1
|
Chen X, Shen Y, Song Z, Wang X, Yao H, Cai Y, Zhao ZA, Hu B. microRNA-2184 orchestrates Mauthner-cell axon regeneration in zebrafish via syt3 modulation. J Genet Genomics 2024; 51:911-921. [PMID: 38582297 DOI: 10.1016/j.jgg.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
MicroRNAs (miRNAs) play a significant role in axon regeneration following spinal cord injury. However, the functions of numerous miRNAs in axon regeneration within the central nervous system (CNS) remain largely unexplored. Here, we elucidate the positive role of microRNA-2184 (miR-2184) in axon regeneration within zebrafish Mauthner cells (M-cells). The upregulation of miR-2184 in a single M-cell can facilitate axon regeneration, while the specific sponge-induced silencing of miR-2184 leads to impeded regeneration. We show that syt3, a downstream target of miR-2184, negatively regulates axon regeneration, and the regeneration suppression modulated by syt3 depends on its binding to Ca2+. Furthermore, pharmacological stimulation of the cAMP/PKA pathway suggests that changes in the readily releasable pool may affect axon regeneration. Our data indicate that miR-2184 promotes axon regeneration of M-cells within the CNS by modulating the downstream target syt3, providing valuable insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Xinghan Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueru Shen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zheng Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinliang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huaitong Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Cai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Ang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
2
|
Huang G, Gong Q, Zhang K, Abdelhafez HEDH, Yu J, Guo J. Regulation of BTB (POZ) Structural Domain 6b by MicroRNA-222b in Zebrafish Embryos after Exposure to Di(2-ethylhexyl)phthalate at Low Concentrations. Chem Res Toxicol 2024; 37:311-322. [PMID: 38238692 DOI: 10.1021/acs.chemrestox.3c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a sort of endocrine disruptor that induces abnormal physiological and biochemical activities such as epigenetic alterations, apoptosis, and oxidative stress. MicroRNAs (miRNAs) are a class of short noncoding RNAs that may regulate the expression of many protein-coding genes when organisms are exposed to environmental chemicals. miR-222b is a differentially expressed miRNA after DEHP exposure. miRNA-mRNA prediction suggested that BTB (POZ) structural domain 6b (BTBD6B) might be a target mRNA of miR-222b, and DEHP exposure altered its expression. However, the correlation between miR-222b and BTBD6B has not been experimentally confirmed. The aim of this study was to investigate the regulation of BTBD6B by miR-222b in zebrafish embryos under the effect of low concentration of DEHP. Dual fluorescent protein assays and dual luciferase reporter gene assays confirmed the interaction between miR-222b and the 3'-untranslated region (3'-UTR) of BTBD6B. Ectopic expression assays showed that miR-222b could negatively regulate BTBD6B in ZF4 cells. However, the relative expression of miR-222b and BTBD6B was significantly higher at both transcriptional and post-transcriptional levels in zebrafish embryos exposed to low concentrations of DEHP. The results of this study improved our understanding of the molecular mechanism of DEHP exposure toxicity. It identified that the aberrant expression of miR-222b/BTBD6B may be one of the mechanisms of DEHP toxicity, which can provide a theoretical reference and scientific basis for environmental management and biological health risk assessment.
Collapse
Affiliation(s)
- Ge Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Qi Gong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Kai Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Hossam El Din H Abdelhafez
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Lab, Agricultural Research Center, Ministry of Agriculture, Giza11435, Egypt
| | - Junjie Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Jiangfeng Guo
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| |
Collapse
|
3
|
Robaire B, Delbes G, Head JA, Marlatt VL, Martyniuk CJ, Reynaud S, Trudeau VL, Mennigen JA. A cross-species comparative approach to assessing multi- and transgenerational effects of endocrine disrupting chemicals. ENVIRONMENTAL RESEARCH 2022; 204:112063. [PMID: 34562476 DOI: 10.1016/j.envres.2021.112063] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A wide range of chemicals have been identified as endocrine disrupting chemicals (EDCs) in vertebrate species. Most studies of EDCs have focused on exposure of both male and female adults to these chemicals; however, there is clear evidence that EDCs have dramatic effects when mature or developing gametes are exposed, and consequently are associated with in multigenerational and transgenerational effects. Several publications have reviewed such actions of EDCs in subgroups of species, e.g., fish or rodents. In this review, we take a holistic approach synthesizing knowledge of the effects of EDCs across vertebrate species, including fish, anurans, birds, and mammals, and discuss the potential mechanism(s) mediating such multi- and transgenerational effects. We also propose a series of recommendations aimed at moving the field forward in a structured and coherent manner.
Collapse
Affiliation(s)
- Bernard Robaire
- Department of Pharmacology and Therapeutics and of Obstetrics and Gynecology, McGill University, Montreal, Canada.
| | - Geraldine Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), Laval, QC, Canada
| | - Jessica A Head
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Université. Savoie Mont Blanc, CNRS, LECA, Grenoble, 38000, France
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
Ribeiro AO, de Oliveira AC, Costa JM, Nachtigall PG, Herkenhoff ME, Campos VF, Delella FK, Pinhal D. MicroRNA roles in regeneration: Multiple lessons from zebrafish. Dev Dyn 2021; 251:556-576. [PMID: 34547148 DOI: 10.1002/dvdy.421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs with pivotal roles in the control of gene expression. By comparing the miRNA profiles of uninjured vs. regenerating tissues and structures, several studies have found that miRNAs are potentially involved in the regenerative process. By inducing miRNA overexpression or inhibition, elegant experiments have directed regenerative responses validating relevant miRNA-to-target interactions. The zebrafish (Danio rerio) has been the epicenter of regenerative research because of its exceptional capability to self-repair damaged tissues and body structures. In this review, we discuss recent discoveries that have improved our understanding of the impact of gene regulation mediated by miRNAs in the context of the regeneration of fins, heart, retina, and nervous tissue in zebrafish. We compiled what is known about the miRNA control of regeneration in these tissues and investigated the links among up-regulated and down-regulated miRNAs, their putative or validated targets, and the regenerative process. Finally, we briefly discuss the forthcoming prospects, highlighting directions and the potential for further development of this field.
Collapse
Affiliation(s)
- Amanda Oliveira Ribeiro
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Arthur Casulli de Oliveira
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Juliana Mara Costa
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Laboratório Especial de Toxicologia Aplicada (LETA), CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Marcos Edgar Herkenhoff
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Flávia Karina Delella
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular (LGEM), Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
5
|
Kang H, Liang QJ, Hu R, Li ZH, Liu Y, Wang WN. Integrative mRNA-miRNA interaction analysis associated with the immune response of Epinephelus coioddes to Vibrio alginolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 90:404-412. [PMID: 31077847 DOI: 10.1016/j.fsi.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a kind of small non-coding RNAs that have been reported to play a vital role in mediating host-pathogen interactions. High-throughput sequencing technology was applied to identify and illuminate mRNAs and miRNAs from grouper infected with Vibrio alginolyticus. The KEGG pathway enrichment analysis showed that the most significate DEGs are associated with Toll-like receptor signaling pathway and NOD-like receptor signaling pathway. We obtained 374 known miRNAs and 116 novel miRNAs. During them, there are 31 up-regulated miRNAs and 93 down-regulated miRNAs. miRNA-mRNA GO and KEGG analysis show that there are 90 miRNAs associated with the immune system. The target genes of immune-related miRNAs (miR-142, miR-146, miR-150, miR-155, miR-203, miR-205, miR-24, miR-31) and genes (CD80, IL-2, AMPK, PI3K) in Epinephelus coioddes were predicted and validated. This study provides an opportunity to further understanding the molecular mechanisms especially the immune system of miRNA regulation in Epinephelus coioddes host-pathogen interactions.
