1
|
Ananth AL, Lopez MA. A review of neurogenetics in fetal and neonatal clinical medicine. Semin Fetal Neonatal Med 2024; 29:101550. [PMID: 39551661 DOI: 10.1016/j.siny.2024.101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
This review of neurogenetics serves as a primer for clinicians practicing in fetal-neonatal medicine. The review provides an update on neurogenetics, understanding the language of genetics, genetic testing approaches, and interpretation of genetic test results. Common examples of neurogenetic disease in fetal-neonatal medicine are used to enhance basic concepts. The results of genetic testing and their implications for patients and families are outlined. Genetics is becoming foundational to clinical practice across specialties. The advances are improving the speed of diagnosis, facilitating early treatments, and improving outcomes in neurogenetic disorders. A basic understanding of genetics is foundational to appropriate clinical-decision making and interpretation of those results to describe common fetal-neonatal neurological phenotypes.
Collapse
Affiliation(s)
- Amitha L Ananth
- Children's of Alabama, Birmingham, AL, 35233, USA; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Michael A Lopez
- Children's of Alabama, Birmingham, AL, 35233, USA; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
2
|
Sadler B, Christopherson PA, Perry CL, Bellissimo DB, Haberichter SL, Haller G, Antunes L, Flood VH, Di Paola J, Montgomery RR. Characterization of copy-number variants in a large cohort of patients with von Willebrand disease reveals a relationship between disrupted regions and disease type. Res Pract Thromb Haemost 2023; 7:102232. [PMID: 38077814 PMCID: PMC10704516 DOI: 10.1016/j.rpth.2023.102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 02/12/2024] Open
Abstract
Background Genetic analysis for von Willebrand disease (VWD) commonly utilizes DNA sequencing to identify variants in the von Willebrand factor (VWF) gene; however, this technique cannot always detect copy-number variants (CNVs). Additional mapping of CNVs in patients with VWD is needed. Objectives This study aimed to characterize CNVs in a large sample of VWF mutation-negative VWD patients. Methods To determine the role of CNVs in VWD, a VWF high-resolution comparative genomic hybridization array was custom-designed to avoid multiple sequence variations, repeated sequences, and the VWF pseudogene. This was performed on 204 mutation-negative subjects for whom clinical variables were also available. Results Among the 204 patients, 7 unique CNVs were found, with a total of 24 CNVs (12%). Of the 7 unique CNVs, 1 was novel, 1 was found in a VWF database, and 5 were previously reported. All patients with type 1C VWD and a CNV had the same exon 33 and 34 in-frame deletion. Certain clinical variables were also significantly different between those with and without CNVs. Conclusion The in-frame deletion in patients with type 1C VWD exactly matches the D4N module of the D4 domain, a region where mutations and deletions are known to affect clearance. We observed significantly higher VWF-to-ristocetin cofactor levels in patients with type 1C VWD and a CNV than in patients without a CNV, suggesting a relationship between CNVs and the increased clearance observed in patients with type 1C VWD. Glycoprotein IbM activity was significantly lower in patients with type 1 VWD and a CNV than in patients without a CNV, suggesting that platelet binding is more affected by CNVs than single base pair mutations. This work elucidates some of the underlying genetic mechanisms of CNVs in these patients.
Collapse
Affiliation(s)
- Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Daniel B. Bellissimo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sandra L. Haberichter
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Division of Pediatric Hematology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gabe Haller
- Department of Neurosurgery, Washington University, St. Louis, Missouri, USA
| | - Lilian Antunes
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Veronica H. Flood
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Division of Pediatric Hematology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jorge Di Paola
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert R. Montgomery
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Division of Pediatric Hematology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zimmerman Program Investigators
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Pediatric Hematology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Neurosurgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Acosta AM, Sholl LM, Fanelli GN, Gordetsky JB, Baniak N, Barletta JA, Lindeman NI, Hirsch MS. Intestinal metaplasia of the urinary tract harbors potentially oncogenic genetic variants. Mod Pathol 2021; 34:457-468. [PMID: 32860003 DOI: 10.1038/s41379-020-00655-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
In the urinary tract, there is an uncertain relationship between intestinal metaplasia (IM), primary adenocarcinoma, and urothelial carcinoma. Although IM is usually found adjacent to concurrent urothelial carcinoma or adenocarcinoma, small retrospective series have shown that most bladder biopsies with only IM do not subsequently develop cancer. However, IM with dysplasia does seem to be associated with a higher risk of concurrent malignancy or progressing to cancer. Since the molecular landscape of these lesions has remained largely unexplored, there are significant uncertainties about the oncogenic potential of IM in the bladder and urethra. This study investigated the presence of potentially oncogenic genetic variants in cases of IM with and without dysplasia. Twenty-three (23) cases of IM (3 urethra, 20 bladder) were sequenced using a solid tumor next-generation sequencing panel. Of these, five contained IM with high-grade dysplasia (including a case with paired IM-adenocarcinoma and another with paired IM-urothelial carcinoma) and 18 lacked dysplasia. Oncogenic genetic variants were found in all cases of IM with high-grade dysplasia and in five non-dysplastic IM cases, including mutations and copy number variants commonly seen in primary adenocarcinoma of the bladder and urothelial carcinoma. This study demonstrates that IM can harbor potentially oncogenic genetic variants, suggesting that it might represent a cancer precursor or a marker of increased cancer risk in a subset of cases.
