1
|
Horvath R, Josephs EB, Pesquet E, Stinchcombe JR, Wright SI, Scofield D, Slotte T. Selection on Accessible Chromatin Regions in Capsella grandiflora. Mol Biol Evol 2021; 38:5563-5575. [PMID: 34498072 PMCID: PMC8662636 DOI: 10.1093/molbev/msab270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Accurate estimates of genome-wide rates and fitness effects of new mutations are essential for an improved understanding of molecular evolutionary processes. Although eukaryotic genomes generally contain a large noncoding fraction, functional noncoding regions and fitness effects of mutations in such regions are still incompletely characterized. A promising approach to characterize functional noncoding regions relies on identifying accessible chromatin regions (ACRs) tightly associated with regulatory DNA. Here, we applied this approach to identify and estimate selection on ACRs in Capsella grandiflora, a crucifer species ideal for population genomic quantification of selection due to its favorable population demography. We describe a population-wide ACR distribution based on ATAC-seq data for leaf samples of 16 individuals from a natural population. We use population genomic methods to estimate fitness effects and proportions of positively selected fixations (α) in ACRs and find that intergenic ACRs harbor a considerable fraction of weakly deleterious new mutations, as well as a significantly higher proportion of strongly deleterious mutations than comparable inaccessible intergenic regions. ACRs are enriched for expression quantitative trait loci (eQTL) and depleted of transposable element insertions, as expected if intergenic ACRs are under selection because they harbor regulatory regions. By integrating empirical identification of intergenic ACRs with analyses of eQTL and population genomic analyses of selection, we demonstrate that intergenic regulatory regions are an important source of nearly neutral mutations. These results improve our understanding of selection on noncoding regions and the role of nearly neutral mutations for evolutionary processes in outcrossing Brassicaceae species.
Collapse
Affiliation(s)
- Robert Horvath
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, Lansing, MI, USA
| | - Edouard Pesquet
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Douglas Scofield
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Fang O, Wang L, Zhang Y, Yang J, Tao Q, Zhang F, Luo Z. Genome Duplication Increases Meiotic Recombination Frequency: A Saccharomyces cerevisiae Model. Mol Biol Evol 2021; 38:777-787. [PMID: 32898273 PMCID: PMC7947769 DOI: 10.1093/molbev/msaa219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genetic recombination characterized by reciprocal exchange of genes on paired homologous chromosomes is the most prominent event in meiosis of almost all sexually reproductive organisms. It contributes to genome stability by ensuring the balanced segregation of paired homologs in meiosis, and it is also the major driving factor in generating genetic variation for natural and artificial selection. Meiotic recombination is subjected to the control of a highly stringent and complex regulating process and meiotic recombination frequency (MRF) may be affected by biological and abiotic factors such as sex, gene density, nucleotide content, and chemical/temperature treatments, having motivated tremendous researches for artificially manipulating MRF. Whether genome polyploidization would lead to a significant change in MRF has attracted both historical and recent research interests; however, tackling this fundamental question is methodologically challenging due to the lack of appropriate methods for tetrasomic genetic analysis, thus has led to controversial conclusions in the literature. This article presents a comprehensive and rigorous survey of genome duplication-mediated change in MRF using Saccharomyces cerevisiae as a eukaryotic model. It demonstrates that genome duplication can lead to consistently significant increase in MRF and rate of crossovers across all 16 chromosomes of S. cerevisiae, including both cold and hot spots of MRF. This ploidy-driven change in MRF is associated with weakened recombination interference, enhanced double-strand break density, and loosened chromatin histone occupation. The study illuminates a significant evolutionary feature of genome duplication and opens an opportunity to accelerate response to artificial and natural selection through polyploidization.
Collapse
Affiliation(s)
- Ou Fang
- Laboratory of Population and Quantitative Genetics, Institute of Biostatistics, Fudan University, Shanghai, China
| | - Lin Wang
- Laboratory of Population and Quantitative Genetics, Institute of Biostatistics, Fudan University, Shanghai, China
| | - Yuxin Zhang
- Laboratory of Population and Quantitative Genetics, Institute of Biostatistics, Fudan University, Shanghai, China
| | - Jixuan Yang
- Laboratory of Population and Quantitative Genetics, Institute of Biostatistics, Fudan University, Shanghai, China
| | - Qin Tao
- Laboratory of Population and Quantitative Genetics, Institute of Biostatistics, Fudan University, Shanghai, China
| | - Fengjun Zhang
- Laboratory of Population and Quantitative Genetics, Institute of Biostatistics, Fudan University, Shanghai, China.,Qinghai Academy of Agriculture and Forestry Sciences, Xining, Qinghai, China
| | - Zewei Luo
- Laboratory of Population and Quantitative Genetics, Institute of Biostatistics, Fudan University, Shanghai, China.,School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Babarinde IA, Saitou N. The Dynamics, Causes, and Impacts of Mammalian Evolutionary Rates Revealed by the Analyses of Capybara Draft Genome Sequences. Genome Biol Evol 2020; 12:1444-1458. [PMID: 32835375 DOI: 10.1093/gbe/evaa157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Capybara (Hydrochoerus hydrochaeri) is the largest species among the extant rodents. The draft genome of capybara was sequenced with the estimated genome size of 2.6 Gb. Although capybara is about 60 times larger than guinea pig, comparative analyses revealed that the neutral evolutionary rates of the two species were not substantially different. However, analyses of 39 mammalian genomes revealed very heterogeneous evolutionary rates. The highest evolutionary rate, 8.5 times higher than the human rate, was found in the Cricetidae-Muridae common ancestor after the divergence of Spalacidae. Muridae, the family with the highest number of species among mammals, emerged after the rate acceleration. Factors responsible for the evolutionary rate heterogeneity were investigated through correlations between the evolutionary rate and longevity, gestation length, litter frequency, litter size, body weight, generation interval, age at maturity, and taxonomic order. The regression analysis of these factors showed that the model with three factors (taxonomic order, generation interval, and litter size) had the highest predictive power (R2 = 0.74). These three factors determine the number of meiosis per unit time. We also conducted transcriptome analysis and found that the evolutionary rate dynamics affects the evolution of gene expression patterns.