Collapse
Affiliation(s)
- Huan Kang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qing-Jian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Rui Hu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Zhong-Hua Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wei-Na Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
6
|
Renaud L, da Silveira WA, Glen WB, Hazard ES, Hardiman G. Interplay Between MicroRNAs and Targeted Genes in Cellular Homeostasis of Adult Zebrafish ( Danio rerio). Curr Genomics 2018; 19:615-629. [PMID: 30386173 PMCID: PMC6194436 DOI: 10.2174/1389202919666180503124522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/13/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cellular homeostasis is regulated by the intricate interplay between a plethora of signaling pathways and "energetic sensors" in organs. In order to maintain energy balance, induction or repression of metabolic pathways must be regulated and act in concert with the energetic demands of the cell at a given point in time. A new class of small noncoding RNAs, the microRNAs (miRNAs), has added yet further complexity to the control of metabolic homeostasis. OBJECTIVE Understanding the damages induced by toxins in the liver and the intestine as well as the interplay between the miRNome and transcriptome first requires baseline characterization in these tissues in healthy animals under cellular homeostasis. METHODS The liver (main site for detoxification) and the gut (primary exposure routes for contaminant exposure) were dissected out (wildtype fish), total and small RNA extracted, mRNA and miRNA libraries constructed and subjected to high throughput sequencing. Differential Expression (DE) analysis was performed comparing liver with gut and an "miRNA matrix" that integrates the miRNA-seq and mRNA-seq data was constructed. RESULTS Both the miRNome and transcriptome of the liver and gut tissues were characterized and putative novel miRNAs were identified. Exploration of the "miRNA matrix" regulatory network revealed that miRNAs uniquely expressed in the liver or gut tissue regulated fundamental cellular processes important for both organs, and that commonly expressed miRNAs in both tissues regulated biological processes that were specific to either the liver or the gut. CONCLUSION The result of our analyses revealed new insights into microRNA function in these tissues.
Collapse
Affiliation(s)
| | | | | | | | - and
- Department of Medicine, Medical University of South Carolina, Charleston, SC29425, USA; Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC29425, USA; Center for Genomic Medicine Bioinformatics, Medical University of South Carolina, Charleston, SC29425, USA; Department of Pathology, Medical University of South Carolina, Charleston, SC29425, USA; Academic Affairs Faculty, Medical University of South Carolina, Charleston, SC29425, USA; Department of Medicine, University of California, La Jolla, CA92093, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC29425, USA
| | - Gary Hardiman
- Address correspondence to this author at the Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Tel/Fax: ++0-843-792-0771; E-mail:
| |
Collapse
|
7
|
Differential miRNA expression in the three-spined stickleback, response to environmental changes. Sci Rep 2017; 7:18089. [PMID: 29273769 PMCID: PMC5741757 DOI: 10.1038/s41598-017-18128-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Abstract
miRNAs play important role in the various physiological and evolutionary processes, however, there is no data allowing comparison of evolutionary differences between various ecotypes adapted to different environmental conditions and specimen demonstrating immediate physiological response to the environmental changes. We compared miRNA expression profiles between marine and freshwater stickleback populations of the three-spined stickleback to identify the evolutionary differences. To study the immediate physiological response to foreign environment, we explored the changes induced by transfer of marine sticklebacks into freshwater environment and vice versa. Comparative analysis of changes in miRNA expression suggested that they are driven by three independent factors: (1) non-specific changes in miRNA expression under different environmental conditions; (2) specific response to freshwater conditions in the marine stickleback ecotype; (3) specific response to extreme osmotic conditions for both marine and freshwater ecotypes during the contact with non-native environment. Gene Ontology enrichment analysis of differential expressed miRNA targets supports our current hypothesis.
Collapse
|
8
|
Bhattacharya M, Sharma AR, Sharma G, Patra BC, Nam JS, Chakraborty C, Lee SS. The crucial role and regulations of miRNAs in zebrafish development. PROTOPLASMA 2017; 254:17-31. [PMID: 26820151 DOI: 10.1007/s00709-015-0931-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/10/2015] [Indexed: 06/05/2023]
Abstract
To comprehend the events during developmental biology, fundamental knowledge about the basic machinery of regulation is a prerequisite. MicroRNA (miRNAs) act as regulators in most of the biological processes and recently, it has been concluded that miRNAs can act as modulatory factors even during developmental process from lower to higher animal. Zebrafish, because of its favorable attributes like tiny size, transparent embryo, and rapid external embryonic development, has gained a preferable status among all other available experimental animal models. Currently, zebrafish is being utilized for experimental studies related to stem cells, regenerative molecular medicine as well drug discovery. Therefore, it is important to understand precisely about the various miRNAs that controls developmental biology of this vertebrate model. In here, we have discussed about the miRNA-controlled zebrafish developmental stages with a special emphasis on different miRNA families such as miR-430, miR-200, and miR-133. Moreover, we have also reviewed the role of various miRNAs during embryonic and vascular development stages of zebrafish. In addition, efforts have been made to summarize the involvement of miRNAs in the development of different body parts such as the brain, eye, heart, muscle, and fin, etc. In each section, we have tried to fulfill the gaps of zebrafish developmental biology with the help of available knowledge of miRNA research. We hope that precise knowledge about the miRNA-regulated developmental stages of zebrafish may further help the researchers to efficiently utilize this vertebrate model for experimental purpose.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Bidhan Chandra Patra
- Aquaculture Research Unit, Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Ju-Suk Nam
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea.
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, 201306, India.
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 200704, South Korea.
- Department of Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, 200-704, Republic of Korea.
| |
Collapse
|
9
|
Wang B, Gan Z, Cai S, Wang Z, Yu D, Lin Z, Lu Y, Wu Z, Jian J. Comprehensive identification and profiling of Nile tilapia (Oreochromis niloticus) microRNAs response to Streptococcus agalactiae infection through high-throughput sequencing. FISH & SHELLFISH IMMUNOLOGY 2016; 54:93-106. [PMID: 27050313 DOI: 10.1016/j.fsi.2016.03.159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/22/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
MicroRNAs are a kind of small non-coding RNAs that participate in various biological processes. Deregulated microRNA expression is associated with several types of diseases. Tilapia (Oreochromis niloticus) is an important commercial fish species in China. To identify miRNAs and investigate immune-related miRNAs of O. niloticus, we applied high-throughput sequencing technology to identify and analyze miRNAs from tilapia infected with Streptococcus agalactiae at a timescale of 72 h divided into six different time points. The results showed that a total of 3009 tilapia miRNAs were identified, including in 1121 miRNAs which have homologues in the currently available databases and 1878 novel miRNAs. The expression levels of 218 tilapia miRNAs were significantly altered at 6 h-72 h post-bacterial infection (pi), and these miRNAs were therefore classified as differentially expressed tilapia miRNAs. For the 1121 differentially expressed tilapia miRNAs target 41961 genes. GO and KEGG enrichment analysis revealed that some target genes of tilapia miRNAs were grouped mainly into the categories of apoptotic process, signal pathway, and immune response. This is the first report of comprehensive identification of O. niloticus miRNAs being differentially regulated in spleen in normal conditions relating to S. agalactiae infection. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in O. niloticus host-pathogen interactions.
Collapse
Affiliation(s)
- Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Zhen Gan
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shuanghu Cai
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Zhongliang Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Dapeng Yu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Ziwei Lin
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animala, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Insititutes, Zhanjiang, 524025, China.
| |
Collapse
|
10
|
Rastorguev SM, Nedoluzhko AV, Sharko FS, Boulygina ES, Sokolov AS, Gruzdeva NM, Skryabin KG, Prokhortchouk EB. Identification of novel microRNA genes in freshwater and marine ecotypes of the three-spined stickleback (Gasterosteus aculeatus). Mol Ecol Resour 2016; 16:1491-1498. [PMID: 27238497 DOI: 10.1111/1755-0998.12545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 11/30/2022]
Abstract
The three-spined stickleback (Gasterosteus aculeatus L.) is an important model organism for studying the molecular mechanisms of speciation and adaptation to salinity. Despite increased interest to microRNA discovery and recent publication on microRNA prediction in the three-spined stickleback using bioinformatics approaches, there is still a lack of experimental support for these data. In this paper, high-throughput sequencing technology was applied to identify microRNA genes in gills of the three-spined stickleback. In total, 595 miRNA genes were discovered; half of them were predicted in previous computational studies and were confirmed here as microRNAs expressed in gill tissue. Moreover, 298 novel microRNA genes were identified. The presence of miRNA genes in selected 'divergence islands' was analysed and 10 miRNA genes were identified as not randomly located in 'divergence islands'. Regulatory regions of miRNA genes were found enriched with selective SNPs that may play a role in freshwater adaptation.