Collapse
Affiliation(s)
- Andres M Acosta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Genitourinary Pathology Division, Brigham and Women's Hospital, Boston, MA, USA.
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Molecular Pathology Division, Center for Advanced Molecular Diagnostics, Brigham and Women's Hospital, Boston, MA, USA
| | - Giuseppe N Fanelli
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University of Padua, Padua, PD, Italy
| | - Jennifer B Gordetsky
- Departments of Pathology and Urology, Vanderbilt University Medical Center and Vanderbilt University, Nashville, TN, USA
| | - Nicholas Baniak
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Genitourinary Pathology Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Justine A Barletta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Genitourinary Pathology Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Molecular Pathology Division, Center for Advanced Molecular Diagnostics, Brigham and Women's Hospital, Boston, MA, USA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Genitourinary Pathology Division, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Lalonde E, Rentas S, Lin F, Dulik MC, Skraban CM, Spinner NB. Genomic Diagnosis for Pediatric Disorders: Revolution and Evolution. Front Pediatr 2020; 8:373. [PMID: 32733828 PMCID: PMC7360789 DOI: 10.3389/fped.2020.00373] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Powerful, recent advances in technologies to analyze the genome have had a profound impact on the practice of medical genetics, both in the laboratory and in the clinic. Increasing utilization of genome-wide testing such as chromosomal microarray analysis and exome sequencing have lead a shift toward a "genotype-first" approach. Numerous techniques are now available to diagnose a particular syndrome or phenotype, and while traditional techniques remain efficient tools in certain situations, higher-throughput technologies have become the de facto laboratory tool for diagnosis of most conditions. However, selecting the right assay or technology is challenging, and the wrong choice may lead to prolonged time to diagnosis, or even a missed diagnosis. In this review, we will discuss current core technologies for the diagnosis of classic genetic disorders to shed light on the benefits and disadvantages of these strategies, including diagnostic efficiency, variant interpretation, and secondary findings. Finally, we review upcoming technologies posed to impart further changes in the field of genetic diagnostics as we move toward "genome-first" practice.
Collapse
Affiliation(s)
- Emilie Lalonde
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Stefan Rentas
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew C. Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Cara M. Skraban
- Division of Human Genetics, Department of Pediatrics, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Flood VH, Garcia J, Haberichter SL. The role of genetics in the pathogenesis and diagnosis of type 1 Von Willebrand disease. Curr Opin Hematol 2019; 26:331-335. [PMID: 31261173 PMCID: PMC6727843 DOI: 10.1097/moh.0000000000000524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Von Willebrand disease (VWD) is a common bleeding disorder, but diagnosis of VWD is challenging, particularly with type 1 VWD. Although most clinicians use specific tests of von Willebrand factor (VWF) activity to classify patients with VWD, genetic testing for VWF defects is another potential method of diagnosis. RECENT FINDINGS Studies of patients with type 1 VWD report consistently that many, but not all, study participants have VWF gene defects. Certain populations, including those with VWF levels less than 30 IU/dl and those with clearance defects, are more likely to have a VWF sequence variant. In addition, a number of loci outside the VWF gene have been shown to affect VWF levels, including ABO, CLEC4M, STXBP5, and STAB2. SUMMARY Genetic defects in VWF are common, but not all defects lead to disease. Type 1 VWD in particular does not always have an associated VWF sequence variant. New data stemming from genome-wide association studies on modifier genes suggest that the etiology of type 1 VWD is multifactorial.