Collapse
Affiliation(s)
- Isaac Adeyemi Babarinde
- Department of Biological Sciences, Southern University of Science and Technology, Shenzhen, China.,Population Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Naruya Saitou
- Population Genetics Laboratory, National Institute of Genetics, Mishima, Japan.,School of Medicine, University of the Ryukyus, Okinawa, Japan.,Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| |
Collapse
|
4
|
Cytosine Methylation Affects the Mutability of Neighboring Nucleotides in Germline and Soma. Genetics 2020; 214:809-823. [PMID: 32079595 DOI: 10.1534/genetics.120.303028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Methylated cytosines deaminate at higher rates than unmethylated cytosines, and the lesions they produce are repaired less efficiently. As a result, methylated cytosines are mutational hotspots. Here, combining rare polymorphism and base-resolution methylation data in humans, Arabidopsis thaliana, and rice (Oryza sativa), we present evidence that methylation state affects mutation dynamics not only at the focal cytosine but also at neighboring nucleotides. In humans, contrary to prior suggestions, we find that nucleotides in the close vicinity (±3 bp) of methylated cytosines mutate less frequently. Reduced mutability around methylated CpGs is also observed in cancer genomes, considering single nucleotide variants alongside tissue-of-origin-matched methylation data. In contrast, methylation is associated with increased neighborhood mutation risk in A. thaliana and rice. The difference in neighborhood mutation risk is less pronounced further away from the focal CpG and modulated by regional GC content. Our results are consistent with a model where altered risk at neighboring bases is linked to lesion formation at the focal CpG and subsequent long-patch repair. Our findings indicate that cytosine methylation has a broader mutational footprint than is commonly assumed.
Collapse
|
5
|
Hilu KW, Friend SA, Vallanadu V, Brown AM, Hollingsworth LR, Bevan DR. Molecular evolution of genes encoding allergen proteins in the peanuts genus Arachis: Structural and functional implications. PLoS One 2019; 14:e0222440. [PMID: 31675366 PMCID: PMC6824556 DOI: 10.1371/journal.pone.0222440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
Food allergies are severe immune responses to plant and animal products mediated by immunoglobulin E (IgE). Peanuts (Arachis hypogaea L.) are among the top 15 crops that feed the world. However, peanuts is among the "big eight food allergens", and allergies induced by peanuts are a significant public health problem and a life-threatening concern. Targeted mutation studies in peanuts demonstrate that single residue alterations in these allergen proteins could result in substantial reduction in allergenicity. Knowledge of peanut allergen proteins is confined to the allotetraploid crop and its two progenitors. We explored frequencies and positions of natural mutations in the hyperallergenic homologues Ara h 2 and Ara h 6 in newly generated sequences for 24 Arachis wild species and the crop species, assessed potential mutational impact on allergenicity using immunoblots and structural modeling, and evaluated whether these mutations follow evolutionary trends. We uncovered a wealth of natural mutations, both substitutions and gaps, including the elimination of immunodominant epitopes in some species. These molecular alterations appear to be associated with substantial reductions in allergenicity. The study demonstrated that Ara h 2 and Ara h 6 follow contrasting modes of natural selection and opposing mutational patterns, particularly in epitope regions. Phylogenetic analysis revealed a progressive trend towards immunodominant epitope evolution in Ara h 2. The findings provide valuable insight into the interactions among mutations, protein structure and immune system response, thus presenting a valuable platform for future manipulation of allergens to minimize, treat or eliminate allergenicity. The study strongly encourages exploration of genepools of economically important plants in allergenicity research.
Collapse
Affiliation(s)
- Khidir W. Hilu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Sheena A. Friend
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Viruthika Vallanadu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Anne M. Brown
- Research and Informatics, Virginia Tech, Blacksburg, VA, United States of America
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States of America
| | | | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
6
|
Song K, Wen S, Zhang G. Adaptive Evolution Patterns in the Pacific Oyster Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:614-622. [PMID: 31203476 DOI: 10.1007/s10126-019-09906-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Estimation of adaptive evolution rates at the molecular level is important in evolutionary genomics. However, knowledge of adaptive evolutionary patterns in Mollusca is very scarce, especially for oysters. Such information would help clarify how oysters adapt to pathogen-rich and dynamically changing intertidal environments. In this study, we characterized the patterns of adaptive evolution in the Crassostrea gigas genome, using population diversity analysis and congeneric comparison. Our analysis revealed that gene expression patterns were positively associated with adaptive evolution rates, which suggested that positive selection played an important role in gene evolution. The genes with more exons and alternative splicing events had higher adaptive evolution rates. The rates of adaptive evolution in immune-related and stress-response genes were higher than those in other genes, suggesting that these groups of genes experienced strong positive selection. This study represents the first analysis of adaptive evolution rates in oysters and the first comprehensive study of a Mollusca species. These results provide a system-level investigation of association between adaptive evolution rates with some intrinsic genetic factors. They also suggest that adaptation to pathogens and environmental stressors are important forces driving the adaptive evolution of genes.
Collapse
Affiliation(s)
- Kai Song
- School of Mathematics and Statistics, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Shiyong Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, 010018, China
- Dezhou State-owned Assets Supervision and Administration Commission, Dezhou,, 253000, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.
| |
Collapse
|
7
|
Du MZ, Zhang C, Wang H, Liu S, Wei W, Guo FB. The GC Content as a Main Factor Shaping the Amino Acid Usage During Bacterial Evolution Process. Front Microbiol 2018; 9:2948. [PMID: 30581420 PMCID: PMC6292993 DOI: 10.3389/fmicb.2018.02948] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/16/2018] [Indexed: 11/13/2022] Open
Abstract
Understanding how proteins evolve is important, and the order of amino acids being recruited into the genetic codons was found to be an important factor shaping the amino acid composition of proteins. The latest work about the last universal common ancestor (LUCA) makes it possible to determine the potential factors shaping amino acid compositions during evolution. Those LUCA genes/proteins from Methanococcus maripaludis S2, which is one of the possible LUCA, were investigated. The evolutionary rates of these genes positively correlate with GC contents with P-value significantly lower than 0.05 for 94% homologous genes. Linear regression results showed that compositions of amino acids coded by GC-rich codons positively contribute to the evolutionary rates, while these amino acids tend to be gained in GC-rich organisms according to our results. The first principal component correlates with the GC content very well. The ratios of amino acids of the LUCA proteins coded by GC rich codons positively correlate with the GC content of different bacteria genomes, while the ratios of amino acids coded by AT rich codons negatively correlate with the increase of GC content of genomes. Next, we found that the recruitment order does correlate with the amino acid compositions, but gain and loss in codons showed newly recruited amino acids are not significantly increased along with the evolution. Thus, we conclude that GC content is a primary factor shaping amino acid compositions. GC content shapes amino acid composition to trade off the cost of amino acids with bases, which could be caused by the energy efficiency.
