1
|
Wijnen CL, Botet R, van de Belt J, Deurhof L, de Jong H, de Snoo CB, Dirks R, Boer MP, van Eeuwijk FA, Wijnker E, Keurentjes JJB. A complete chromosome substitution mapping panel reveals genome-wide epistasis in Arabidopsis. Heredity (Edinb) 2024; 133:198-205. [PMID: 38982296 PMCID: PMC11350127 DOI: 10.1038/s41437-024-00705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
Chromosome substitution lines (CSLs) are tentatively supreme resources to investigate non-allelic genetic interactions. However, the difficulty of generating such lines in most species largely yielded imperfect CSL panels, prohibiting a systematic dissection of epistasis. Here, we present the development and use of a unique and complete panel of CSLs in Arabidopsis thaliana, allowing the full factorial analysis of epistatic interactions. A first comparison of reciprocal single chromosome substitutions revealed a dependency of QTL detection on different genetic backgrounds. The subsequent analysis of the complete panel of CSLs enabled the mapping of the genetic interactors and identified multiple two- and three-way interactions for different traits. Some of the detected epistatic effects were as large as any observed main effect, illustrating the impact of epistasis on quantitative trait variation. We, therefore, have demonstrated the high power of detection and mapping of genome-wide epistasis, confirming the assumed supremacy of comprehensive CSL sets.
Collapse
Affiliation(s)
- Cris L Wijnen
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands
| | - Ramon Botet
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands
| | - José van de Belt
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands
| | - Laurens Deurhof
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands
| | - Hans de Jong
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands
| | | | - Rob Dirks
- Rijk Zwaan, Molecular Biology Research, Fijnaart, The Netherlands
- Managerial Genetics Consulting, Maaseik, Belgium
| | - Martin P Boer
- Wageningen University and Research, Biometris, Wageningen, The Netherlands
| | - Fred A van Eeuwijk
- Wageningen University and Research, Biometris, Wageningen, The Netherlands
| | - Erik Wijnker
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands
| | - Joost J B Keurentjes
- Wageningen University and Research, Laboratory of Genetics, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Özsoy ED, Yılmaz M, Patlar B, Emecen G, Durmaz E, Magwire MM, Zhou S, Huang W, Anholt RRH, Mackay TFC. Epistasis for head morphology in Drosophila melanogaster. G3 (BETHESDA, MD.) 2021; 11:jkab285. [PMID: 34568933 PMCID: PMC8473977 DOI: 10.1093/g3journal/jkab285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022]
Abstract
Epistasis-gene-gene interaction-is common for mutations with large phenotypic effects in humans and model organisms. Epistasis impacts quantitative genetic models of speciation, response to natural and artificial selection, genetic mapping, and personalized medicine. However, the existence and magnitude of epistasis between alleles with small quantitative phenotypic effects are controversial and difficult to assess. Here, we use the Drosophila melanogaster Genetic Reference Panel of sequenced inbred lines to evaluate the magnitude of naturally occurring epistasis modifying the effects of mutations in jing and inv, two transcription factors that have subtle quantitative effects on head morphology as homozygotes. We find significant epistasis for both mutations and performed single marker genome-wide association analyses to map candidate modifier variants and loci affecting head morphology. A subset of these loci was significantly enriched for a known genetic interaction network, and mutations of the candidate epistatic modifier loci also affect head morphology.