Collapse
Affiliation(s)
- S M Rastorguev
- National Research Center 'Kurchatov Institute', Kurchatov sq. 1, Moscow, 123182, Russia. .,Russian Federal Research Institute of Fisheries and Oceanography, (VNIRO) V. Krasnoselskaya str. 17, Moscow, 107140, Russia.
| | - A V Nedoluzhko
- National Research Center 'Kurchatov Institute', Kurchatov sq. 1, Moscow, 123182, Russia
| | - F S Sharko
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russia
| | - E S Boulygina
- National Research Center 'Kurchatov Institute', Kurchatov sq. 1, Moscow, 123182, Russia
| | - A S Sokolov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russia
| | - N M Gruzdeva
- National Research Center 'Kurchatov Institute', Kurchatov sq. 1, Moscow, 123182, Russia
| | - K G Skryabin
- National Research Center 'Kurchatov Institute', Kurchatov sq. 1, Moscow, 123182, Russia.,Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russia.,Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia
| | - E B Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow, 119071, Russia.,Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, 119991, Russia
| |
Collapse
|
11
|
Juanchich A, Bardou P, Rué O, Gabillard JC, Gaspin C, Bobe J, Guiguen Y. Characterization of an extensive rainbow trout miRNA transcriptome by next generation sequencing. BMC Genomics 2016; 17:164. [PMID: 26931235 PMCID: PMC4774146 DOI: 10.1186/s12864-016-2505-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/19/2016] [Indexed: 01/08/2023] Open
Abstract
Background MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression in a wide variety of physiological processes. They can control both temporal and spatial gene expression and are believed to regulate 30 to 70 % of the genes. Data are however limited for fish species, with only 9 out of the 30,000 fish species present in miRBase. The aim of the current study was to discover and characterize rainbow trout (Oncorhynchus mykiss) miRNAs in a large number of tissues using next-generation sequencing in order to provide an extensive repertoire of rainbow trout miRNAs. Results A total of 38 different samples corresponding to 16 different tissues or organs were individually sequenced and analyzed independently in order to identify a large number of miRNAs with high confidence. This led to the identification of 2946 miRNA loci in the rainbow trout genome, including 445 already known miRNAs. Differential expression analysis was performed in order to identify miRNAs exhibiting specific or preferential expression among the 16 analyzed tissues. In most cases, miRNAs exhibit a specific pattern of expression in only a few tissues. The expression data from sRNA sequencing were confirmed by RT-qPCR. In addition, novel miRNAs are described in rainbow trout that had not been previously reported in other species. Conclusion This study represents the first characterization of rainbow trout miRNA transcriptome from a wide variety of tissue and sets an extensive repertoire of rainbow trout miRNAs. It provides a starting point for future studies aimed at understanding the roles of miRNAs in major physiological process such as growth, reproduction or adaptation to stress. These rainbow trout miRNAs repertoire provide a novel resource to advance genomic research in salmonid species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2505-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Philippe Bardou
- INRA, UMR1388, Plate-forme SIGENAE/GenPhySE, Chemin de Borde Rouge, Auzeville CS 52627, F-31326, Castanet-Tolosan, France.
| | - Olivier Rué
- INRA, UR875 Plate-forme GenoToul Bioinfo, Chemin de Borde Rouge, Auzeville CS 52627, F-31326, Castanet-Tolosan, France.
| | | | - Christine Gaspin
- INRA, UR875 Plate-forme GenoToul Bioinfo, Chemin de Borde Rouge, Auzeville CS 52627, F-31326, Castanet-Tolosan, France.
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, F-35000, Rennes, France.
| | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, F-35000, Rennes, France.
| |
Collapse
|
12
|
Soares AR, Fernandes N, Reverendo M, Araújo HR, Oliveira JL, Moura GMR, Santos MAS. Conserved and highly expressed tRNA derived fragments in zebrafish. BMC Mol Biol 2015; 16:22. [PMID: 26694924 PMCID: PMC4688932 DOI: 10.1186/s12867-015-0050-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Small non-coding RNAs (sncRNAs) are a class of transcripts implicated in several eukaryotic regulatory mechanisms, namely gene silencing and chromatin regulation. Despite significant progress in their identification by next generation sequencing (NGS) we are still far from understanding their full diversity and functional repertoire. RESULTS Here we report the identification of tRNA derived fragments (tRFs) by NGS of the sncRNA fraction of zebrafish. The tRFs identified are 18-30 nt long, are derived from specific 5' and 3' processing of mature tRNAs and are differentially expressed during development and in differentiated tissues, suggesting that they are likely produced by specific processing rather than random degradation of tRNAs. We further show that a highly expressed tRF (5'tRF-Pro(CGG)) is cleaved in vitro by Dicer and has silencing ability, indicating that it can enter the RNAi pathway. A computational analysis of zebrafish tRFs shows that they are conserved among vertebrates and mining of publicly available datasets reveals that some 5'tRFs are differentially expressed in disease conditions, namely during infection and colorectal cancer. CONCLUSIONS tRFs constitute a class of conserved regulatory RNAs in vertebrates and may be involved in mechanisms of genome regulation and in some diseases.
Collapse
Affiliation(s)
- Ana Raquel Soares
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Noémia Fernandes
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Marisa Reverendo
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| | | | | | - Gabriela M R Moura
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Manuel A S Santos
- Department of Medical Sciences and Institute for Biomedicine-iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
13
|
Vaz C, Wee CW, Lee GPS, Ingham PW, Tanavde V, Mathavan S. Deep sequencing of small RNA facilitates tissue and sex associated microRNA discovery in zebrafish. BMC Genomics 2015; 16:950. [PMID: 26574018 PMCID: PMC4647824 DOI: 10.1186/s12864-015-2135-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of microRNAs in gene regulation has been well established. The extent of miRNA regulation also increases with increasing genome complexity. Though the number of genes appear to be equal between human and zebrafish, substantially less microRNAs have been discovered in zebrafish compared to human (miRBase Release 19). It appears that most of the miRNAs in zebrafish are yet to be discovered. RESULTS We sequenced small RNAs from brain, gut, liver, ovary, testis, eye, heart and embryo of zebrafish. In brain, gut and liver sequencing was done sex specifically. Majority of the sequenced reads (16-62 %) mapped to known miRNAs, with the exception of ovary (5.7 %) and testis (7.8 %). Using the miRNA discovery tool (miRDeep2), we discovered novel miRNAs from the unannotated reads that ranged from 7.6 to 23.0 %, with exceptions of ovary (51.4 %) and testis (55.2 %). The prediction tool identified a total of 459 novel pre-miRNAs. We compared expression of miRNAs between different tissues and between males and females to identify tissue associated and sex associated miRNAs respectively. These miRNAs could serve as putative biomarkers for these tissues. The brain and liver had highest number of tissue associated (22) and sex associated (34) miRNAs, respectively. CONCLUSIONS This study comprehensively identifies tissue and sex associated miRNAs in zebrafish. Further, we have discovered 459 novel pre-miRNAs (~30 % seed homology to human miRNA) as a genomic resource which can facilitate further investigations to understand miRNA-mRNA gene regulatory networks in zebrafish which will have implications in understanding the function of human homologs.
Collapse
Affiliation(s)
- Candida Vaz
- Bioinformatics Institute, Agency for Science Technology and Research, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.
| | - Choon Wei Wee
- Molecular Genomics (P) Ltd, 51 Science Park Road, #04-16 The ARIES, Singapore, 117586, Singapore.
| | - Gek Ping Serene Lee
- Genome Institute of Singapore, Agency for Science Technology and Research, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore.
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore. .,Institute of Molecular and Cell Biology, Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore.
| | - Vivek Tanavde
- Bioinformatics Institute, Agency for Science Technology and Research, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore. .,Institute of Medical Biology, Agency for Science Technology and Research, 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.
| | - Sinnakaruppan Mathavan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore. .,Genome Institute of Singapore, Agency for Science Technology and Research, 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore.