Collapse
Affiliation(s)
- Meng-Ze Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Huan Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shuo Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wen Wei
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Feng-Biao Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Centre for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Song K, Li L, Zhang G. Relationship Among Intron Length, Gene Expression, and Nucleotide Diversity in the Pacific Oyster Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:676-684. [PMID: 29967965 DOI: 10.1007/s10126-018-9838-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Crassostrea gigas is a model mollusk, but its genetic features have not been studied comprehensively. In this study, we used whole-genome resequencing data to identify and characterize nucleotide diversity and population recombination rate in a diverse collection of 21 C. gigas samples. Our analyses revealed that C. gigas harbors both extremely high genetic diversity and recombination rates across the whole genome as compared with those of the other taxa. The noncoding regions, introns, intergenic spacers, and untranslated regions (UTRs) showed a lower level diversity than the synonymous sites. The larger introns tended to have lower diversity. Moreover, we found a negative association of the non-synonymous diversity with gene expression, which suggested that purifying selection played an important role in shaping genetic diversity. The nucleotide diversity at the 100- and 50-kb levels was positively correlated with population recombination rates, which was expected if the diversity was shaped by purifying selection or hitchhiking of advantageous mutants. Our work gives a general picture of the oyster's polymorphism pattern and its association with recombination rates.
Collapse
Affiliation(s)
- Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China.
- Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Rd., Qingdao, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, Shandong, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China.
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, Shandong, China.
- Institute of Oceanology, Chinese Academy of Sciences, 7th Nanhai Rd., Qingdao, China.
| |
Collapse
|
9
|
Fungal mitochondrial genomes and genetic polymorphisms. Appl Microbiol Biotechnol 2018; 102:9433-9448. [PMID: 30209549 DOI: 10.1007/s00253-018-9350-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022]
Abstract
Mitochondria are the powerhouses of eukaryotic cells, responsible for ATP generation and playing a role in a diversity of cellular and organismal functions. Different from the majority of other intracellular membrane structures, mitochondria contain their own genetic materials that are capable of independent replication and inheritance. In this mini-review, we provide brief summaries of fungal mitochondrial genome structure, size, gene content, inheritance, and genetic variation. We pay special attention to the relative genetic polymorphisms of the mitochondrial vs nuclear genomes at the population level within individual fungal species. Among the 20 species/groups of species reviewed here, there is a range of variation among genes and species in the relative nuclear and mitochondrial genetic polymorphisms. Interestingly, most (15/20) showed a greater genetic diversity for nuclear genes and genomes than for mitochondrial genes and genomes, with the remaining five showing similar or slower nuclear genome genetic variations. This fungal pattern is different from the dominant pattern in animals, but more similar to that in plants. At present, the mechanisms for the variations among fungal species and the overall low level of mitochondrial sequence polymorphisms are not known. The increasing availability of population genomic data should help us reveal the potential genetic and ecological factors responsible for the observed variations.
Collapse
|
10
|
Kolb AW, Lewin AC, Moeller Trane R, McLellan GJ, Brandt CR. Phylogenetic and recombination analysis of the herpesvirus genus varicellovirus. BMC Genomics 2017; 18:887. [PMID: 29157201 PMCID: PMC5697016 DOI: 10.1186/s12864-017-4283-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The varicelloviruses comprise a genus within the alphaherpesvirus subfamily, and infect both humans and other mammals. Recently, next-generation sequencing has been used to generate genomic sequences of several members of the Varicellovirus genus. Here, currently available varicellovirus genomic sequences were used for phylogenetic, recombination, and genetic distance analysis. RESULTS A phylogenetic network including genomic sequences of individual species, was generated and suggested a potential restriction between the ungulate and non-ungulate viruses. Intraspecies genetic distances were higher in the ungulate viruses (pseudorabies virus (SuHV-1) 1.65%, bovine herpes virus type 1 (BHV-1) 0.81%, equine herpes virus type 1 (EHV-1) 0.79%, equine herpes virus type 4 (EHV-4) 0.16%) than non-ungulate viruses (feline herpes virus type 1 (FHV-1) 0.0089%, canine herpes virus type 1 (CHV-1) 0.005%, varicella-zoster virus (VZV) 0.136%). The G + C content of the ungulate viruses was also higher (SuHV-1 73.6%, BHV-1 72.6%, EHV-1 56.6%, EHV-4 50.5%) compared to the non-ungulate viruses (FHV-1 45.8%, CHV-1 31.6%, VZV 45.8%), which suggests a possible link between G + C content and intraspecies genetic diversity. Varicellovirus clade nomenclature is variable across different species, and we propose a standardization based on genomic genetic distance. A recent study reported no recombination between sequenced FHV-1 strains, however in the present study, both splitstree, bootscan, and PHI analysis indicated recombination. We also found that the recently sequenced Brazilian CHV-1 strain BTU-1 may contain a genetic signal in the UL50 gene from an unknown varicellovirus. CONCLUSION Together, the data contribute to a greater understanding of varicellovirus genomics, and we also suggest a new clade nomenclature scheme based on genetic distances.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA
| | - Andrew C Lewin
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ralph Moeller Trane
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA
| | - Gillian J McLellan
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
- Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Hoekstra PH, Wieringa JJ, Smets E, Brandão RD, Lopes JDC, Erkens RHJ, Chatrou LW. Correlated evolutionary rates across genomic compartments in Annonaceae. Mol Phylogenet Evol 2017; 114:63-72. [PMID: 28578201 DOI: 10.1016/j.ympev.2017.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 11/28/2022]
Abstract
The molecular clock hypothesis is an important concept in biology. Deviations from a constant rate of nucleotide substitution have been found widely among lineages, genomes, genes and individual sites. Phylogenetic research can accommodate for these differences in applying specific models of evolution. Lineage-specific rate heterogeneity however can generate bi- or multimodal distributions of substitution rates across the branches of a tree and this may mislead phylogenetic inferences with currently available models. The plant family Annonaceae is an excellent case to study lineage-specific rate heterogeneity. The two major sister subfamilies, Annonoideae and Malmeoideae, have shown great discrepancies in branch lengths. We used high-throughput sequencing data of 72 genes, 99 spacers and 16 introns from 24 chloroplast genomes and nuclear ribosomal DNA of 23 species to study the molecular rate of evolution in Annonaceae. In all analyses, longer branch lengths and/or higher substitution rates were found for the Annonoideae compared to the Malmeoideae. The Annonaceae had wide variability in chloroplast length, ranging from minimal 175,684bp to 201,723 for Annonoideae and minimal 152,357 to 170,985bp in Malmeoideae, mostly reflecting variation in inverted-repeat length. The Annonoideae showed a higher GC-content in the conserved parts of the chloroplast genome and higher omega (dN/dS)-ratios than the Malmeoideae, which could indicate less stringent purifying selection, a pattern that has been found in groups with small population sizes. This study generates new insights into the processes causing lineage-specific rate heterogeneity, which could lead to improved phylogenetic methods.