Collapse
Affiliation(s)
- Veronica H Flood
- Department of Pediatrics, Division of Hematology/Oncology, Medical College of Wisconsin
- Children's Research Institute, Children's Hospital of Wisconsin
- Versiti Blood Research Institute, Milwaukee, Wisconsin
| | - Jessica Garcia
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sandra L Haberichter
- Department of Pediatrics, Division of Hematology/Oncology, Medical College of Wisconsin
- Children's Research Institute, Children's Hospital of Wisconsin
- Versiti Blood Research Institute, Milwaukee, Wisconsin
| |
Collapse
|
6
|
Yang C, Linpeng S, Cao Y, Wu L. Identification of six novel mutations in five infants with suspected maple syrup urine disease based on blood and urine metabolism screening. Gene 2019; 710:9-16. [PMID: 31112740 DOI: 10.1016/j.gene.2019.04.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/09/2019] [Accepted: 04/30/2019] [Indexed: 11/18/2022]
Abstract
Maple syrup urine disease (MSUD) is a rare autosomal recessive genetic metabolic disease, with a high incidence rate in infants. We analyzed the data of molecular genetic analysis of five infants whose metabolism screening suspected MSUD and described their clinical symptoms. Further, we performed next-generation sequencing and Sanger sequencing to determine the genetic causes of the disease. Bioinformatics tools were used to predict the pathogenicity of novel mutations by performing structural modeling. All the five infants showed symptoms before one year of age and had elevated plasma leucine and valine levels. Among them, four infants presented an obvious increase in the urine lactic acid level. We identified the genetic cause of the disease in four infants and analyzed the pathogenicity of six novel mutations, viz., two mutations in BCKDHA (p.Gly180Asp and p.Arg265Gln), three in BCKDHB (p.Tyr169Cys, p.Ala331Thr, and p.Gly336Ser), and one in DBT (p.Leu69Arg), using in silico analysis. We also reviewed previously reported mutations in Chinese patients and summarized their genotypic and phenotypic characteristics. Our study has confirmed or corrected the clinical diagnosis and enriched the mutation spectrum of BCKDHA, BCKDHB, and DBT. We suggest blood and urine metabolism screening combined with next generation sequencing to diagnose MSUD, especially in infants, to achieve early diagnosis and early treatment.
Collapse
Affiliation(s)
- Chenxi Yang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Siyuan Linpeng
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yingxi Cao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
7
|
Henry MP, Hawkins JR, Boyle J, Bridger JM. The Genomic Health of Human Pluripotent Stem Cells: Genomic Instability and the Consequences on Nuclear Organization. Front Genet 2019; 9:623. [PMID: 30719030 PMCID: PMC6348275 DOI: 10.3389/fgene.2018.00623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are increasingly used for cell-based regenerative therapies worldwide, with embryonic and induced pluripotent stem cells as potential treatments for debilitating and chronic conditions, such as age-related macular degeneration, Parkinson's disease, spinal cord injuries, and type 1 diabetes. However, with the level of genomic anomalies stem cells generate in culture, their safety may be in question. Specifically, hPSCs frequently acquire chromosomal abnormalities, often with gains or losses of whole chromosomes. This review discusses how important it is to efficiently and sensitively detect hPSC aneuploidies, to understand how these aneuploidies arise, consider the consequences for the cell, and indeed the individual to whom aneuploid cells may be administered.
Collapse
Affiliation(s)
- Marianne P Henry
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom.,Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - J Ross Hawkins
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Jennifer Boyle
- Advanced Therapies Division, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - Joanna M Bridger
- Laboratory of Nuclear and Genomic Health, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
8
|
Chromosome copy number variation in telomerized human bone marrow stromal cells; insights for monitoring safe ex-vivo expansion of adult stem cells. Stem Cell Res 2017; 25:6-17. [PMID: 28988007 DOI: 10.1016/j.scr.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/14/2017] [Accepted: 09/20/2017] [Indexed: 12/24/2022] Open
Abstract
Adult human bone marrow stromal cells (hBMSC) cultured for cell therapy require evaluation of potency and stability for safe use. Chromosomal aberrations upsetting genomic integrity in such cells have been contrastingly described as "Limited" or "Significant". Previously reported stepwise acquisition of a spontaneous neoplastic phenotype during three-year continuous culture of telomerized cells (hBMSC-TERT20) didn't alter a diploid karyotype measured by spectral karyotype analysis (SKY). Such screening may not adequately monitor abnormal and potentially tumorigenic hBMSC in clinical scenarios. We here used array comparative genomic hybridization (aCGH) to more stringently compare non-tumorigenic parental hBMSC-TERT strains with their tumorigenic subcloned populations. Confirmation of a known chromosome 9p21 microdeletion at locus CDKN2A/B, showed it also impinged upon the adjacent MTAP gene. Compared to reference diploid human fibroblast genomic DNA, the non-tumorigenic hBMSC-TERT4 cells had a copy number variation (CNV) in at least 14 independent loci. The pre-tumorigenic hBMSC-TERT20 cell strain had further CNV including 1q44 gain enhancing SMYD3 expression and 11q13.1 loss downregulating MUS81 expression. Bioinformatic analysis of gene products reflecting 11p15.5 CNV gain in tumorigenic hBMSC-TERT20 cells highlighted networks implicated in tumorigenic progression involving cell cycle control and mis-match repair. We provide novel biomarkers for prospective risk assessment of expanded stem cell cultures.