| |
Collapse
|
14
|
Farlora R, Valenzuela-Miranda D, Alarcón-Matus P, Gallardo-Escárate C. Identification of microRNAs associated with sexual maturity in rainbow trout brain and testis through small RNA deep sequencing. Mol Reprod Dev 2015; 82:651-62. [DOI: 10.1002/mrd.22499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/29/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Rodolfo Farlora
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography; University of Concepción; Concepción Chile
| | - Diego Valenzuela-Miranda
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography; University of Concepción; Concepción Chile
| | - Pamela Alarcón-Matus
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography; University of Concepción; Concepción Chile
| | - Cristian Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography; University of Concepción; Concepción Chile
| |
Collapse
|
15
|
Kaitetzidou E, Xiang J, Antonopoulou E, Tsigenopoulos CS, Sarropoulou E. Dynamics of gene expression patterns during early development of the European seabass (Dicentrarchus labrax). Physiol Genomics 2015; 47:158-69. [DOI: 10.1152/physiolgenomics.00001.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/23/2015] [Indexed: 01/06/2023] Open
Abstract
Larval and embryonic stages are the most critical period in the life cycle of marine fish. Key developmental events occur early in development and are influenced by external parameters like stress, temperature, salinity, and photoperiodism. Any failure may cause malformations, developmental delays, poor growth, and massive mortalities. Advanced understanding of molecular processes underlying marine larval development may lead to superior larval rearing conditions. Today, the new sequencing and bioinformatic methods allow transcriptome screens comprising messenger (mRNA) and microRNA (miRNA) with the scope of detecting differential expression for any species of interest. In the present study, we applied Illumina technology to investigate the transcriptome of early developmental stages of the European seabass ( Dicentrarchus labrax). The European seabass, in its natural environment, is a euryhaline species and has shown high adaptation processes in early life phases. During its embryonic and larval phases the European seabass lives in a marine environment and as a juvenile it migrates to coastal zones, estuaries, and lagoons. Investigating the dynamics of gene expression in its early development may shed light on factors promoting phenotypic plasticity and may also contribute to the improvement and advancement of rearing methods of the European seabass, a species of high economic importance in European and Mediterranean aquaculture. We present the identification, characterization, and expression of mRNA and miRNA, comprising paralogous genes and differentially spliced transcripts from early developmental stages of the European seabass. We further investigated the detection of possible interactions of miRNA with mRNA.
Collapse
Affiliation(s)
- E. Kaitetzidou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece
- School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Greece; and
| | - J. Xiang
- Genomics Resources Core Facility, Weill Cornell Medical College, New York, New York
| | - E. Antonopoulou
- School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Greece; and
| | - C. S. Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece
| | - E. Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece
| |
Collapse
|
16
|
Bizuayehu TT, Johansen SD, Puvanendran V, Toften H, Babiak I. Temperature during early development has long-term effects on microRNA expression in Atlantic cod. BMC Genomics 2015; 16:305. [PMID: 25881242 PMCID: PMC4403832 DOI: 10.1186/s12864-015-1503-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background Environmental temperature has serious implications in life cycle of aquatic ectotherms. Understanding the molecular mechanisms of temperature acclimation and adaptation of marine organisms is of the uttermost importance for ecology, fisheries, and aquaculture, as it allows modeling the effects of global warming on population dynamics. Regulatory molecules are major modulators of acclimation and adaptation; among them, microRNAs (miRNAs) are versatile and substantial contributors to regulatory networks of development and adaptive plasticity. However, their role in thermal plasticity is poorly known. We have asked whether the temperature and its shift during the early ontogeny (embryonic and larval development) affect the miRNA repertoire of Atlantic cod (Gadus morhua), and if thermal experience has long-term consequences in the miRNA profile. Results We characterized miRNA during different developmental stages and in juvenile tissues using next generation sequencing. We identified 389 putative miRNA precursor loci, 120 novel precursor miRNAs, and 281 mature miRNAs. Some miRNAs showed stage- or tissue-enriched expression and miRNAs, such as the miR-17 ~ 92 cluster, myomiRs (miR-206), neuromiRs (miR-9, miR-124), miR-130b, and miR-430 showed differential expression in different temperature regimes. Long-term effect of embryonic incubation temperature was revealed on expression of some miRNAs in juvenile pituitary (miR-449), gonad (miR-27c, miR-30c, and miR-200a), and liver (let-7 h, miR-7a, miR-22, miR-34c, miR-132a, miR-192, miR-221, miR-451, miR-2188, and miR-7550), but not in brain. Some of differentially expressed miRNAs in the liver were confirmed using LNA-based rt-qPCR. The effect of temperature on methylation status of selected miRNA promoter regions was mostly inconclusive. Conclusions Temperature elevation by several degrees during embryonic and larval developmental stages significantly alters the miRNA profile, both short-term and long-term. Our results suggest that a further rise in seas temperature might affect life history of Atlantic cod. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1503-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Steinar D Johansen
- University of Nordland, Faculty of Biosciences and Aquaculture, Post Box 1490, 8049, Bodø, Norway. .,Arctic University of Norway, FHS, RNA Lab, Dept Med Biol, N-9037, Tromsø, Norway.
| | | | - Hilde Toften
- Nofima AS, Muninbakken 9-13, P.O. box 6122, NO, 9291, Tromsø, Norway.
| | - Igor Babiak
- University of Nordland, Faculty of Biosciences and Aquaculture, Post Box 1490, 8049, Bodø, Norway.
| |
Collapse
|
17
|
Nachtigall PG, Dias MC, Pinhal D. Evolution and genomic organization of muscle microRNAs in fish genomes. BMC Evol Biol 2014; 14:196. [PMID: 25253178 PMCID: PMC4177693 DOI: 10.1186/s12862-014-0196-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/22/2014] [Indexed: 11/15/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNA molecules with an important role upon post-transcriptional regulation. These molecules have been shown essential for several cellular processes in vertebrates, including muscle biology. Many miRNAs were described as exclusively or highly expressed in skeletal and/or cardiac muscle. However, knowledge on the genomic organization and evolution of muscle miRNAs has been unveiled in a reduced number of vertebrates and mostly only reflects their organization in mammals, whereas fish genomes remain largely uncharted. The main goal of this study was to elucidate particular features in the genomic organization and the putative evolutionary history of muscle miRNAs through a genome-wide comparative analysis of cartilaginous and bony fish genomes. Results As major outcomes we show that (1) miR-208 was unexpectedly absent in cartilaginous and ray-finned fish genomes whereas it still exist in other vertebrate groups; (2) miR-499 was intergenic in medaka and stickleback conversely to other vertebrates where this miRNA is intronic; (3) the zebrafish genome is the unique harboring two extra paralogous copies of miR-499 and their host gene (Myh7b); (4) a rare deletion event of the intergenic and bicistronic cluster miR-1-1/133a-2 took place only into Tetraodontiformes genomes (pufferfish and spotted green puffer); (5) the zebrafish genome experienced a duplication event of miR-206/-133b; and (6) miR-214 was specifically duplicated in species belonging to superorder Acanthopterygii. Conclusions Despite of the aforementioned singularities in fish genomes, large syntenic blocks containing muscle-enriched miRNAs were found to persist, denoting colligated functionality between miRNAs and neighboring genes. Based on the genomic data here obtained, we envisioned a feasible scenario for explaining muscle miRNAs evolution in vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0196-x) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Thomson RC, Plachetzki DC, Mahler DL, Moore BR. A critical appraisal of the use of microRNA data in phylogenetics. Proc Natl Acad Sci U S A 2014; 111:E3659-68. [PMID: 25071211 PMCID: PMC4156711 DOI: 10.1073/pnas.1407207111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent progress in resolving the tree of life continues to expose relationships that resist resolution, which drives the search for novel sources of information to solve these difficult phylogenetic problems. A recent example, the presence and absence of microRNA families, has been vigorously promoted as an ideal source of phylogenetic data and has been applied to several perennial phylogenetic problems. The utility of such data for phylogenetic inference hinges critically both on developing stochastic models that provide a reasonable description of the process that give rise to these data, and also on the careful validation of those models in real inference scenarios. Remarkably, however, the statistical behavior and phylogenetic utility of microRNA data have not yet been rigorously characterized. Here we explore the behavior and performance of microRNA presence/absence data under a variety of evolutionary models and reexamine datasets from several previous studies. We find that highly heterogeneous rates of microRNA gain and loss, pervasive secondary loss, and sampling error collectively render microRNA-based inference of phylogeny difficult. Moreover, our reanalyses fundamentally alter the conclusions for four of the five studies that we reexamined. Our results indicate that the capacity of miRNA data to resolve the tree of life has been overstated, and we urge caution in their application and interpretation.
Collapse
Affiliation(s)
- Robert C Thomson
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI 96822;
| | - David C Plachetzki
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824; and
| | - D Luke Mahler
- Department of Evolution and Ecology, University of California, Davis, CA 95616
| | - Brian R Moore
- Department of Evolution and Ecology, University of California, Davis, CA 95616
| |
Collapse
|
19
|
Abstract
MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts.