Collapse
Affiliation(s)
- Paul H Hoekstra
- Naturalis Biodiversity Center, National Herbarium of the Netherlands, Darwinweg 2, 2300 RA Leiden, The Netherlands; Wageningen University & Research, Biosystematics Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Jan J Wieringa
- Naturalis Biodiversity Center, National Herbarium of the Netherlands, Darwinweg 2, 2300 RA Leiden, The Netherlands; Wageningen University & Research, Biosystematics Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Erik Smets
- Naturalis Biodiversity Center, National Herbarium of the Netherlands, Darwinweg 2, 2300 RA Leiden, The Netherlands; Katholieke Universiteit Leuven, Ecology, Evolution and Biodiversity Conservation Section, Kasteelpark Arenberg 31, Box 2435, 3001 Leuven, Belgium.
| | - Rita D Brandão
- Maastricht University, Maastricht Science Programme, Kapoenstraat 2, 6211 KW Maastricht, The Netherlands.
| | - Jenifer de Carvalho Lopes
- Universidade de São Paulo, Instituto de Biociências, Departamento de Botânica, Rua do Matão 277, 05508-090 São Paulo, SP, Brazil.
| | - Roy H J Erkens
- Maastricht University, Maastricht Science Programme, Kapoenstraat 2, 6211 KW Maastricht, The Netherlands.
| | - Lars W Chatrou
- Wageningen University & Research, Biosystematics Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
12
|
Hollister JD. Genomic variation in Arabidopsis: tools and insights from next-generation sequencing. Chromosome Res 2015; 22:103-15. [PMID: 24801344 DOI: 10.1007/s10577-014-9420-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The release of a reference genome for Arabidopsis thaliana in 2000 has been an enormous boon for the study of plant genetics. Less than a decade later, however, a revolution in sequencing technology had enabled rapid and inexpensive re-sequencing of whole A. thaliana genomes. Large-scale efforts to characterize natural genomic variation in A. thaliana have revealed remarkable intra-specific variation in this species, ranging from single-nucleotide differences to large structural rearrangements. The partitioning of this variation by geography and local adaptation has been described using powerful new methods and tools. Simultaneously, an ambitious research agenda has emerged to sequence 1001 A. thaliana lines from around the world, while sequencing of related species is enabling powerful evolutionary genomic analyses. In this review, I summarize recent progress in genomic analysis of natural variation in A. thaliana and its close relatives. This progress has set the stage for the emergence of Arabidopsis as a model genus for evolutionary and functional genomics.
Collapse
Affiliation(s)
- Jesse D Hollister
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 1G8, Canada,
| |
Collapse
|
13
|
Xu B, Tian J, Du Q, Gong C, Pan W, Zhang D. Single nucleotide polymorphisms in a cellulose synthase gene (PtoCesA3) are associated with growth and wood properties in Populus tomentosa. PLANTA 2014; 240:1269-86. [PMID: 25143249 DOI: 10.1007/s00425-014-2149-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/08/2014] [Indexed: 05/21/2023]
Abstract
In plants, the composition and organization of the cell wall determine cell shape, enable cell expansion, and affect the properties of woody tissues. Cellulose synthase (CesA) genes encode the enzymes involved in the synthesis of cellulose which is the major component of plant primary and secondary cell walls. Here, we isolated a full-length PtoCesA3 cDNA from the stem cambium tissue of Populus tomentosa. Tissue-specific expression profiling showed that PtoCesA3 is highly expressed during primary cell wall formation. Estimation of single nucleotide polymorphism (SNP) diversity and linkage disequilibrium (LD) revealed that PtoCesA3 harbors high SNP diversity (π(T) = 0.00995 and θ(w) = 0.0102) and low LD (r(2) ≥ 0.1, within 1,280 bp). Association analysis in a P. tomentosa association population (460 individuals) showed that seven SNPs (false discovery rate Q < 0.10) and five haplotypes (Q < 0.10) were significantly associated with growth and wood properties, explaining 4.09-7.02% of the phenotypic variance. All significant marker-trait associations were validated in at least one of the three smaller subsets (climatic regions) while five associations were repeated in the linkage population. Variation in RNA transcript abundance among genotypic classes of significant loci was also confirmed in the association or linkage populations. Identification of PtoCesA3 and examining its allelic polymorphisms using association studies open an avenue to understand the mechanism of cellulose synthesis in the primary cell wall and its effects on the properties of woody tissues.
Collapse
Affiliation(s)
- Baohua Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Bickel RD, Dunham JP, Brisson JA. Widespread selection across coding and noncoding DNA in the pea aphid genome. G3 (BETHESDA, MD.) 2013; 3:993-1001. [PMID: 23589520 PMCID: PMC3689810 DOI: 10.1534/g3.113.005793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/08/2013] [Indexed: 12/03/2022]
Abstract
Genome-wide patterns of diversity and selection are critical measures for understanding how evolution has shaped the genome. Yet, these population genomic estimates are available for only a limited number of model organisms. Here we focus on the population genomics of the pea aphid (Acyrthosiphon pisum). The pea aphid is an emerging model system that exhibits a range of intriguing biological traits not present in classic model systems. We performed low-coverage genome resequencing of 21 clonal pea aphid lines collected from alfalfa host plants in North America to characterize genome-wide patterns of diversity and selection. We observed an excess of low-frequency polymorphisms throughout coding and noncoding DNA, which we suggest is the result of a founding event and subsequent population expansion in North America. Most gene regions showed lower levels of Tajima's D than synonymous sites, suggesting that the majority of the genome is not evolving neutrally but rather exhibits significant constraint. Furthermore, we used the pea aphid's unique manner of X-chromosome inheritance to assign genomic scaffolds to either autosomes or the X chromosome. Comparing autosomal vs. X-linked sequence variation, we discovered that autosomal genes show an excess of low frequency variants indicating that purifying selection acts more efficiently on the X chromosome. Overall, our results provide a critical first step in characterizing the genetic diversity and evolutionary pressures on an aphid genome.