Collapse
|
9
|
Blanco-Kelly F, Palomares M, Vallespín E, Villaverde C, Martín-Arenas R, Vélez-Monsalve C, Lorda-Sánchez I, Nevado J, Trujillo-Tiebas MJ, Lapunzina P, Ayuso C, Corton M. Improving molecular diagnosis of aniridia and WAGR syndrome using customized targeted array-based CGH. PLoS One 2017; 12:e0172363. [PMID: 28231309 PMCID: PMC5322952 DOI: 10.1371/journal.pone.0172363] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/04/2017] [Indexed: 11/18/2022] Open
Abstract
Chromosomal deletions at 11p13 are a frequent cause of congenital Aniridia, a rare pan-ocular genetic disease, and of WAGR syndrome, accounting up to 30% of cases. First-tier genetic testing for newborn with aniridia, to detect 11p13 rearrangements, includes Multiplex Ligation-dependent Probe Amplification (MLPA) and karyotyping. However, neither of these approaches allow obtaining a complete picture of the high complexity of chromosomal deletions and breakpoints in aniridia. Here, we report the development and validation of a customized targeted array-based comparative genomic hybridization, so called WAGR-array, for comprehensive high-resolution analysis of CNV in the WAGR locus. Our approach increased the detection rate in a Spanish cohort of 38 patients with aniridia, WAGR syndrome and other related ocular malformations, allowing to characterize four undiagnosed aniridia cases, and to confirm MLPA findings in four additional patients. For all patients, breakpoints were accurately established and a contiguous deletion syndrome, involving a large number of genes, was identified in three patients. Moreover, we identified novel microdeletions affecting 3' PAX6 regulatory regions in three families with isolated aniridia. This tool represents a good strategy for the genetic diagnosis of aniridia and associated syndromes, allowing for a more accurate CNVs detection, as well as a better delineation of breakpoints. Our results underline the clinical importance of performing exhaustive and accurate analysis of chromosomal rearrangements for patients with aniridia, especially newborns and those without defects in PAX6 after diagnostic screening.
Collapse
Affiliation(s)
- Fiona Blanco-Kelly
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - María Palomares
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Elena Vallespín
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Cristina Villaverde
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Rubén Martín-Arenas
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Camilo Vélez-Monsalve
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Isabel Lorda-Sánchez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Julián Nevado
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - María José Trujillo-Tiebas
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Pablo Lapunzina
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- * E-mail: (CA); (MC)
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- * E-mail: (CA); (MC)
| |
Collapse
|
10
|
Next generation sequencing identifies abnormal Y chromosome and candidate causal variants in premature ovarian failure patients. Genomics 2016; 108:209-215. [PMID: 27989800 DOI: 10.1016/j.ygeno.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 12/31/2022]
Abstract
Premature ovarian failure (POF) is characterized by heterogeneous genetic causes such as chromosomal abnormalities and variants in causal genes. Recently, development of techniques made next generation sequencing (NGS) possible to detect genome wide variants including chromosomal abnormalities. Among 37 Korean POF patients, XY karyotype with distal part deletions of Y chromosome, Yp11.32-31 and Yp12 end part, was observed in two patients through NGS. Six deleterious variants in POF genes were also detected which might explain the pathogenesis of POF with abnormalities in the sex chromosomes. Additionally, the two POF patients had no mutation in SRY but three non-synonymous variants were detected in genes regarding sex reversal. These findings suggest candidate causes of POF and sex reversal and show the propriety of NGS to approach the heterogeneous pathogenesis of POF.