Collapse
Affiliation(s)
| | - Igor Babiak
- Faculty of Aquaculture and Biosciences, University of Nordland, Bodø, Norway
| |
Collapse
|
20
|
Baker ME, Hardiman G. Transcriptional analysis of endocrine disruption using zebrafish and massively parallel sequencing. J Mol Endocrinol 2014; 52:R241-56. [PMID: 24850832 PMCID: PMC4145605 DOI: 10.1530/jme-13-0219] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endocrine-disrupting chemicals (EDCs), including plasticizers, pesticides, detergents, and pharmaceuticals, affect a variety of hormone-regulated physiological pathways in humans and wildlife. Many EDCs are lipophilic molecules and bind to hydrophobic pockets in steroid receptors, such as the estrogen receptor and androgen receptor, which are important in vertebrate reproduction and development. Indeed, health effects attributed to EDCs include reproductive dysfunction (e.g. reduced fertility, reproductive tract abnormalities, and skewed male:female sex ratios in fish), early puberty, various cancers, and obesity. A major concern is the effects of exposure to low concentrations of endocrine disruptors in utero and post partum, which may increase the incidence of cancer and diabetes in adults. EDCs affect transcription of hundreds and even thousands of genes, which has created the need for new tools to monitor the global effects of EDCs. The emergence of massive parallel sequencing for investigating gene transcription provides a sensitive tool for monitoring the effects of EDCs on humans and other vertebrates, as well as elucidating the mechanism of action of EDCs. Zebrafish conserve many developmental pathways found in humans, which makes zebrafish a valuable model system for studying EDCs, especially on early organ development because their embryos are translucent. In this article, we review recent advances in massive parallel sequencing approaches with a focus on zebrafish. We make the case that zebrafish exposed to EDCs at different stages of development can provide important insights on EDC effects on human health.
Collapse
Affiliation(s)
- Michael E Baker
- Department of MedicineUniversity of California San Diego, 9500 Gilman Drive 0605, La Jolla, California 92093-0605, USACSRC and BIMRCSan Diego State University, 5500 Campanile Drive, San Diego, California 92182-7720, USADepartment of MedicineMedical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, South Carolina 29425, USA
| | - Gary Hardiman
- Department of MedicineUniversity of California San Diego, 9500 Gilman Drive 0605, La Jolla, California 92093-0605, USACSRC and BIMRCSan Diego State University, 5500 Campanile Drive, San Diego, California 92182-7720, USADepartment of MedicineMedical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, South Carolina 29425, USADepartment of MedicineUniversity of California San Diego, 9500 Gilman Drive 0605, La Jolla, California 92093-0605, USACSRC and BIMRCSan Diego State University, 5500 Campanile Drive, San Diego, California 92182-7720, USADepartment of MedicineMedical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, South Carolina 29425, USA
| |
Collapse
|
21
|
Wang WX, Danaher RJ, Miller CS, Berger JR, Nubia VG, Wilfred BS, Neltner JH, Norris CM, Nelson PT. Expression of miR-15/107 family microRNAs in human tissues and cultured rat brain cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:19-30. [PMID: 24480177 PMCID: PMC3975925 DOI: 10.1016/j.gpb.2013.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/09/2013] [Accepted: 10/06/2013] [Indexed: 11/23/2022]
Abstract
The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs), sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively). In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS). In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs). Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Robert J Danaher
- College of Dentistry, University of Kentucky, Lexington, KY 40536, USA
| | - Craig S Miller
- College of Dentistry, University of Kentucky, Lexington, KY 40536, USA
| | - Joseph R Berger
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Vega G Nubia
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Bernard S Wilfred
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Janna H Neltner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Pathology, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher M Norris
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, KY 40536, USA; Department of Pathology, University of Kentucky, Lexington, KY 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Pathology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
22
|
Yang L, He S. A bioinformatics-based update on microRNAs and their targets in rainbow trout (Oncorhynchus mykiss). Gene 2014; 533:261-9. [DOI: 10.1016/j.gene.2013.09.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/08/2013] [Accepted: 09/16/2013] [Indexed: 01/22/2023]
|
23
|
Ordas A, Kanwal Z, Lindenberg V, Rougeot J, Mink M, Spaink HP, Meijer AH. MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection. BMC Genomics 2013; 14:696. [PMID: 24112639 PMCID: PMC3852110 DOI: 10.1186/1471-2164-14-696] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/17/2013] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNAs (miRNAs) have recently been shown to play important roles in development of the immune system and in fine-tuning of immune responses. Human miR-146 family members are known as inflammation-inducible miRNAs involved in negative feedback regulation of Toll-like receptor (TLR) signalling. Dysregulation of the miR-146 family has often been linked to inflammatory diseases and malignancies. This study reports on miR-146a and miR-146b as infection-inducible miRNAs in zebrafish, which has emerged as a model species for human disease. Results Using a custom-designed microarray platform for miRNA expression we found that both members of the zebrafish miR-146 family, miR-146a and miR-146b, were commonly induced by infection of zebrafish embryos with Salmonella typhimurium and by infection of adult fish with Mycobacterium marinum. The induction of these miRNAs was confirmed by Taqman miRNA assays. Subsequently, we used zebrafish embryos, in which adaptive immunity is not yet active, as an in vivo system to investigate the role of miR-146 in the innate immune response to S. typhimurium infection. Knockdown of traf6 and use of myd88 mutants demonstrated that the induction of miR-146a and miR-146b by S. typhimurium infection was affected by disruption of the MyD88-Traf6 pathway that mediates transduction of TLR signals and cytokine responses. In turn, knockdown of miR-146 itself had no major effects on the expression of known targets of MyD88-Traf6 signalling. Instead, RNA sequencing analysis showed that miR-146 knockdown led to an increased induction of six members of the apolipoprotein gene family in S. typhimurium-infected embryos. Conclusion Based on microarray analysis and Taqman miRNA assays we conclude that members of the miR-146 family, which is highly conserved between fish and human, are induced by bacterial infection in zebrafish in a MyD88 and Traf6 dependent manner. The combined knockdown of miR-146a and miR-146b in zebrafish embryos infected with S. typhimurium had no major effect on the expression of pro-inflammatory genes and transcription factors known to be downstream of the MyD88-Traf6 pathway. In contrast, apolipoprotein-mediated lipid transport emerged as an infection-inducible pathway under miR-146 knockdown conditions, suggesting a possible function of miR-146 in regulating lipid metabolism during inflammation.
Collapse
Affiliation(s)
- Anita Ordas
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Bizuayehu TT, Fernandes JMO, Johansen SD, Babiak I. Characterization of novel precursor miRNAs using next generation sequencing and prediction of miRNA targets in Atlantic halibut. PLoS One 2013; 8:e61378. [PMID: 23626677 PMCID: PMC3634072 DOI: 10.1371/journal.pone.0061378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/07/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND microRNAs (miRNAs) are implicated in regulation of many cellular processes. miRNAs are processed to their mature functional form in a step-wise manner by multiple proteins and cofactors in the nucleus and cytoplasm. Many miRNAs are conserved across vertebrates. Mature miRNAs have recently been characterized in Atlantic halibut (Hippoglossus hippoglossus L.). The aim of this study was to identify and characterize precursor miRNA (pre-miRNAs) and miRNA targets in this non-model flatfish. Discovery of miRNA precursor forms and targets in non-model organisms is difficult because of limited source information available. Therefore, we have developed a methodology to overcome this limitation. METHODS Genomic DNA and small transcriptome of Atlantic halibut were sequenced using Roche 454 pyrosequencing and SOLiD next generation sequencing (NGS), respectively. Identified pre- miRNAs were further validated with reverse-transcription PCR. miRNA targets were identified using miRanda and RNAhybrid target prediction tools using sequences from public databases. Some of miRNA targets were also identified using RACE-PCR. miRNA binding sites were validated with luciferase assay using the RTS34st cell line. RESULTS We obtained more than 1.3 M and 92 M sequence reads from 454 genomic DNA sequencing and SOLiD small RNA sequencing, respectively. We identified 34 known and 9 novel pre-miRNAs. We predicted a number of miRNA target genes involved in various biological pathways. miR-24 binding to kisspeptin 1 receptor-2 (kiss1-r2) was confirmed using luciferase assay. CONCLUSION This study demonstrates that identification of conserved and novel pre-miRNAs in a non-model vertebrate lacking substantial genomic resources can be performed by combining different next generation sequencing technologies. Our results indicate a wide conservation of miRNA precursors and involvement of miRNA in multiple regulatory pathways, and provide resources for further research on miRNA in non-model animals.