Collapse
Affiliation(s)
- Ryan D Bickel
- University of Nebraska, School of Biological Sciences, Lincoln, Nebraska 68588, USA.
| | | | | |
Collapse
|
15
|
Bromham L, Cowman PF, Lanfear R. Parasitic plants have increased rates of molecular evolution across all three genomes. BMC Evol Biol 2013; 13:126. [PMID: 23782527 PMCID: PMC3694452 DOI: 10.1186/1471-2148-13-126] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/05/2013] [Indexed: 11/26/2022] Open
Abstract
Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, A.C.T. 0200, Australia.
| | | | | |
Collapse
|
16
|
Abstract
Vast tracts of noncoding DNA contain elements that regulate gene expression in higher eukaryotes. Describing these regulatory elements and understanding how they evolve represent major challenges for biologists. Advances in the ability to survey genome-scale DNA sequence data are providing unprecedented opportunities to use evolutionary models and computational tools to identify functionally important elements and the mode of selection acting on them in multiple species. This chapter reviews some of the current methods that have been developed and applied on noncoding DNA, what they have shown us, and how they are limited. Results of several recent studies reveal that a significantly larger fraction of noncoding DNA in eukaryotic organisms is likely to be functional than previously believed, implying that the functional annotation of most noncoding DNA in these organisms is largely incomplete. In Drosophila, recent studies have further suggested that a large fraction of noncoding DNA divergence observed between species may be the product of recurrent adaptive substitution. Similar studies in humans have revealed a more complex pattern, with signatures of recurrent positive selection being largely concentrated in conserved noncoding DNA elements. Understanding these patterns and the extent to which they generalize to other organisms awaits the analysis of forthcoming genome-scale polymorphism and divergence data from more species.
Collapse
Affiliation(s)
- Ying Zhen
- Department of Ecology and Evolutionary Biology, The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
17
|
Gaut B, Yang L, Takuno S, Eguiarte LE. The Patterns and Causes of Variation in Plant Nucleotide Substitution Rates. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2011. [DOI: 10.1146/annurev-ecolsys-102710-145119] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brandon Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697; , ,
| | - Liang Yang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697; , ,
| | - Shohei Takuno
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697; , ,
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, CP 04510 Mexico City, Mexico;
| |
Collapse
|
18
|
Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proc Natl Acad Sci U S A 2011; 108:E864-70. [PMID: 21949378 DOI: 10.1073/pnas.1104032108] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Medicago truncatula is a model for investigating legume genetics, including the genetics and evolution of legume-rhizobia symbiosis. We used whole-genome sequence data to identify and characterize sequence polymorphisms and linkage disequilibrium (LD) in a diverse collection of 26 M. truncatula accessions. Our analyses reveal that M. truncatula harbors both higher diversity and less LD than soybean (Glycine max) and exhibits patterns of LD and recombination similar to Arabidopsis thaliana. The population-scaled recombination rate is approximately one-third of the mutation rate, consistent with expectations for a species with a high selfing rate. Linkage disequilibrium, however, is not extensive, and therefore, the low recombination rate is likely not a major constraint to adaptation. Nucleotide diversity in 100-kb windows was negatively correlated with gene density, which is expected if diversity is shaped by selection acting against slightly deleterious mutations. Among putative coding regions, members of four gene families harbor significantly higher diversity than the genome-wide average. Three of these families are involved in resistance against pathogens; one of these families, the nodule-specific, cysteine-rich gene family, is specific to the galegoid legumes and is involved in control of rhizobial differentiation. The more than 3 million SNPs that we detected, approximately one-half of which are present in more than one accession, are a valuable resource for genome-wide association mapping of genes responsible for phenotypic diversity in legumes, especially traits associated with symbiosis and nodulation.
Collapse
|
19
|
Porceddu A, Camiolo S. Spatial analyses of mono, di and trinucleotide trends in plant genes. PLoS One 2011; 6:e22855. [PMID: 21829660 PMCID: PMC3148226 DOI: 10.1371/journal.pone.0022855] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/30/2011] [Indexed: 11/24/2022] Open
Abstract
Genomic DNA sequences display compositional heterogeneity on many scales. In this paper we analyzed tendencies and anomalies in the occurence of mono, di and trinucleotides in structural regions of plant genes. Representation of these trends as a function of position along genic sequences highlighted compositional features peculiar of either monocots or eudicots that were remarkably uniform within these two evolutionary clades. The most evident of these features appeared in the form of gradient of base content along the direction of transcription. The robustness of such a representation was validated in sequences sub-datasets generated considering structural and compositional features such as total length of cds, overall GC content and genic orientation in the genome. Piecewise regression analyses indicated that the gradients could be conveniently approximated to a two segmented model where a first region featuring a steep slope is followed by a second segment fitting a milder variation. In general, monocots species showed steeper segments than eudicots. The guanine gradient was the most distinctive feature between the two evolutionary clades, being moderately increasing in eudicots and firmly decreasing in monocots. Single gene investigation revealed that a high proportion of genes show compositional trends compatible with a segmented model suggesting that these features are essential attributes of gene organization. Dinucleotide and trinucleotide biases were referred to expectation based on a random union of the component elements. The average bias at dinucleotide level identified a significant undererpresentation of some dinucleotide and the overrepresention of others. The bias at trinucleotide level was on average low. Finally, the analysis of bryophyte coding sequences showed mononucleotide, dinucleotide and trinucleotide compositional trends resembling those of higher plants. This finding suggested that the emergenge of compositional bias is an ancient event in evolution which was already present at the time of land conquest by green plants.
