysical selection pressures that collectively control the patterns of amino acid substitutions. These evolutionary pressures are sufficiently consistent over time and across protein families to produce substitution patterns, summarized in global amino acid substitution matrices such as BLOSUM, JTT, WAG, and LG, which can be used to successfully detect homologs, infer phylogenies, and reconstruct ancestral sequences. Although the factors that govern the variation of amino acid substitution rates have received much attention, the influence of thermodynamic stability constraints remains unresolved. Here we develop a simple model to calculate amino acid substitution matrices from evolutionary dynamics controlled by a fitness function that reports on the thermodynamic effects of amino acid mutations in protein structures. This hybrid biophysical and evolutionary model accounts for nucleotide transition/transversion rate bias, multi‐nucleotide codon changes, the number of codons per amino acid, and thermodynamic protein stability. We find that our theoretical model accurately recapitulates the complex yet universal pattern observed in common global amino acid substitution matrices used in phylogenetics. These results suggest that selection for thermodynamically stable proteins, coupled with nucleotide mutation bias filtered by the structure of the genetic code, is the primary driver behind the global amino acid substitution patterns observed in proteins throughout the tree of life.
Collapse
Affiliation(s)
- Christoffer Norn
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Ingemar André
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Douglas L Theobald
- Biochemistry Department, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
3
|
Echave J, Wilke CO. Biophysical Models of Protein Evolution: Understanding the Patterns of Evolutionary Sequence Divergence. Annu Rev Biophys 2017; 46:85-103. [PMID: 28301766 DOI: 10.1146/annurev-biophys-070816-033819] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For decades, rates of protein evolution have been interpreted in terms of the vague concept of functional importance. Slowly evolving proteins or sites within proteins were assumed to be more functionally important and thus subject to stronger selection pressure. More recently, biophysical models of protein evolution, which combine evolutionary theory with protein biophysics, have completely revolutionized our view of the forces that shape sequence divergence. Slowly evolving proteins have been found to evolve slowly because of selection against toxic misfolding and misinteractions, linking their rate of evolution primarily to their abundance. Similarly, most slowly evolving sites in proteins are not directly involved in function, but mutating these sites has a large impact on protein structure and stability. In this article, we review the studies in the emerging field of biophysical protein evolution that have shaped our current understanding of sequence divergence patterns. We also propose future research directions to develop this nascent field.
Collapse
Affiliation(s)
- Julian Echave
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires, Argentina; .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Claus O Wilke
- Department of Integrative Biology, The University of Texas at Austin, Texas 78712;
| |
Collapse
|
4
|
Ma G, Cheng N, Su H, Liu Y. Exploring the substrate-assisted acetylation mechanism by UDP-linked sugar N-acetyltransferase from QM/MM calculations: the role of residue Asn84 and the effects of starting geometries. RSC Adv 2015. [DOI: 10.1039/c4ra13278e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Based on the QM/MM calculation, we revised the proposed mechanism ofN-acetyltransferase and explore the role of Asn84 and the effects of starting geometries.
Collapse
Affiliation(s)
- Guangcai Ma
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Na Cheng
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Hao Su
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
- Key Laboratory of Tibetan Medicine Research
| |
Collapse
|
5
|
Palopoli N, Lanzarotti E, Parisi G. BeEP Server: Using evolutionary information for quality assessment of protein structure models. Nucleic Acids Res 2013; 41:W398-405. [PMID: 23729471 PMCID: PMC3692104 DOI: 10.1093/nar/gkt453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The BeEP Server (http://www.embnet.qb.fcen.uba.ar/embnet/beep.php) is an online resource aimed to help in the endgame of protein structure prediction. It is able to rank submitted structural models of a protein through an explicit use of evolutionary information, a criterion differing from structural or energetic considerations commonly used in other assessment programs. The idea behind BeEP (Best Evolutionary Pattern) is to benefit from the substitution pattern derived from structural constraints present in a set of homologous proteins adopting a given protein conformation. The BeEP method uses a model of protein evolution that takes into account the structure of a protein to build site-specific substitution matrices. The suitability of these substitution matrices is assessed through maximum likelihood calculations from which position-specific and global scores can be derived. These scores estimate how well the structural constraints derived from each structural model are represented in a sequence alignment of homologous proteins. Our assessment on a subset of proteins from the Critical Assessment of techniques for protein Structure Prediction (CASP) experiment has shown that BeEP is capable of discriminating the models and selecting one or more native-like structures. Moreover, BeEP is not explicitly parameterized to find structural similarities between models and given targets, potentially helping to explore the conformational ensemble of the native state.