Collapse
Affiliation(s)
- Ergi D Özsoy
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Murat Yılmaz
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Bahar Patlar
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Güzin Emecen
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Esra Durmaz
- Department of Biology, Functional and Evolutionary Genetics Laboratory (FEGL), Science Faculty, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Michael M Magwire
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Shanshan Zhou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Robert R H Anholt
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F C Mackay
- Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| |
Collapse
|
3
|
Calvo-Baltanás V, Wang J, Chae E. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. FRONTIERS IN PLANT SCIENCE 2021; 11:576796. [PMID: 33717206 PMCID: PMC7953517 DOI: 10.3389/fpls.2020.576796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Hybridization is a core element in modern rice breeding as beneficial combinations of two parental genomes often result in the expression of heterosis. On the contrary, genetic incompatibility between parents can manifest as hybrid necrosis, which leads to tissue necrosis accompanied by compromised growth and/or reduced reproductive success. Genetic and molecular studies of hybrid necrosis in numerous plant species revealed that such self-destructing symptoms in most cases are attributed to autoimmunity: plant immune responses are inadvertently activated in the absence of pathogenic invasion. Autoimmunity in hybrids predominantly occurs due to a conflict involving a member of the major plant immune receptor family, the nucleotide-binding domain and leucine-rich repeat containing protein (NLR; formerly known as NBS-LRR). NLR genes are associated with disease resistance traits, and recent population datasets reveal tremendous diversity in this class of immune receptors. Cases of hybrid necrosis involving highly polymorphic NLRs as major causes suggest that diversified R gene repertoires found in different lineages would require a compatible immune match for hybridization, which is a prerequisite to ensure increased fitness in the resulting hybrids. In this review, we overview recent genetic and molecular findings on hybrid necrosis in multiple plant species to provide an insight on how the trade-off between growth and immunity is equilibrated to affect hybrid performances. We also revisit the cases of hybrid weakness in which immune system components are found or implicated to play a causative role. Based on our understanding on the trade-off, we propose that the immune system incompatibility in plants might play an opposite force to restrict the expression of heterosis in hybrids. The antagonism is illustrated under the plant fitness equilibrium, in which the two extremes lead to either hybrid necrosis or heterosis. Practical proposition from the equilibrium model is that breeding efforts for combining enhanced disease resistance and high yield shall be achieved by balancing the two forces. Reverse breeding toward utilizing genomic data centered on immune components is proposed as a strategy to generate elite hybrids with balanced immunity and growth.
Collapse
|
4
|
Goldstein I, Ehrenreich IM. The complex role of genetic background in shaping the effects of spontaneous and induced mutations. Yeast 2020; 38:187-196. [PMID: 33125810 PMCID: PMC7984271 DOI: 10.1002/yea.3530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 12/27/2022] Open
Abstract
Spontaneous and induced mutations frequently show different phenotypic effects across genetically distinct individuals. It is generally appreciated that these background effects mainly result from genetic interactions between the mutations and segregating loci. However, the architectures and molecular bases of these genetic interactions are not well understood. Recent work in a number of model organisms has tried to advance knowledge of background effects both by using large‐scale screens to find mutations that exhibit this phenomenon and by identifying the specific loci that are involved. Here, we review this body of research, emphasizing in particular the insights it provides into both the prevalence of background effects across different mutations and the mechanisms that cause these background effects. A large fraction of mutations show different effects in distinct individuals. These background effects are mainly caused by epistasis with segregating loci. Mapping studies show a diversity of genetic architectures can be involved. Genetically complex changes in gene expression are often, but not always, causative.
Collapse
Affiliation(s)
- Ilan Goldstein
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, 90089-2910, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, 90089-2910, USA
| |
Collapse
|
5
|
Calvo‐Baltanás V, Wijnen CL, Yang C, Lukhovitskaya N, de Snoo CB, Hohenwarter L, Keurentjes JJB, de Jong H, Schnittger A, Wijnker E. Meiotic crossover reduction by virus-induced gene silencing enables the efficient generation of chromosome substitution lines and reverse breeding in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1437-1452. [PMID: 32955759 PMCID: PMC7756339 DOI: 10.1111/tpj.14990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 05/16/2023]
Abstract
Plant breeding applications exploiting meiotic mutant phenotypes (like the increase or decrease of crossover (CO) recombination) have been proposed over the last years. As recessive meiotic mutations in breeding lines may affect fertility or have other pleiotropic effects, transient silencing techniques may be preferred. Reverse breeding is a breeding technique that would benefit from the transient downregulation of CO formation. The technique is essentially the opposite of plant hybridization: a method to extract parental lines from a hybrid. The method can also be used to efficiently generate chromosome substitution lines (CSLs). For successful reverse breeding, the two homologous chromosome sets of a heterozygous plant must be divided over two haploid complements, which can be achieved by the suppression of meiotic CO recombination and the subsequent production of doubled haploid plants. Here we show the feasibility of transiently reducing CO formation using virus-induced gene silencing (VIGS) by targeting the meiotic gene MSH5 in a wild-type heterozygote of Arabidopsis thaliana. The application of VIGS (rather than using lengthy stable transformation) generates transgene-free offspring with the desired genetic composition: we obtained parental lines from a wild-type heterozygous F1 in two generations. In addition, we obtained 20 (of the 32 possible) CSLs in one experiment. Our results demonstrate that meiosis can be modulated at will in A. thaliana to generate CSLs and parental lines rapidly for hybrid breeding. Furthermore, we illustrate how the modification of meiosis using VIGS can open routes to develop efficient plant breeding strategies.