Collapse
Affiliation(s)
- Andrea Porceddu
- Dipartimento di Scienze Agronomiche e Genetica Vegetale Agraria, Università degli Studi di Sassari, Sassari, Italy.
| | | |
Collapse
|
20
|
Reineke AR, Bornberg-Bauer E, Gu J. Evolutionary divergence and limits of conserved non-coding sequence detection in plant genomes. Nucleic Acids Res 2011; 39:6029-43. [PMID: 21470961 PMCID: PMC3152334 DOI: 10.1093/nar/gkr179] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 02/22/2011] [Accepted: 03/15/2011] [Indexed: 12/17/2022] Open
Abstract
The discovery of regulatory motifs embedded in upstream regions of plants is a particularly challenging bioinformatics task. Previous studies have shown that motifs in plants are short compared with those found in vertebrates. Furthermore, plant genomes have undergone several diversification mechanisms such as genome duplication events which impact the evolution of regulatory motifs. In this article, a systematic phylogenomic comparison of upstream regions is conducted to further identify features of the plant regulatory genomes, the component of genomes regulating gene expression, to enable future de novo discoveries. The findings highlight differences in upstream region properties between major plant groups and the effects of divergence times and duplication events. First, clear differences in upstream region evolution can be detected between monocots and dicots, thus suggesting that a separation of these groups should be made when searching for novel regulatory motifs, particularly since universal motifs such as the TATA box are rare. Second, investigating the decay rate of significantly aligned regions suggests that a divergence time of ~100 mya sets a limit for reliable conserved non-coding sequence (CNS) detection. Insights presented here will set a framework to help identify embedded motifs of functional relevance by understanding the limits of bioinformatics detection for CNSs.
Collapse
Affiliation(s)
| | | | - Jenny Gu
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| |
Collapse
|
21
|
Qiu S, Bergero R, Zeng K, Charlesworth D. Patterns of codon usage bias in Silene latifolia. Mol Biol Evol 2010; 28:771-80. [PMID: 20855431 DOI: 10.1093/molbev/msq251] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Patterns of codon usage bias (CUB) convey useful information about the selection on synonymous codons induced by gene expression and contribute to an understanding of substitution patterns observed at synonymous sites. They can also be informative about the distinctive evolutionary properties of sex chromosomes such as genetic degeneration of the Y chromosome, dosage compensation, and hemizygosity of the X chromosome in males, which can affect the selection on codon usage. Here, we study CUB in Silene latifolia, a species of interest for studying the early stages of sex chromosome evolution. We have obtained a large expressed sequence tag data set containing more than 1,608 sequence fragments by 454 sequencing. Using three different methods, we conservatively define 21 preferred codons. Interestingly, the preferred codons in S. latifolia are almost identical to those in Arabidopsis thaliana, despite their long divergence time (we estimate average nonsynonymous site divergence to be 0.216, and synonymous sites are saturated). The agreement suggests that the nature of selection on codon usage has not changed significantly during the long evolutionary time separating the two species. As in many other organisms, the frequency of preferred codons is negatively correlated with protein length. For the 43 genes with both exon and intron sequences, we find a positive correlation between gene expression levels and GC content at third codon positions, but a strong negative correlation between expression and intron GC content, suggesting that the CUB we detect in S. latifolia is more likely to be due to natural selection than to mutational bias. Using polymorphism data, we detect evidence of ongoing natural selection on CUB, but we find little support for effects of biased gene conversion. An analysis of ten sex-linked genes reveals that the X chromosome has experienced significantly more unpreferred to preferred than preferred to unpreferred substitutions, suggesting that it may be evolving higher CUB. In contrast, numbers of substitutions between preferred and unpreferred codons are similar in both directions in the Y-linked genes, contrary to the expectation of genetic degeneration.
Collapse
Affiliation(s)
- Suo Qiu
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China.
| | | | | | | |
Collapse
|
22
|
Warren AS, Anandakrishnan R, Zhang L. Functional bias in molecular evolution rate of Arabidopsis thaliana. BMC Evol Biol 2010; 10:125. [PMID: 20433764 PMCID: PMC2876160 DOI: 10.1186/1471-2148-10-125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 05/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Characteristics derived from mutation and other mechanisms that are advantageous for survival are often preserved during evolution by natural selection. Some genes are conserved in many organisms because they are responsible for fundamental biological function, others are conserved for their unique functional characteristics. Therefore one would expect the rate of molecular evolution for individual genes to be dependent on their biological function. Whether this expectation holds for genes duplicated by whole genome duplication is not known. RESULTS We empirically demonstrate here, using duplicated genes generated from the Arabidopsis thaliana alpha-duplication event, that the rate of molecular evolution of genes duplicated in this event depend on biological function. Using functional clustering based on gene ontology annotation of gene pairs, we show that some duplicated genes, such as defense response genes, are under weaker purifying selection or under stronger diversifying selection than other duplicated genes, such as protein translation genes, as measured by the ratio of nonsynonymous to synonymous divergence (dN/dS). CONCLUSIONS These results provide empirical evidence indicating that molecular evolution rate for genes duplicated in whole genome duplication, as measured by dN/dS, may depend on biological function, which we characterize using gene ontology annotation. Furthermore, the general approach used here provides a framework for comparative analysis of molecular evolution rate for genes based on their biological function.
Collapse
Affiliation(s)
- Andrew S Warren
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | | | | |
Collapse
|
23
|
Nah G, Jeffrey Chen Z. Tandem duplication of the FLC locus and the origin of a new gene in Arabidopsis related species and their functional implications in allopolyploids. THE NEW PHYTOLOGIST 2010; 186:228-38. [PMID: 20100201 DOI: 10.1111/j.1469-8137.2009.03164.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Flowering time is an important adaptive trait and varies among Arabidopsis thaliana and its related species, including allopolyploids that are formed between A. thaliana and Arabidopsis arenosa. FLOWERING LOCUS C (FLC) inhibits early flowering in A. thaliana. A previous study showed that late-flowering A. arenosa contained two or more FLC alleles that were differentially expressed in Arabidopsis allotetraploids, but the genomic organization and evolution of FLC locus were unknown. Comparative sequence and evolutionary analyses were performed in FLC-containing genomic regions in A. thaliana, A. arenosa and Arabidopsis lyrata, and expression of FLC loci and alleles was examined in Arabidopsis allopolyploids. The FLC locus was tandemly duplicated in A. lyrata and triplicated in A. arenosa, and the tandem duplication event occurred after divergence from A. thaliana. Although FLC duplicates were highly conserved, their upstream sequences rapidly diverged. The third FLC copy in A. arenosa acquired a new splicing site through a point mutation in the intron and generated the new exon followed by an early stop codon, resulting in a novel MADS box gene. Flowering time variation in Arabidopsis allopolyploids is probably related to the expression diversity and/or copy number of multiple FLC loci. Moreover, exonization of intronic sequence is a mechanism for the origin of new genes.