Collapse
|
11
|
Van Cauwenbergh C, Van Schil K, Cannoodt R, Bauwens M, Van Laethem T, De Jaegere S, Steyaert W, Sante T, Menten B, Leroy BP, Coppieters F, De Baere E. arrEYE: a customized platform for high-resolution copy number analysis of coding and noncoding regions of known and candidate retinal dystrophy genes and retinal noncoding RNAs. Genet Med 2016; 19:457-466. [PMID: 27608171 PMCID: PMC5392597 DOI: 10.1038/gim.2016.119] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Purpose: Our goal was to design a customized microarray, arrEYE, for high-resolution copy number variant (CNV) analysis of known and candidate genes for inherited retinal dystrophy (iRD) and retina-expressed noncoding RNAs (ncRNAs). Methods: arrEYE contains probes for the full genomic region of 106 known iRD genes, including those implicated in retinitis pigmentosa (RP) (the most frequent iRD), cone–rod dystrophies, macular dystrophies, and an additional 60 candidate iRD genes and 196 ncRNAs. Eight CNVs in iRD genes identified by other techniques were used as positive controls. The test cohort consisted of 57 patients with autosomal dominant, X-linked, or simplex RP. Results: In an RP patient, a novel heterozygous deletion of exons 7 and 8 of the HGSNAT gene was identified: c.634-408_820+338delinsAGAATATG, p.(Glu212Glyfs*2). A known variant was found on the second allele: c.1843G>A, p.(Ala615Thr). Furthermore, we expanded the allelic spectrum of USH2A and RCBTB1 with novel CNVs. Conclusion: The arrEYE platform revealed subtle single-exon to larger CNVs in iRD genes that could be characterized at the nucleotide level, facilitated by the high resolution of the platform. We report the first CNV in HGSNAT that, combined with another mutation, leads to RP, further supporting its recently identified role in nonsyndromic iRD. Genet Med19 4, 457–466.
Collapse
Affiliation(s)
- Caroline Van Cauwenbergh
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Kristof Van Schil
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Robrecht Cannoodt
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.,Data Mining and Modeling for Biomedicine group, VIB Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Miriam Bauwens
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Thalia Van Laethem
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sarah De Jaegere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Wouter Steyaert
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Tom Sante
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Bart P Leroy
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology and Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Frauke Coppieters
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
12
|
Clinical and laboratory variability in a cohort of patients diagnosed with type 1 VWD in the United States. Blood 2016; 127:2481-8. [PMID: 26862110 DOI: 10.1182/blood-2015-10-673681] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/26/2016] [Indexed: 01/20/2023] Open
Abstract
von Willebrand disease (VWD) is the most common inherited bleeding disorder, and type 1 VWD is the most common VWD variant. Despite its frequency, diagnosis of type 1 VWD remains the subject of debate. In order to study the spectrum of type 1 VWD in the United States, the Zimmerman Program enrolled 482 subjects with a previous diagnosis of type 1 VWD without stringent laboratory diagnostic criteria. von Willebrand factor (VWF) laboratory testing and full-length VWF gene sequencing was performed for all index cases and healthy control subjects in a central laboratory. Bleeding phenotype was characterized using the International Society on Thrombosis and Haemostasis bleeding assessment tool. At study entry, 64% of subjects had VWF antigen (VWF:Ag) or VWF ristocetin cofactor activity below the lower limit of normal, whereas 36% had normal VWF levels. VWF sequence variations were most frequent in subjects with VWF:Ag <30 IU/dL (82%), whereas subjects with type 1 VWD and VWF:Ag ≥30 IU/dL had an intermediate frequency of variants (44%). Subjects whose VWF testing was normal at study entry had a similar rate of sequence variations as the healthy controls (14%). All subjects with severe type 1 VWD and VWF:Ag ≤5 IU/dL had an abnormal bleeding score (BS), but otherwise BS did not correlate with VWF:Ag. Subjects with a historical diagnosis of type 1 VWD had similar rates of abnormal BS compared with subjects with low VWF levels at study entry. Type 1 VWD in the United States is highly variable, and bleeding symptoms are frequent in this population.
Collapse
|
13
|
Abstract
The field of clinical genetics has advanced at an unprecedented pace. Today, with the aid of several high-resolution and high-precision technologies, physicians are able to make molecular genetic diagnoses for many infants affected with genetic disease. It is imperative, however, that perinatologists and neonatologists understand the strengths and limitations of genetic testing. This article discusses the different genetic testing options available for perinatal and neonatal diagnostics, along with their clinical utilities and indications. From variant-specific testing to whole-exome and genome sequencing, the article covers the whole gamut of genetic testing, with some thoughts on the changing paradigm of medical genetics.