Collapse
Affiliation(s)
- Nicolas Palopoli
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, B1876BXD, Bernal, Buenos Aires, Argentina, Centre for Biological Sciences, University of Southampton, SO17 1BJ, Southampton, UK and Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Esteban Lanzarotti
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, B1876BXD, Bernal, Buenos Aires, Argentina, Centre for Biological Sciences, University of Southampton, SO17 1BJ, Southampton, UK and Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes, B1876BXD, Bernal, Buenos Aires, Argentina, Centre for Biological Sciences, University of Southampton, SO17 1BJ, Southampton, UK and Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
- *To whom correspondence should be addressed. Tel: +54 011 43657100 (ext. 4135); Fax: +54 011 437657101;
| |
Collapse
|
6
|
Juritz E, Palopoli N, Fornasari MS, Fernandez-Alberti S, Parisi G. Protein Conformational Diversity Modulates Sequence Divergence. Mol Biol Evol 2012; 30:79-87. [DOI: 10.1093/molbev/mss080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Fang J, Guan W, Cai L, Gu G, Liu X, Wang PG. Systematic study on the broad nucleotide triphosphate specificity of the pyrophosphorylase domain of the N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli K12. Bioorg Med Chem Lett 2009; 19:6429-32. [PMID: 19804974 DOI: 10.1016/j.bmcl.2009.09.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 09/04/2009] [Accepted: 09/11/2009] [Indexed: 11/19/2022]
Abstract
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) from Escherichia coli K12 is a bifunctional enzyme that catalyzes both the acetyltransfer and uridyltransfer reactions in the prokaryotic UDP-GlcNAc biosynthetic pathway. In this study, we report the broad substrate specificity of the pyrophosphorylase domain of GlmU during its uridyltransfer reaction and the substrate priority is ranked in the following order: UTP > dUTP > dTTP >> CTP > dATP/dm(6) ATP. This pyrophosphorylase domain of GlmU is also a tool to synthesize UDP-GlcNAc analogs, two examples of which were synthesized herein in multiple mg scale in vitro.
Collapse
Affiliation(s)
- Junqiang Fang
- National Glycoengineering Research Center and The State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Choi JH, Govaerts C, May BCH, Cohen FE. Analysis of the sequence and structural features of the left-handed beta-helical fold. Proteins 2009; 73:150-60. [PMID: 18398908 DOI: 10.1002/prot.22051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The left-handed parallel beta-helix (LbetaH) is a structurally repetitive, highly regular, and symmetrical fold formed by coiling of elongated beta-sheets into helical "rungs." This canonical fold has recently received interest as a possible solution to the fibril structure of amyloid and as a building block of self-assembled nanotubular structures. In light of this interest, we aimed to understand the structural requirements of the LbetaH fold. We first sought to determine the sequence characteristics of the repeats by analyzing known structures to identify positional preferences of specific residues types. We then used molecular dynamics simulations to demonstrate the stabilizing effect of successive rungs and the hydrophobic core of the LbetaH. We show that a two-rung structure is the minimally stable LbetaH structure. In addition, we defined the structure-based sequence preference of the LbetaH and undertook a genome-wide sequence search to determine the prevalence of this unique protein fold. This profile-based LbetaH search algorithm predicted a large fraction of LbetaH proteins from microbial origins. However, the relative number of predicted LbetaH proteins per specie was approximately equal across the genomes from prokaryotes to eukaryotes.
Collapse
Affiliation(s)
- Jay H Choi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
9
|
Anisimova M, Liberles DA. The quest for natural selection in the age of comparative genomics. Heredity (Edinb) 2007; 99:567-79. [PMID: 17848974 DOI: 10.1038/sj.hdy.6801052] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Continued genome sequencing has fueled progress in statistical methods for understanding the action of natural selection at the molecular level. This article reviews various statistical techniques (and their applicability) for detecting adaptation events and the functional divergence of proteins. As large-scale automated studies become more frequent, they provide a useful resource for generating biological null hypotheses for further experimental and statistical testing. Furthermore, they shed light on typical patterns of lineage-specific evolution of organisms, on the functional and structural evolution of protein families and on the interplay between the two. More complex models are being developed to better reflect the underlying biological and chemical processes and to complement simpler statistical models. Linking molecular processes to their statistical signatures in genomes can be demanding, and the proper application of statistical models is discussed.