Collapse
|
24
|
Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant JP, Sourdille P, Balfourier F, Le Paslier MC, Chauveau A, Cakir M, Gandon B, Feuillet C. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:196-210. [PMID: 20078842 DOI: 10.1111/j.1467-7652.2009.00477.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In wheat, the deployment of marker-assisted selection has long been hampered by the lack of markers compatible with high-throughput cost-effective genotyping techniques. Recently, insertion site-based polymorphism (ISBP) markers have appeared as very powerful new tools for genomics and genetic studies in hexaploid wheat. To demonstrate their possible use in wheat breeding programmes, we assessed their potential to meet the five main requirements for utilization in MAS: flexible and high-throughput detection methods, low quantity and quality of DNA required, low cost per assay, tight link to target loci and high level of polymorphism in breeding material. Toward this aim, we developed a programme, IsbpFinder, for the automated design of ISBP markers and adapted three detection methods (melting curve analysis, SNaPshot Multiplex System and Illumina BeadArray technology) for high throughput and flexible detection of ISBP or ISBP-derived SNP markers. We demonstrate that the high level of polymorphism of the ISBPs combined with cost-effective genotyping methods can be used to efficiently saturate genetic maps, discriminate between elite cultivars, and design tightly linked diagnostic markers for virtually all target loci in the wheat genome. All together, our results suggest that ISBP markers have the potential to lead to a breakthrough in wheat marker-assisted selection.
Collapse
Affiliation(s)
- Etienne Paux
- INRA UBP UMR 1095, Genetics, Diversity & Ecophysiology of Cereals, Clermont Ferrand, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lockton S, Gaut BS. The evolution of transposable elements in natural populations of self-fertilizing Arabidopsis thaliana and its outcrossing relative Arabidopsis lyrata. BMC Evol Biol 2010; 10:10. [PMID: 20067644 PMCID: PMC2837042 DOI: 10.1186/1471-2148-10-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 01/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Transposable Elements (TEs) make up the majority of plant genomes, and thus understanding TE evolutionary dynamics is key to understanding plant genome evolution. Plant reproductive systems are diverse and mating type variation is one factor among many hypothesized to influence TE evolutionary dynamics. Here, we collected a large TE-display data set in self-fertilizing Arabidopsis thaliana, and compared it to data gathered in outcrossing Arabidopsis lyrata. We analyzed seven TE families in four natural populations of each species to tease apart the effects of mating system, demography, transposition, and selection in determining patterns of TE diversity. Results Measures of TE band differentiation were largely consistent across TE families. However, patterns of diversity in A. thaliana Ac elements differed significantly from that other TEs, perhaps signaling a lack of recent transposition. Across TE families, we estimated higher allele frequencies and lower selection coefficients on A. thaliana TE insertions relative to A. lyrata TE insertions. Conclusions The differences in TE distributions between the two Arabidopsis species represents a synthesis of evolutionary forces that include the transposition dynamics of individual TE families and the demographic histories of populations. There are also species-specific differences that could be attributed to the effects of mating system, including higher overall allele frequencies in the selfing lineage and a greater proportion of among population TE diversity in the outcrossing lineage.
Collapse
Affiliation(s)
- Steven Lockton
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA.
| | | |
Collapse
|
26
|
Yang L, Bennetzen JL. Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci U S A 2009; 106:19922-7. [PMID: 19926865 PMCID: PMC2785268 DOI: 10.1073/pnas.0908008106] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Indexed: 01/11/2023] Open
Abstract
Homology and structure-based approaches were used to identify Helitrons in the genome of maize inbred B73. A total of 1,930 intact Helitrons from eight families (62 subfamilies) and >20,000 Helitron fragments were identified, accounting for approximately 2.2% of the B73 genome. Transposition of at least one of these families is ongoing, but the most prominent burst of amplification activity was approximately 250,000 years ago. Sixty percent of maize Helitrons were found to have captured fragments of nuclear genes ( approximately 840 different fragment acquisitions, with tens of thousands of predicted gene fragments inside Helitrons within the B73 assembly). Most acquired gene fragments are undergoing random drift, but 4% were calculated to be under purifying selection, whereas another 4% exhibit apparent adaptive selection, suggesting beneficial effects for the host or Helitron transposition/retention. Gene fragment capture is frequent in some Helitron subfamilies, with as many as 10 unlinked genes providing DNA inserts within a single element. Gene fragment acquisition appears to positively influence element survival and/or ability of the Helitron to acquire additional gene fragments. Helitrons with gene fragment captures in the antisense orientation have a lesser chance of survival. Helitron distribution in maize exhibits severe biases, including preferential accumulation in relatively gene-rich regions. Insertions, however, are not usually found inside genes. Rather, Helitrons preferentially insert near (but not into) other Helitrons. This biased accumulation is not caused by a preference for cis or nearby transposition, suggesting a specific association between Helitron integration functions and unknown chromatin characteristics that specifically mark Helitrons.
Collapse
Affiliation(s)
- Lixing Yang
- Department of Genetics, University of Georgia, Athens, GA 30602
| | | |
Collapse
|
27
|
Hollister JD, Gaut BS. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genes Dev 2009; 19:1419-28. [PMID: 19478138 PMCID: PMC2720190 DOI: 10.1101/gr.091678.109] [Citation(s) in RCA: 457] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 05/20/2009] [Indexed: 12/25/2022]
Abstract
Transposable elements (TEs) are ubiquitous genomic parasites. The deleterious consequences of the presence and activity of TEs have fueled debate about the evolutionary forces countering their expansion. Purifying selection is thought to purge TE insertions from the genome, and TE sequences are targeted by hosts for epigenetic silencing. However, the interplay between epigenetic and evolutionary forces countering TE expansion remains unexplored. Here we analyze genomic, epigenetic, and population genetic data from Arabidopsis thaliana to yield three observations. First, gene expression is negatively correlated with the density of methylated TEs. Second, the signature of purifying selection is detectable for methylated TEs near genes but not for unmethylated TEs or for TEs far from genes. Third, TE insertions are distributed by age and methylation status, such that older, methylated TEs are farther from genes. Based on these observations, we present a model in which host silencing of TEs near genes has deleterious effects on neighboring gene expression, resulting in the preferential loss of methylated TEs from gene-rich chromosomal regions. This mechanism implies an evolutionary tradeoff in which the benefit of TE silencing imposes a fitness cost via deleterious effects on the expression of nearby genes.