Collapse
Affiliation(s)
- Arunkanth Ankala
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Madhuri R Hegde
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
Goodeve AC, Pavlova A, Oldenburg J. Genomics of bleeding disorders. Haemophilia 2014; 20 Suppl 4:50-3. [PMID: 24762275 DOI: 10.1111/hae.12424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2014] [Indexed: 11/28/2022]
Abstract
Molecular genetic tools are widely applied in inherited bleeding disorders. New genes involved in haemorrhagic disorders have been identified by genome wide linkage analysis on families with a specific phenotype. LMNA1 or MCFD in combined FV/FVIII-deficiency and VKORC1 in vitamin K coagulation factor deficiency type 2 are two examples. Identification of the causative gene mutation has become standard for most bleeding disorders. Knowledge of the causative mutation allows genetic counselling in affected families and most importantly adds to the pathophysiological understanding of phenotypes. Haemophilia A represents a model as the F8 gene mutation predicts the risk of developing an inhibitor and more recently also the bleeding phenotype. In this review novel genetic diagnostic strategies for bleeding disorders are outlined and inhibitor formation is presented as an example for clinical relevant phenotype/genotype correlation studies.
Collapse
Affiliation(s)
- A C Goodeve
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust and Haemostasis Research Group, Department of Cardiovascular Science, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
15
|
Xu C, Zhang J, Wang YP, Deng HW, Li J. Characterization of human chromosomal material exchange with regard to the chromosome translocations using next-generation sequencing data. Genome Biol Evol 2014; 6:3015-24. [PMID: 25349267 PMCID: PMC4255766 DOI: 10.1093/gbe/evu234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As an important subtype of structural variations, chromosomal translocation is associated with various diseases, especially cancers, by disrupting gene structures and functions. Traditional methods for identifying translocations are time consuming and have limited resolutions. Recently, a few studies have employed next-generation sequencing (NGS) technology for characterizing chromosomal translocations on human genome, obtaining high-throughput results with high resolutions. However, these studies are mainly focused on mechanism-specific or site-specific translocation mapping. In this study, we conducted a comprehensive genome-wide analysis on the characterization of human chromosomal material exchange with regard to the chromosome translocations. Using NGS data of 1,481 subjects from the 1000 Genomes Project, we identified 15,349,092 translocated DNA fragment pairs, ranging from 65 to 1,886 bp and with an average size of approximately 102 bp. On average, each individual genome carried about 10,364 pairs, covering approximately 0.069% of the genome. We identified 16 translocation hot regions, among which two regions did not contain repetitive fragments. Results of our study overlapped with a majority of previous results, containing approximately 79% of approximately 2,340 translocations characterized in three available translocation databases. In addition, our study identified five novel potential recurrent chromosomal material exchange regions with greater than 20% detection rates. Our results will be helpful for an accurate characterization of translocations in human genomes, and contribute as a resource for future studies of the roles of translocations in human disease etiology and mechanisms.
Collapse
Affiliation(s)
- Chao Xu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University
| | - Jigang Zhang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University
| | - Yu-Ping Wang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University Department of Biomedical Engineering, School of Science and Engineering, Tulane University
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University Third Affiliated Hospital, China Southern Medical University, Guang Zhou, 510000, P. R. China
| | - Jian Li
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University
| |
Collapse
|
16
|
Nallamilli BRR, Ankala A, Hegde M. Molecular diagnosis of Duchenne muscular dystrophy. ACTA ACUST UNITED AC 2014; 83:9.25.1-29. [PMID: 25271841 DOI: 10.1002/0471142905.hg0925s83] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked inherited neuromuscular disorder caused by mutations in the dystrophin gene (DMD; locus Xp21.2). The mutation spectrum of DMD is unique in that 65% of causative mutations are intragenic deletions, with intragenic duplications and point mutations (along with other sequence variants) accounting for 6% to 10% and 30% to 35%, respectively. The strategy for molecular diagnostic testing for DMD involves initial screening for deletions/duplications using microarray-based comparative genomic hybridization (array-CGH) followed by full-sequence analysis of DMD for sequence variants. Recently, next-generation sequencing (NGS)-based targeted gene analysis has become clinically available for detection of point mutations and other sequence variants (small insertions, deletions, and indels). This unit initially discusses the strategic algorithm for establishing a molecular diagnosis of DMD and later provides detailed protocols of current molecular diagnostic methods for DMD, including array-CGH, PCR-based Sanger sequencing, and NGS-based sequencing assay.
Collapse
|