Collapse
Affiliation(s)
- Vanesa Calvo‐Baltanás
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Present address:
Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Cris L. Wijnen
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Chao Yang
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Developmental BiologyInstitut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Nina Lukhovitskaya
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Centre National de la Recherche ScientifiqueInstitut de Biologie Moléculaire des PlantesUniversité de Strasbourg12, rue du général ZimmerStrasbourg67084France
- Present address:
Division of VirologyDepartment of PathologyUniversity of CambridgeTennis Court RdCambridgeCB2 1QPUK
| | - C. Bastiaan de Snoo
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Rijk Zwaan R&D FijnaartEerste Kruisweg 9Fijnaart4793 RSthe Netherlands
| | - Linus Hohenwarter
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Developmental BiologyInstitut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Joost J. B. Keurentjes
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Hans de Jong
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Arp Schnittger
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Developmental BiologyInstitut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Erik Wijnker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| |
Collapse
|
6
|
Sterken MG, Bevers RPJ, Volkers RJM, Riksen JAG, Kammenga JE, Snoek BL. Dissecting the eQTL Micro-Architecture in Caenorhabditis elegans. Front Genet 2020; 11:501376. [PMID: 33240309 PMCID: PMC7670075 DOI: 10.3389/fgene.2020.501376] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/13/2020] [Indexed: 01/11/2023] Open
Abstract
The study of expression quantitative trait loci (eQTL) using natural variation in inbred populations has yielded detailed information about the transcriptional regulation of complex traits. Studies on eQTL using recombinant inbred lines (RILs) led to insights on cis and trans regulatory loci of transcript abundance. However, determining the underlying causal polymorphic genes or variants is difficult, but ultimately essential for the understanding of regulatory networks of complex traits. This requires insight into whether associated loci are single eQTL or a combination of closely linked eQTL, and how this QTL micro-architecture depends on the environment. We addressed these questions by testing for independent replication of previously mapped eQTL in Caenorhabditis elegans using new data from introgression lines (ILs). Both populations indicate that the overall heritability of gene expression, number, and position of eQTL differed among environments. Across environments we were able to replicate 70% of the cis- and 40% of the trans-eQTL using the ILs. Testing eight different simulation models, we suggest that additive effects explain up to 60-93% of RIL/IL heritability for all three environments. Closely linked eQTL explained up to 40% of RIL/IL heritability in the control environment whereas only 7% in the heat-stress and recovery environments. In conclusion, we show that reproducibility of eQTL was higher for cis vs. trans eQTL and that the environment affects the eQTL micro-architecture.
Collapse
Affiliation(s)
- Mark G. Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Roel P. J. Bevers
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Rita J. M. Volkers
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Basten L. Snoek
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
|
8
|
Takahashi A, Sugimoto H, Kato S, Shiroishi T, Koide T. Mapping of Genetic Factors That Elicit Intermale Aggressive Behavior on Mouse Chromosome 15: Intruder Effects and the Complex Genetic Basis. PLoS One 2015; 10:e0137764. [PMID: 26389588 PMCID: PMC4577130 DOI: 10.1371/journal.pone.0137764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/21/2015] [Indexed: 11/18/2022] Open
Abstract
Despite high estimates of the heritability of aggressiveness, the genetic basis for individual differences in aggression remains unclear. Previously, we showed that the wild-derived mouse strain MSM/Ms (MSM) exhibits highly aggressive behaviors, and identified chromosome 15 (Chr 15) as the location of one of the genetic factors behind this escalated aggression by using a panel of consomic strains of MSM in a C57BL/6J (B6) background. To understand the genetic effect of Chr 15 derived from MSM in detail, this study examined the aggressive behavior of a Chr 15 consomic strain towards different types of opponent. Our results showed that both resident and intruder animals had to have the same MSM Chr 15 genotype in order for attack bites to increase and attack latency to be reduced, whereas there was an intruder effect of MSM Chr 15 on tail rattle behavior. To narrow down the region that contains the genetic loci involved in the aggression-eliciting effects on Chr 15, we established a panel of subconsomic strains of MSM Chr 15. Analysis of these strains suggested the existence of multiple genes that enhance and suppress aggressive behavior on Chr 15, and these loci interact in a complex way. Regression analysis successfully identified four genetic loci on Chr 15 that influence attack latency, and one genetic locus that partially elicits aggressive behaviors was narrowed down to a 4.1-Mbp region (from 68.40 Mb to 72.50 Mb) on Chr 15.