Collapse
Affiliation(s)
- M Anisimova
- Department of Biology, University College London, London, UK
| | | |
Collapse
|
10
|
Rodrigue N, Philippe H, Lartillot N. Assessing site-interdependent phylogenetic models of sequence evolution. Mol Biol Evol 2006; 23:1762-75. [PMID: 16787998 DOI: 10.1093/molbev/msl041] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In recent works, methods have been proposed for applying phylogenetic models that allow for a general interdependence between the amino acid positions of a protein. As of yet, such models have focused on site interdependencies resulting from sequence-structure compatibility constraints, using simplified structural representations in combination with a set of statistical potentials. This structural compatibility criterion is meant as a proxy for sequence fitness, and the methods developed thus far can incorporate different site-interdependent fitness proxies based on other measurements. However, no methods have been proposed for comparing and evaluating the adequacy of alternative fitness proxies in this context, or for more general comparisons with canonical models of protein evolution. In the present work, we apply Bayesian methods of model selection-based on numerical calculations of marginal likelihoods and posterior predictive checks-to evaluate models encompassing the site-interdependent framework. Our application of these methods indicates that considering site-interdependencies, as done here, leads to an improved model fit for all data sets studied. Yet, we find that the use of pairwise contact potentials alone does not suitably account for across-site rate heterogeneity or amino acid exchange propensities; for such complexities, site-independent treatments are still called for. The most favored models combine the use of statistical potentials with a suitably rich site-independent model. Altogether, the methodology employed here should allow for a more rigorous and systematic exploration of different ways of modeling explicit structural constraints, or any other site-interdependent criterion, while best exploiting the richness of previously proposed models.
Collapse
Affiliation(s)
- Nicolas Rodrigue
- Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, Montréal, Québec, Canada.
| | | | | |
Collapse
|
11
|
Bastolla U, Porto M, Roman HE, Vendruscolo M. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank. BMC Evol Biol 2006; 6:43. [PMID: 16737532 PMCID: PMC1570368 DOI: 10.1186/1471-2148-6-43] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 05/31/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since thermodynamic stability is a global property of proteins that has to be conserved during evolution, the selective pressure at a given site of a protein sequence depends on the amino acids present at other sites. However, models of molecular evolution that aim at reconstructing the evolutionary history of macromolecules become computationally intractable if such correlations between sites are explicitly taken into account. RESULTS We introduce an evolutionary model with sites evolving independently under a global constraint on the conservation of structural stability. This model consists of a selection process, which depends on two hydrophobicity parameters that can be computed from protein sequences without any fit, and a mutation process for which we consider various models. It reproduces quantitatively the results of Structurally Constrained Neutral (SCN) simulations of protein evolution in which the stability of the native state is explicitly computed and conserved. We then compare the predicted site-specific amino acid distributions with those sampled from the Protein Data Bank (PDB). The parameters of the mutation model, whose number varies between zero and five, are fitted from the data. The mean correlation coefficient between predicted and observed site-specific amino acid distributions is larger than <r> = 0.70 for a mutation model with no free parameters and no genetic code. In contrast, considering only the mutation process with no selection yields a mean correlation coefficient of <r> = 0.56 with three fitted parameters. The mutation model that best fits the data takes into account increased mutation rate at CpG dinucleotides, yielding <r> = 0.90 with five parameters. CONCLUSION The effective selection process that we propose reproduces well amino acid distributions as observed in the protein sequences in the PDB. Its simplicity makes it very promising for likelihood calculations in phylogenetic studies. Interestingly, in this approach the mutation process influences the effective selection process, i.e. selection and mutation must be entangled in order to obtain effectively independent sites. This interdependence between mutation and selection reflects the deep influence that mutation has on the evolutionary process: The bias in the mutation influences the thermodynamic properties of the evolving proteins, in agreement with comparative studies of bacterial proteomes, and it also influences the rate of accepted mutations.