Collapse
Affiliation(s)
| | | | - Steinar D. Johansen
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Igor Babiak
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| |
Collapse
|
25
|
Identification and characterization of microRNAs in channel catfish (Ictalurus punctatus) by using Solexa sequencing technology. PLoS One 2013; 8:e54174. [PMID: 23342099 PMCID: PMC3546936 DOI: 10.1371/journal.pone.0054174] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/07/2012] [Indexed: 11/19/2022] Open
Abstract
Channel catfish (Ictalurus spp.) is an economically important species in freshwater aquaculture around the world and occupies a prominent position in the aquaculture industry of the United States. MicroRNAs (miRNAs) play important roles in the regulation of almost every biological process in eukaryotes; however, there is little information available concerning miRNAs in channel catfish. In this study, a small-RNA cDNA library was constructed from 10 tissues of channel catfish, and Solexa sequencing technology was used to perform high-throughput sequencing of the library. A total of 14,919,026 raw reads, representing 161,288 unique sequences, were obtained from the small-cDNA library. After comparing the small RNA sequences with the RFam database, 4,542,396 reads that represent 25,538 unique sequences were mapped to the genome sequence of zebrafish to perform distribution analysis and to screen for candidate miRNA genes. Subsequent bioinformatic analysis identified 237 conserved miRNAs and 45 novel miRNAs in the channel catfish. Stem-loop RT-PCR was applied to validate and profile the expression of the novel miRNAs in 10 tissues. Some novel miRNAs, such as ipu-miR-129b, ipu-miR-7562 and ipu-miR-7553, were expressed in all tissues examined. However, some novel miRNAs appear to be tissue specific. Ipu-miR-7575 is predominantly expressed in stomach. Ipu-miR-7147 and ipu-miR-203c are highly expressed in heart, but are relatively weakly expressed in other tissues. Based on sequence complementarity between miRNAs and mRNA targets, potential target sequences for the 45 novel miRNAs were identified by searching for antisense hits in the reference RNA sequences of the channel catfish. These potential target sequences are involved in immune regulation, transcriptional regulation, metabolism and many other biological functions. The discovery of miRNAs in the channel catfish genome by this study contributes to a better understanding of the role miRNAs play in regulating diverse biological processes in fish and vertebrates.
Collapse
|
26
|
Muroya S, Taniguchi M, Shibata M, Oe M, Ojima K, Nakajima I, Chikuni K. Profiling of differentially expressed microRNA and the bioinformatic target gene analyses in bovine fast- and slow-type muscles by massively parallel sequencing. J Anim Sci 2012; 91:90-103. [PMID: 23100578 DOI: 10.2527/jas.2012-5371] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNA (miRNA) are highly conserved, noncoding small RNA involved in post-transcriptional gene regulation in a variety of biological processes. To elucidate roles of miRNA in bovine muscle type specification and maintenance, we sought to determine differentially expressed miRNA between semitendinosus (STD) and masseter (MS) muscles from 3 Japanese black cattle by massively parallel sequencing. Differential gene expression of myosin heavy chain (MyHC) isoforms confirmed that STD and MS were MyHC-2x- and MyHC-1-abundant muscles, respectively. In total, 192 known miRNA and 20 potential new bovine miRNA were obtained from the sequencing. The differentially expressed miRNA with more than 2-fold difference in each muscle were identified. In particular, miR-196a and miR-885 were exclusively expressed in STD muscle, which was validated by quantitative reverse transcription-PCR (P=0.045 and P<0.001, respectively), whereas a slow type-directing miR-208b was highly expressed in MS compared with STD (false discovery rate<0.05). In addition, 16 potential novel miRNA were mapped and confirmed for their precursor structures by computational analyses. The results of functional annotation combined with in silico target analysis showed that the predicted target genes of miR-196a/b and miR-885 enriched gene ontology (GO) terms related to skeletal system development and regulation of transcription, respectively. Moreover, GO terms enriched from predicted targets miRNA suggested that STD-abundant- and MS-abundant-miRNA were associated with embryonic body planning and organ/tissue pattern formation, respectively. The present results revealed that the differentially expressed miRNA between the STD and MS muscles may play key roles to determine muscle type-specific tissue formation and maintenance in cattle thorough attenuating putative target genes involved in different developmental events.
Collapse
Affiliation(s)
- S Muroya
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan 305-0901.
| | | | | | | | | | | | | |
Collapse
|
27
|
Bioinformatic identification and validation of conservative microRNAs in Ictalurus punctatus. Mol Biol Rep 2012; 39:10395-405. [PMID: 23053943 DOI: 10.1007/s11033-012-1918-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/01/2012] [Indexed: 01/07/2023]
Abstract
Catfish (Ictalurus spp.) is an important aquaculture species around the world, accounting for over 60 % of the domestic aquaculture output in the United States. However, little information is available about I. punctatus miRNAs which play an important role in the regulation of almost every biological process. In the present studies, we applied a bioinformatic strategy to identify 16 miRNAs which represent 12 miRNA families in I. punctatus by searching both expressed sequence tags and genome survey sequences databases. The A + U contents of the candidate pre-miRNA sequence range from 51 to 63 %, and the pre-miRNA sequences vary from 55 to 63 bp in length. To verify the predicted miRNAs, real-time PCR was used to profile the expression of 16 miRNAs with different tissues of I. punctatus. All the miRNA candidates were detectable in five tissues except for ipu-miR-9-3p. Based on sequence complementarity between miRNAs and their mRNA targets, potential targets for I. punctatus miRNAs were predicted. Due to the limited information for the I. punctatus transcripts, only one sequence targeted by ipu-miR-135 was identified to be an I. punctatus EB1 mRNA. Bioinformatic analyses indicated that the 3' untranslated region (3'-UTR) of EB1 mRNA contains an ipu-miR-135 target site, which are perfectly complementary to the seed region (positions 2-8) of the mature ipu-miR-135. I. punctatus miRNAs characterized in this study may provide useful information for the miRNAs research in I. punctatus and other aquaculture species.
Collapse
|
28
|
Ning MS, Andl T. Control by a hair's breadth: the role of microRNAs in the skin. Cell Mol Life Sci 2012; 70:1149-69. [PMID: 22983383 DOI: 10.1007/s00018-012-1117-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 12/11/2022]
Abstract
MicroRNAs have continued to attract enormous interest in the scientific community ever since their discovery. Their allure stems from their unique role in posttranscriptional gene expression control as well as their potential application as therapeutic targets in various disease pathologies. While much is known concerning their general biological function, such as their interaction with RNA-induced silencing complexes, many important questions still remain unanswered, especially regarding their functions in the skin. In this review, we summarize our current knowledge of the role of microRNAs in the skin in order to shine new light on our understanding of cutaneous biology and emphasize the significance of these small, single-stranded RNA molecules in the largest organ of the human body. Key events in epidermal and hair follicle biology, including differentiation, proliferation, and pigmentation, all involve microRNAs. We explore the role of microRNAs in several cutaneous processes, such as appendage formation, wound-healing, epithelial-mesenchymal transition, carcinogenesis, immune response, and aging. In addition, we discuss current trends in research and offer suggestions for future studies.
Collapse
Affiliation(s)
- Matthew S Ning
- Department of Medicine/Division of Dermatology, Vanderbilt University Medical Center, Medical Center North, Room A2310B, 1161 21st Avenue South, Nashville, TN 37232-2600, USA
| | | |
Collapse
|
29
|
Jenny MJ, Aluru N, Hahn ME. Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos. Toxicol Appl Pharmacol 2012; 264:262-73. [PMID: 22921993 DOI: 10.1016/j.taap.2012.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 12/26/2022]
Abstract
Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ~22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNA expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5nM) for 1h at 30hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60hpf. TCDD caused strong induction of CYP1A at 36hpf (62-fold) and 60hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular development.
Collapse
Affiliation(s)
- Matthew J Jenny
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
30
|
Bizuayehu T, Babiak J, Norberg B, Fernandes J, Johansen S, Babiak I. Sex-Biased miRNA Expression in Atlantic Halibut (Hippoglossus hippoglossus) Brain and Gonads. Sex Dev 2012; 6:257-66. [DOI: 10.1159/000341378] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2012] [Indexed: 11/19/2022] Open
|
31
|
Global analysis of the small RNA transcriptome in different ploidies and genomic combinations of a vertebrate complex--the Squalius alburnoides. PLoS One 2012; 7:e41158. [PMID: 22815952 PMCID: PMC3399795 DOI: 10.1371/journal.pone.0041158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/18/2012] [Indexed: 12/29/2022] Open
Abstract
The Squalius alburnoides complex (Steindachner) is one of the most intricate hybrid polyploid systems known in vertebrates. In this complex, the constant switch of the genome composition in consecutive generations, very frequently involving a change on the ploidy level, promotes repetitive situations of potential genomic shock. Previously in this complex, it was showed that in response to the increase in genome dosage, triploids hybrids could regulate gene expression to a diploid state. In this work we compared the small RNA profiles in the different genomic compositions interacting in the complex in order to explore the miRNA involvement in gene expression regulation of triploids. Using high-throughput arrays and sequencing technologies we were able to verify that diploid and triploid hybrids shared most of their sequences and their miRNA expression profiles were high correlated. However, an overall view indicates an up-regulation of several miRNAs in triploids and a global miRNA expression in triploids higher than the predicted from an additive model. Those results point to a participation of miRNAs in the cellular functional stability needed when the ploidy change.