Collapse
Affiliation(s)
- Aki Takahashi
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo, Japan
| | - Hiroki Sugimoto
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shogo Kato
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo, Japan
- The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
| | - Toshihiko Shiroishi
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo, Japan
- Mammalian Genetics Laboratory, NIG, Mishima, Shizuoka, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG), Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Transdisciplinary Research Integration Center, Research Organization of Information and Systems, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Regulatory Rewiring in a Cross Causes Extensive Genetic Heterogeneity. Genetics 2015; 201:769-77. [PMID: 26232408 DOI: 10.1534/genetics.115.180661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022] Open
Abstract
Genetic heterogeneity occurs when individuals express similar phenotypes as a result of different underlying mechanisms. Although such heterogeneity is known to be a potential source of unexplained heritability in genetic mapping studies, its prevalence and molecular basis are not fully understood. Here we show that substantial genetic heterogeneity underlies a model phenotype--the ability to grow invasively--in a cross of two Saccharomyces cerevisiae strains. The heterogeneous basis of this trait across genotypes and environments makes it difficult to detect causal loci with standard genetic mapping techniques. However, using selective genotyping in the original cross, as well as in targeted backcrosses, we detected four loci that contribute to differences in the ability to grow invasively. Identification of causal genes at these loci suggests that they act by changing the underlying regulatory architecture of invasion. We verified this point by deleting many of the known transcriptional activators of invasion, as well as the gene encoding the cell surface protein Flo11 from five relevant segregants and showing that these individuals differ in the genes they require for invasion. Our work illustrates the extensive genetic heterogeneity that can underlie a trait and suggests that regulatory rewiring is a basic mechanism that gives rise to this heterogeneity.
Collapse
|
10
|
Buchner DA, Nadeau JH. Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res 2015; 25:775-91. [PMID: 25953951 PMCID: PMC4448675 DOI: 10.1101/gr.187450.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
Quantitative trait loci (QTLs) are being used to study genetic networks, protein functions, and systems properties that underlie phenotypic variation and disease risk in humans, model organisms, agricultural species, and natural populations. The challenges are many, beginning with the seemingly simple tasks of mapping QTLs and identifying their underlying genetic determinants. Various specialized resources have been developed to study complex traits in many model organisms. In the mouse, remarkably different pictures of genetic architectures are emerging. Chromosome Substitution Strains (CSSs) reveal many QTLs, large phenotypic effects, pervasive epistasis, and readily identified genetic variants. In contrast, other resources as well as genome-wide association studies (GWAS) in humans and other species reveal genetic architectures dominated with a relatively modest number of QTLs that have small individual and combined phenotypic effects. These contrasting architectures are the result of intrinsic differences in the study designs underlying different resources. The CSSs examine context-dependent phenotypic effects independently among individual genotypes, whereas with GWAS and other mouse resources, the average effect of each QTL is assessed among many individuals with heterogeneous genetic backgrounds. We argue that variation of genetic architectures among individuals is as important as population averages. Each of these important resources has particular merits and specific applications for these individual and population perspectives. Collectively, these resources together with high-throughput genotyping, sequencing and genetic engineering technologies, and information repositories highlight the power of the mouse for genetic, functional, and systems studies of complex traits and disease models.