Collapse
Affiliation(s)
- Jesse D. Hollister
- Department of Ecology and Evolutionary Biology, University of Californina, Irvine, Irvine, California 92697-2525, USA
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of Californina, Irvine, Irvine, California 92697-2525, USA
| |
Collapse
|
28
|
Flowers JM, Hanzawa Y, Hall MC, Moore RC, Purugganan MD. Population Genomics of the Arabidopsis thaliana Flowering Time Gene Network. Mol Biol Evol 2009; 26:2475-86. [DOI: 10.1093/molbev/msp161] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
29
|
Recent spread of a retrotransposon in the Silene latifolia genome, apart from the Y chromosome. Genetics 2008; 181:811-7. [PMID: 19064703 DOI: 10.1534/genetics.108.099267] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements often accumulate in nonrecombining regions, such as Y chromosomes. Contrary to this trend, a new Silene retrotransposon described here, has spread recently all over the genome of plant Silene latifolia, except its Y chromosome. This coincided with the latest steps of sex chromosome evolution in this species.
Collapse
|
30
|
Wright SI, Andolfatto P. The Impact of Natural Selection on the Genome: Emerging Patterns inDrosophilaandArabidopsis. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2008. [DOI: 10.1146/annurev.ecolsys.39.110707.173342] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2 Canada,
| | - Peter Andolfatto
- Department of Ecology and Evolutionary Biology and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544,
| |
Collapse
|
31
|
Sweredoski M, DeRose-Wilson L, Gaut BS. A comparative computational analysis of nonautonomous helitron elements between maize and rice. BMC Genomics 2008; 9:467. [PMID: 18842139 PMCID: PMC2575219 DOI: 10.1186/1471-2164-9-467] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Accepted: 10/08/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helitrons are DNA transposable elements that are proposed to replicate via a rolling circle mechanism. Non-autonomous helitron elements have captured gene fragments from many genes in maize (Zea mays ssp. mays) but only a handful of genes in Arabidopsis (Arabidopsis thaliana). This observation suggests very different histories for helitrons in these two species, but it is unclear which species contains helitrons that are more typical of plants. RESULTS We performed computational searches to identify helitrons in maize and rice genomic sequence data. Using 12 previously identified helitrons as a seed set, we identified 23 helitrons in maize, five of which were polymorphic among a sample of inbred lines. Our total sample of maize helitrons contained fragments of 44 captured genes. Twenty-one of 35 of these helitrons did not cluster with other elements into closely related groups, suggesting substantial diversity in the maize element complement. We identified over 552 helitrons in the japonica rice genome. More than 70% of these were found in a collinear location in the indica rice genome, and 508 clustered as a single large subfamily. The japonica rice elements contained fragments of only 11 genes, a number similar to that in Arabidopsis. Given differences in gene capture between maize and rice, we examined sequence properties that could contribute to differences in capture rates, focusing on 3' palindromes that are hypothesized to play a role in transposition termination. The free energy of folding for maize helitrons were significantly lower than those in rice, but the direction of the difference differed from our prediction. CONCLUSION Maize helitrons are clearly unique relative to those of rice and Arabidopsis in the prevalence of gene capture, but the reasons for this difference remain elusive. Maize helitrons do not seem to be more polymorphic among individuals than those of Arabidopsis; they do not appear to be substantially older or younger than the helitrons in either species; and our analyses provided little evidence that the 3' hairpin plays a role.
Collapse
Affiliation(s)
- Michael Sweredoski
- Institute for Genomics and Bioinformatics, UC Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
32
|
Sandve SR, Rudi H, Asp T, Rognli OA. Tracking the evolution of a cold stress associated gene family in cold tolerant grasses. BMC Evol Biol 2008; 8:245. [PMID: 18775065 PMCID: PMC2542378 DOI: 10.1186/1471-2148-8-245] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 09/05/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Grasses are adapted to a wide range of climatic conditions. Species of the subfamily Pooideae, which includes wheat, barley and important forage grasses, have evolved extreme frost tolerance. A class of ice binding proteins that inhibit ice re-crystallisation, specific to the Pooideae subfamily lineage, have been identified in perennial ryegrass and wheat, and these proteins are thought to have evolved from a leucine-rich repeat phytosulfokine receptor kinase (LRR-PSR)-like ancestor gene. Even though the ice re-crystallisation inhibition function of these proteins has been studied extensively in vitro, little is known about the evolution of these genes on the molecular level. RESULTS We identified 15 putative novel ice re-crystallisation inhibition (IRI)-like protein coding genes in perennial ryegrass, barley, and wheat. Using synonymous divergence estimates we reconstructed the evolution of the IRI-like gene family. We also explored the hypothesis that the IRI-domain has evolved through repeated motif expansion and investigated the evolutionary relationship between a LRR-domain containing IRI coding gene in carrot and the Pooideae IRI-like genes. Our analysis showed that the main expansion of the IRI-gene family happened ~36 million years ago (Mya). In addition to IRI-like paralogs, wheat contained several sequences that likely were products of polyploidisation events (homoeologs). Through sequence analysis we identified two short motifs in the rice LRR-PSR gene highly similar to the repeat motifs of the IRI-domain in cold tolerant grasses. Finally we show that the LRR-domain of carrot and grass IRI proteins both share homology to an Arabidopsis thaliana LRR-trans membrane protein kinase (LRR-TPK). CONCLUSION The diverse IRI-like genes identified in this study tell a tale of a complex evolutionary history including birth of an ice binding domain, a burst of gene duplication events after cold tolerant grasses radiated from rice, protein domain structure differentiation between paralogs, and sub- and/or neofunctionalisation of IRI-like proteins. From our sequence analysis we provide evidence for IRI-domain evolution probably occurring through increased copy number of a repeated motif. Finally, we discuss the possibility of parallel evolution of LRR domain containing IRI proteins in carrot and grasses through two completely different molecular adaptations.
Collapse
Affiliation(s)
- Simen R Sandve
- Department of Plant and Environmental Sciences, University of Life Sciences, As, Norway.
| | | | | | | |
Collapse
|