Collapse
|
32
|
Soares AR, Reverendo M, Pereira PM, Nivelles O, Pendeville H, Bezerra AR, Moura GR, Struman I, Santos MAS. Dre-miR-2188 targets Nrp2a and mediates proper intersegmental vessel development in zebrafish embryos. PLoS One 2012; 7:e39417. [PMID: 22761789 PMCID: PMC3382224 DOI: 10.1371/journal.pone.0039417] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 05/24/2012] [Indexed: 12/30/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of small RNAs that are implicated in the control of eukaryotic gene expression by binding to the 3′UTR of target mRNAs. Several algorithms have been developed for miRNA target prediction however, experimental validation is still essential for the correct identification of miRNA targets. We have recently predicted that Neuropilin2a (Nrp2a), a vascular endothelial growth factor receptor which is essential for normal developmental angiogenesis in zebrafish, is a dre-miR-2188 target. Methodology Here we show that dre-miR-2188 targets the 3′-untranslated region (3′UTR) of Nrp2a mRNA and is implicated in proper intersegmental vessel development in vivo. Over expression of miR-2188 in zebrafish embryos down regulates Nrp2a expression and results in intersegmental vessel disruption, while its silencing increases Nrp2a expression and intersegmental vessel sprouting. An in vivo GFP sensor assay based on a fusion between the GFP coding region and the Nrp2a 3′UTR confirms that miR-2188 binds to the 3′UTR of Nrp2a and inhibits protein translation. Conclusions We demonstrate that miR-2188 targets Nrp2a and affects intersegmental vessel development in zebrafish embryos.
Collapse
Affiliation(s)
- Ana R. Soares
- RNA Biology Laboratory, Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Marisa Reverendo
- RNA Biology Laboratory, Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Patrícia M. Pereira
- RNA Biology Laboratory, Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Olivier Nivelles
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
| | - Hélène Pendeville
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
| | - Ana Rita Bezerra
- RNA Biology Laboratory, Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Gabriela R. Moura
- RNA Biology Laboratory, Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Ingrid Struman
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Sart Tilman, Liège, Belgium
| | - Manuel A. S. Santos
- RNA Biology Laboratory, Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
- * E-mail:
| |
Collapse
|
33
|
miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics 2012; 13:140. [PMID: 22720726 PMCID: PMC3410788 DOI: 10.1186/1471-2105-13-140] [Citation(s) in RCA: 376] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/21/2012] [Indexed: 01/21/2023] Open
Abstract
Background MicroRNAs (miRNAs) are small (~19-24nt) non-coding RNAs that play important roles in various biological processes. To date, the next-generation sequencing (NGS) technology has been widely used to discover miRNAs in plants and animals. Although evolutionary analysis is important to reveal the functional dynamics of miRNAs, few computational tools have been developed to analyze the evolution of miRNA sequence and expression across species, especially the newly emerged ones, Results We developed miREvo, an integrated software platform with a graphical user interface (GUI), to process deep-sequencing data of small RNAs and to analyze miRNA sequence and expression evolution based on the multiple-species whole genome alignments (WGAs). Three major features are provided by miREvo: (i) to identify novel miRNAs in both plants and animals, based on a modified miRDeep algorithm, (ii) to detect miRNA homologs and measure their pairwise evolutionary distances among multiple species based on a WGA, and (iii) to profile miRNA expression abundances and analyze expression divergence across multiple species (small RNA libraries). Moreover, we demonstrated the utility of miREvo with Illumina data sets from Drosophila melanogaster and Arabidopsis, respectively. Conclusion This work presents an integrated pipline, miREvo, for exploring the expressional and evolutionary dynamics of miRNAs across multiple species. MiREvo is standalone, modular, and freely available at http://evolution.sysu.edu.cn/software/mirevo.htm under the GNU/GPL license.
Collapse
|
34
|
Jayapal M. Integration of next-generation sequencing based multi-omics approaches in toxicogenomics. Front Genet 2012; 3:88. [PMID: 22661985 PMCID: PMC3356856 DOI: 10.3389/fgene.2012.00088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 12/12/2022] Open
Affiliation(s)
- Manikandan Jayapal
- Center of Excellence in Genomic Medicine Research, King Fahd Medical Research Centre, King Abdulaziz University Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
35
|
Wei C, Salichos L, Wittgrove CM, Rokas A, Patton JG. Transcriptome-wide analysis of small RNA expression in early zebrafish development. RNA (NEW YORK, N.Y.) 2012; 18:915-29. [PMID: 22408181 PMCID: PMC3334700 DOI: 10.1261/rna.029090.111] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During early vertebrate development, a large number of noncoding RNAs are maternally inherited or expressed upon activation of zygotic transcription. The exact identity, expression levels, and function for most of these noncoding RNAs remain largely unknown. miRNAs (microRNAs) and piRNAs (piwi-interacting RNAs) are two classes of small noncoding RNAs that play important roles in gene regulation during early embryonic development. Here, we utilized next-generation sequencing technology to determine temporal expression patterns for both miRNAs and piRNAs during four distinct stages of early vertebrate development using zebrafish as a model system. For miRNAs, the expression patterns for 198 known miRNAs within 122 different miRNA families and eight novel miRNAs were determined. Significant sequence variation was observed at the 5' and 3'ends of miRNAs, with most extra nucleotides added at the 3' end in a nontemplate directed manner. For the miR-430 family, the addition of adenosine and uracil residues is developmentally regulated and may play a role in miRNA stability during the maternal zygotic transition. Similar modification at the 3' ends of a large number of miRNAs suggests widespread regulation of stability during early development. Beside miRNAs, we also identified a large and unexpectedly diverse set of piRNAs expressed during early development.
Collapse
Affiliation(s)
- Chunyao Wei
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Leonidas Salichos
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Carli M. Wittgrove
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
- Corresponding author.E-mail .
| |
Collapse
|
36
|
Mehinto AC, Martyniuk CJ, Spade DJ, Denslow ND. Applications for next-generation sequencing in fish ecotoxicogenomics. Front Genet 2012; 3:62. [PMID: 22539934 PMCID: PMC3336092 DOI: 10.3389/fgene.2012.00062] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/02/2012] [Indexed: 01/23/2023] Open
Abstract
The new technologies for next-generation sequencing (NGS) and global gene expression analyses that are widely used in molecular medicine are increasingly applied to the field of fish biology. This has facilitated new directions to address research areas that could not be previously considered due to the lack of molecular information for ecologically relevant species. Over the past decade, the cost of NGS has decreased significantly, making it possible to use non-model fish species to investigate emerging environmental issues. NGS technologies have permitted researchers to obtain large amounts of raw data in short periods of time. There have also been significant improvements in bioinformatics to assemble the sequences and annotate the genes, thus facilitating the management of these large datasets.The combination of DNA sequencing and bioinformatics has improved our abilities to design custom microarrays and study the genome and transcriptome of a wide variety of organisms. Despite the promising results obtained using these techniques in fish studies, NGS technologies are currently underused in ecotoxicogenomics and few studies have employed these methods. These issues should be addressed in order to exploit the full potential of NGS in ecotoxicological studies and expand our understanding of the biology of non-model organisms.