Collapse
Affiliation(s)
- Ugo Bastolla
- Centro de Biología Molecular "Severo Ochoa", (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain
| | - Markus Porto
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstr. 8, 64289 Darmstadt, Germany
| | - H Eduardo Roman
- Dipartimento di Fisica, Università di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
12
|
Marsh L. Evolution of Structural Shape in Bacterial Globin-Related Proteins. J Mol Evol 2006; 62:575-87. [PMID: 16612536 DOI: 10.1007/s00239-005-0025-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Accepted: 12/31/2005] [Indexed: 10/24/2022]
Abstract
The globin family of proteins has a characteristic structural pattern of helix interactions that nonetheless exhibits some variation. A simplified model for globin structural evolution was developed in which protein shape evolved by random change of contacts between helices. A conserved globin domain of 15 bacterial proteins representing four structural families was studied. Using a parsimony approach ancestral structural states could be reconstructed. The distribution of number of contact changes per site for a fixed topology tree fit a gamma distribution. Homoplasy was high, with multiple changes per site and no support for an invariant class of residue-residue contacts. Contacts changed more slowly than sequence. A phylogenetic reconstruction using a distance measure based on the proportion of shared contacts was generally consistent with a sequence-based phylogeny but not highly resolved. Contact pattern convergence between members of different globin family proteins could not be detected. Simulation studies indicated the convergence test was sensitive enough to have detected convergence involving only 10% of the contacts, suggesting a limit on the extent of selection for a specific contact pattern. Contact site methods may provide additional approaches to study the relationship between protein structure and sequence evolution.
Collapse
Affiliation(s)
- Lorraine Marsh
- Department of Biology, Long Island University, 1 University Plaza, Brooklyn, NY 11201, USA.
| |
Collapse
|
13
|
Maguid S, Fernandez-Alberti S, Ferrelli L, Echave J. Exploring the common dynamics of homologous proteins. Application to the globin family. Biophys J 2005; 89:3-13. [PMID: 15749782 PMCID: PMC1366528 DOI: 10.1529/biophysj.104.053041] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a procedure to explore the global dynamics shared between members of the same protein family. The method allows the comparison of patterns of vibrational motion obtained by Gaussian network model analysis. After the identification of collective coordinates that were conserved during evolution, we quantify the common dynamics within a family. Representative vectors that describe these dynamics are defined using a singular value decomposition approach. As a test case, the globin heme-binding family is considered. The two lowest normal modes are shown to be conserved within this family. Our results encourage the development of models for protein evolution that take into account the conservation of dynamical features.
Collapse
Affiliation(s)
- Sandra Maguid
- Universidad Nacional de Quilmes, B1876BXD Bernal, Argentina
| | | | | | | |
Collapse
|
14
|
Parisi G, Echave J. Generality of the Structurally Constrained Protein Evolution model: assessment on representatives of the four main fold classes. Gene 2005; 345:45-53. [PMID: 15716088 DOI: 10.1016/j.gene.2004.11.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 11/04/2004] [Accepted: 11/09/2004] [Indexed: 11/19/2022]
Abstract
The Structurally Constrained Protein Evolution (SCPE) model simulates protein evolution by introducing random mutations into the evolving sequences and selecting them against too much structural perturbation. Given a single protein structure, the SCPE model can be used to obtain a whole set of site-dependent amino acid substitution matrices. The set of SCPE substitution matrices for a given protein family can be seen as an independent-sites model of evolution for that family. Thus, these matrices can be compared with other substitution-matrix-based models of evolution. So far, SCPE has been tested only on left-handed parallel beta helix (LbetaH) proteins. Here, we address the question of generality by assessing the SCPE model on representatives of the four main classes of folds: alpha, beta, alpha+beta, and alpha/beta. We compare with other models using the likelihood ratio test with parametric bootstrapping. We show that SCPE performs better than the popular JTT model for all cases considered. Furthermore, by considering the relative contributions of mutation and selection, we found that the key to the success of the SCPE model is the selection step.
Collapse
Affiliation(s)
- Gustavo Parisi
- Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, Roque Sáenz Peña 180, B1876BXD Bernal, Argentina
| | | |
Collapse
|