Collapse
Affiliation(s)
- David A Buchner
- Department of Genetics and Genome Sciences, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Joseph H Nadeau
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, USA
| |
Collapse
|
11
|
van Lith HA, Laarakker MC, Lozeman-van't Klooster JG, Ohl F. Chromosomal assignment of quantitative trait loci influencing baseline circulating total cholesterol level in male laboratory mice: report of a consomic strain survey and comparison with published results. BMC Res Notes 2015; 8:128. [PMID: 25889519 PMCID: PMC4404604 DOI: 10.1186/s13104-015-1078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/19/2015] [Indexed: 11/13/2022] Open
Abstract
Background An important risk for atherosclerosis is a low level of HDL cholesterol. Baseline HDL cholesterol is under complex genetic and environmental control. Here we report on results of male mice from a consomic strain survey and the parental inbred strains for baseline circulating total cholesterol concentration, which is almost the same as HDL cholesterol in chow fed mice. The consomic strains have been derived from C57BL/6J (host strain) and A/J (donor strain) inbred lines. The work contributes to the value of the mouse as an animal model for studying the genetic background of differences in baseline circulating total and HDL cholesterol levels. Results The consomic strain survey suggested that mouse chromosomes 1, 7, 9, 14, 16, 17, 19, X, and Y contained at least one quantitative trait locus that is involved in baseline circulating total cholesterol concentration. All consomic lines, for which there is evidence that the substituted chromosome contains a quantitative trait locus, increase compared to the host strain baseline circulating total cholesterol concentration. Since there is evidence that ‘body weight’, ‘age at blood sampling’, ‘time of the day blood was collected’, and ‘season’ influence this phenotype, additional statistical analyses (with these variables as covariates) were performed. Now there is only evidence for quantitative trait loci on chromosomes 1, 8, 12, and Y. Taken the present results together with previous consomic strain surveys there is evidence that all mouse chromosomes carry quantitative trait loci that control baseline circulating total cholesterol levels. There was however little agreement between the present consomic strain results and previous sets of data. This might be explained by seasonal effects and differences in methodological variables such as age of the mice, fasting versus non-fasting, percentage of dietary fat, unanesthetized versus anesthetized mice, and the daily light–dark cycle. Conclusions The present findings, when compared with previous consomic strain surveys, clearly illustrate the complexity of the genetic-environmental architecture for the regulation of baseline circulating total cholesterol levels in mice. Different data can be obtained from different labs and it underscores that animal geneticists should present as accurate a picture as possible of the laboratory mouse’s environment.
Collapse
Affiliation(s)
- Hein A van Lith
- Division of Animal Welfare & Laboratory Animal Science, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, P.O. Box 80166, 3508 TD, Utrecht, The Netherlands. .,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Marijke C Laarakker
- Division of Animal Welfare & Laboratory Animal Science, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, P.O. Box 80166, 3508 TD, Utrecht, The Netherlands. .,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands. .,Current address: Boston Scientific Nederland B.V., Nieuwegein, The Netherlands.
| | - José G Lozeman-van't Klooster
- Division of Animal Welfare & Laboratory Animal Science, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, P.O. Box 80166, 3508 TD, Utrecht, The Netherlands.
| | - Frauke Ohl
- Division of Animal Welfare & Laboratory Animal Science, Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, P.O. Box 80166, 3508 TD, Utrecht, The Netherlands. .,Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Gur A, Zamir D. Mendelizing all Components of a Pyramid of Three Yield QTL in Tomato. FRONTIERS IN PLANT SCIENCE 2015; 6:1096. [PMID: 26697048 PMCID: PMC4678209 DOI: 10.3389/fpls.2015.01096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/22/2015] [Indexed: 05/03/2023]
Abstract
Molecular markers allowed breeders to mendelize quantitative trait loci (QTL) providing another demonstration that quantitative traits are governed by the same principles as single qualitative genes. This research extends the QTL analysis to two and three QTL and tests our ability to mendelize an oligogenic trait. In tomato, agricultural yield is determined by the weight of the fruits harvested per unit area and the total soluble solids (% Brix)-sugars and acids. The current study explores the segregation of multiple independent yield-related QTL that were identified and mapped using introgression lines (IL) of Solanum pennellii in cultivated processing tomato (S. lycopersicum). We screened 45 different double and triple IL-QTL combinations for agricultural yield, to identify QTL pyramids that behaved in an additive manner and were suitable substrate for mendelizing an oligogenic trait. A pyramid of three independent QTL that significantly improved Brix(∗)Yield (BXY - the soluble solids output per unit area) compared to M82 was selected. In the progenies of the tri-hybrid we bred using markers a nearly isogenic 'immortalized F2.' While the common mode of QTL-QTL interactions across the 45 IL-QTLs combinations was less than additive, the three QTLs in the selected triple-stack performed in an additive manner which made it an exceptional material for breeding. This study demonstrates that using the phenotypic effect of all 27 possible QTL-alleles combinations it is possible to make reliable predictions about the genotypes that will maximize the yield.
Collapse
|
13
|
Higher-order genetic interactions and their contribution to complex traits. Trends Genet 2014; 31:34-40. [PMID: 25284288 DOI: 10.1016/j.tig.2014.09.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 01/20/2023]
Abstract
The contribution of genetic interactions involving three or more loci to complex traits is poorly understood. These higher-order genetic interactions (HGIs) are difficult to detect in genetic mapping studies, therefore, few examples of them have been described. However, the lack of data on HGIs should not be misconstrued as proof that this class of genetic effect is unimportant. To the contrary, evidence from model organisms suggests that HGIs frequently influence genetic studies and contribute to many complex traits. Here, we review the growing literature on HGIs and discuss the future of research on this topic.
Collapse
|
14
|
Spiezio SH, Amon LM, McMillen TS, Vick CM, Houston BA, Caldwell M, Ogimoto K, Morton GJ, Kirk EA, Schwartz MW, Nadeau JH, LeBoeuf RC. Genetic determinants of atherosclerosis, obesity, and energy balance in consomic mice. Mamm Genome 2014; 25:549-63. [PMID: 25001233 DOI: 10.1007/s00335-014-9530-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/11/2014] [Indexed: 12/18/2022]
Abstract
Metabolic diseases such as obesity and atherosclerosis result from complex interactions between environmental factors and genetic variants. A panel of chromosome substitution strains (CSSs) was developed to characterize genetic and dietary factors contributing to metabolic diseases and other biological traits and biomedical conditions. Our goal here was to identify quantitative trait loci (QTLs) contributing to obesity, energy expenditure, and atherosclerosis. Parental strains C57BL/6 and A/J together with a panel of 21 CSSs derived from these progenitors were subjected to chronic feeding of rodent chow and atherosclerotic (females) or diabetogenic (males) test diets, and evaluated for a variety of metabolic phenotypes including several traits unique to this report, namely fat pad weights, energy balance, and atherosclerosis. A total of 297 QTLs across 35 traits were discovered, two of which provided significant protection from atherosclerosis, and several dozen QTLs modulated body weight, body composition, and circulating lipid levels in females and males. While several QTLs confirmed previous reports, most QTLs were novel. Finally, we applied the CSS quantitative genetic approach to energy balance, and identified three novel QTLs controlling energy expenditure and one QTL modulating food intake. Overall, we identified many new QTLs and phenotyped several novel traits in this mouse model of diet-induced metabolic diseases.
Collapse
Affiliation(s)
- Sabrina H Spiezio
- Institute for Systems Biology, 401 North Terry Ave, Seattle, WA, 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mackay TFC, Moore JH. Why epistasis is important for tackling complex human disease genetics. Genome Med 2014; 6:124. [PMID: 25031624 PMCID: PMC4062066 DOI: 10.1186/gm561] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
EDITORIAL SUMMARY Epistasis has been dismissed by some as having little role in the genetic architecture of complex human disease. The authors argue that this view is the result of a misconception and explain why exploring epistasis is likely to be crucial to understanding and predicting complex disease.
Collapse
Affiliation(s)
- Trudy FC Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jason H Moore
- Institute for Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA
| |
Collapse
|
16
|
Abstract
Cryptic genetic variation (CGV) is invisible under normal conditions, but it can fuel evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles that are in need of constant suppression. CGV emerges from both neutral and selective processes, and it may inform about how human populations respond to change. CGV facilitates adaptation in experimental settings, but does it have an important role in the real world? Here, we review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution.
Collapse
Affiliation(s)
- Annalise B Paaby
- Department of Biology, and Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York 10003, USA
| | - Matthew V Rockman
- Department of Biology, and Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York 10003, USA
| |
Collapse
|
17
|
Mackay TFC. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet 2014; 15:22-33. [PMID: 24296533 PMCID: PMC3918431 DOI: 10.1038/nrg3627] [Citation(s) in RCA: 516] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of epistasis in the genetic architecture of quantitative traits is controversial, despite the biological plausibility that nonlinear molecular interactions underpin the genotype-phenotype map. This controversy arises because most genetic variation for quantitative traits is additive. However, additive variance is consistent with pervasive epistasis. In this Review, I discuss experimental designs to detect the contribution of epistasis to quantitative trait phenotypes in model organisms. These studies indicate that epistasis is common, and that additivity can be an emergent property of underlying genetic interaction networks. Epistasis causes hidden quantitative genetic variation in natural populations and could be responsible for the small additive effects, missing heritability and the lack of replication that are typically observed for human complex traits.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Department of Biological Sciences, Campus Box 7614, North Carolina State University, Raleigh, North Carolina 27695-7614, USA
| |
Collapse
|
18
|
Nadeau JH, Forejt J, Takada T, Shiroishi T. Chromosome substitution strains: gene discovery, functional analysis, and systems studies. Mamm Genome 2012; 23:693-705. [PMID: 22961226 DOI: 10.1007/s00335-012-9426-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022]
Abstract
Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice.
Collapse
Affiliation(s)
- Joseph H Nadeau
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA 98122, USA.
| | | | | | | |
Collapse
|