Collapse
Affiliation(s)
- Alvine C Mehinto
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
37
|
Gomez G, Lee JH, Veldman MB, Lu J, Xiao X, Lin S. Identification of vascular and hematopoietic genes downstream of etsrp by deep sequencing in zebrafish. PLoS One 2012; 7:e31658. [PMID: 22438865 PMCID: PMC3306315 DOI: 10.1371/journal.pone.0031658] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
The transcription factor etsrp/Er71/Etv2 is a master control gene for vasculogenesis in all species studied to date. It is also required for hematopoiesis in zebrafish and mice. Several novel genes expressed in vasculature have been identified through transcriptional profiling of zebrafish embryos overexpressing etsrp by microarrays. Here we re-examined this transcriptional profile by Illumina RNA-sequencing technology, revealing a substantially increased number of candidate genes regulated by etsrp. Expression studies of 50 selected candidate genes from this dataset resulted in the identification of 39 new genes that are expressed in vascular cells. Regulation of these genes by etsrp was confirmed by their ectopic induction in etsrp overexpressing and decreased expression in etsrp deficient embryos. Our studies demonstrate the effectiveness of the RNA-sequencing technology to identify biologically relevant genes in zebrfish and produced a comprehensive profile of genes previously unexplored in vascular endothelial cell biology.
Collapse
Affiliation(s)
- Gustavo Gomez
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | | | | | | | | | | |
Collapse
|
38
|
Soares AR, Pereira PM, Ferreira V, Reverendo M, Simões J, Bezerra AR, Moura GR, Santos MAS. Ethanol exposure induces upregulation of specific microRNAs in zebrafish embryos. Toxicol Sci 2012; 127:18-28. [PMID: 22298809 DOI: 10.1093/toxsci/kfs068] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Prenatal exposure to ethanol leads to a myriad of developmental disorders known as fetal alcohol spectrum disorder, often characterized by growth and mental retardation, central nervous system damage, and specific craniofacial dysmorphic features. The mechanisms of ethanol toxicity are not fully understood, but exposure during development affects the expression of several genes involved in cell cycle control, apoptosis, and transcriptional regulation. MicroRNAs (miRNAs) are implicated in some of these processes, however, it is not yet clear if they are involved in ethanol-induced toxicity. In order to clarify this question, we have exposed zebrafish embryos to ethanol and evaluated whether a miRNA deregulation signature could be obtained. Zebrafish embryos were exposed to 1 and 1.5% of ethanol from 4 h postfertilization (hpf) to 24 hpf. The miRNA expression profiles obtained reveal significant miRNA deregulation and show that both ethanol concentrations upregulate miR-153a, miR-725, miR-30d, let-7k, miR-100, miR-738, and miR-732. Putative gene targets of deregulated miRNAs are involved in cell cycle control, apoptosis, and transcription, which are the main processes affected by ethanol toxicity. The conservation of affected mechanisms among vertebrates leads us to postulate that similar miRNA deregulation occurs in humans, highlighting a relevant role of miRNAs in ethanol toxicology.
Collapse
Affiliation(s)
- Ana Raquel Soares
- RNA Biology Laboratory, Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Bizuayehu TT, Lanes CFC, Furmanek T, Karlsen BO, Fernandes JMO, Johansen SD, Babiak I. Differential expression patterns of conserved miRNAs and isomiRs during Atlantic halibut development. BMC Genomics 2012; 13:11. [PMID: 22233483 PMCID: PMC3398304 DOI: 10.1186/1471-2164-13-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 01/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a major role in animal ontogenesis. Size variants of miRNAs, isomiRs, are observed along with the main miRNA types, but their origin and possible biological role are uncovered yet. Developmental profiles of miRNAs have been reported in few fish species only and, to our knowledge, differential expressions of isomiRs have not yet been shown during fish development. Atlantic halibut, Hippoglossus hippoglossus L., undergoes dramatic metamorphosis during early development from symmetrical pelagic larval stage to unsymmetrical flatfish. No data exist on role of miRNAs in halibut metamorphosis. RESULTS miRNA profiling using SOLiD deep sequencing technology revealed a total of 199 conserved, one novel antisense, and one miRNA* mature form. Digital expression profiles of selected miRNAs were validated using reverse transcription quantitative PCR. We found developmental transition-specific miRNA expression. Expression of some miRNA* exceeded the guide strand miRNA. We revealed that nucleotide truncations and/or additions at the 3' end of mature miRNAs resulted in size variants showing differential expression patterns during the development in a number of miRNA families. We confirmed the presence of isomiRs by cloning and Sanger sequencing. Also, we found inverse relationship between expression levels of sense/antisense miRNAs during halibut development. CONCLUSION Developmental transitions during early development of Atlantic halibut are associated with expression of certain miRNA types. IsomiRs are abundant and often show differential expression during the development.
Collapse
Affiliation(s)
- Teshome T Bizuayehu
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Carlos FC Lanes
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Tomasz Furmanek
- University of Bergen, Department of Biomedicine, Postbox 7804, N-5020 Bergen, Norway
| | - Bård O Karlsen
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Jorge MO Fernandes
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| | - Steinar D Johansen
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
- University of Tromsø, Department of Medical Biology, Faculty of Health Sciences, 9037 Tromsø, Norway
| | - Igor Babiak
- University of Nordland, Faculty of Biosciences and Aquaculture, Postbox 1490, 8049 Bodø, Norway
| |
Collapse
|
40
|
Discerning different in vivo roles of microRNAs by experimental approaches in zebrafish. Methods Cell Biol 2012. [PMID: 21924173 DOI: 10.1016/b978-0-12-374814-0.00020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs of approximately 23 nucleotides that regulate the cellular transcriptome by binding to target mRNAs in a sequence-restricted manner, thereby modulating target transcript translation and turnover. Although the direct repressive trans-acting action of miRNAs is to cause a net reduction in the total amount of protein generated from their target mRNAs, developmental and physiological processes have combined this with the flexibility of spatial and temporal regulation of both the miRNAs and their targets to employ miRNAs in a range of regulatory roles. These different roles achieve diverse regulatory outcomes. Five common in vivo regulatory roles of miRNAs are summarized, along with their key defining attributes that could be experimentally addressed to distinguish between them. Methods utilizing zebrafish that are suitable for determining the functional role of a particular miRNA of interest are outlined.
Collapse
|
41
|
Soares AR, Pereira PM, Santos MAS. Next-generation sequencing of miRNAs with Roche 454 GS-FLX technology: steps for a successful application. Methods Mol Biol 2012; 822:189-204. [PMID: 22144200 DOI: 10.1007/978-1-61779-427-8_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of small RNAs (sRNAs) of approximately 22 nucleotides in length that control eukaryotic gene expression at the translational level. They regulate a wide variety of biological processes, namely developmental timing, cell differentiation, cell proliferation, the immune response, and infection. Their identification is essential to understand eukaryotic biology. Their small size, low abundance, and high instability complicated early identification, however new generation genome sequencing approaches, such as the Roche 454 Pyrosequencer, allow for both miRNA identification and for generating miRNA profiles in a given sample. This technique avoids cloning steps in bacteria and is a fast and bias-minimized tool to discover novel miRNAs and other sRNAs on a genome-wide scale. Prior to sequencing, cDNA libraries are built for each sample using total RNA as starter material. Each cDNA library can be tagged with specific identifier sequences that allow sequencing different samples in the same chip run. Here, we describe the protocols for the construction of sRNA cDNA libraries for 454 sequencing, and we include tips for overcoming problems often encountered during cDNA library preparation.
Collapse
Affiliation(s)
- Ana Raquel Soares
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal.
| | | | | |
Collapse
|
42
|
Yang R, Dai Z, Chen S, Chen L. MicroRNA-mediated gene regulation plays a minor role in the transcriptomic plasticity of cold-acclimated zebrafish brain tissue. BMC Genomics 2011; 12:605. [PMID: 22168751 PMCID: PMC3258298 DOI: 10.1186/1471-2164-12-605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 12/14/2011] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNAs (miRNAs) play important roles in regulating the expression of protein-coding genes by directing the degradation and/or repression of the translation of gene transcripts. Growing evidence shows that miRNAs are indispensable player in organismal development with its regulatory role in the growth and differentiation of cell lineages. However, the roles of miRNA-mediated regulation in environmental adaptation of organisms are largely unknown. To examine this potential regulatory capability, we characterized microRNAomes from the brain of zebrafish raised under normal (28°C) and cold-acclimated (10°C, 10 days) conditions using Solexa sequencing. We then examined the expression pattern of the protein-coding genes under these two conditions with Affymetrix Zebrafish Genome Array profiling. The potential roles of the microRNAome in the transcriptomic cold regulation in the zebrafish brain were investigated by various statistical analyses. Results Among the total 214 unique, mature zebrafish miRNAs deposited on the miRBase website (release 16), 175 were recovered in this study. In addition, we identified 399 novel, mature miRNAs using multiple miRNA prediction methods. We defined a set of 25 miRNAs differentially expressed under the cold and normal conditions and predicted the molecular functions and biological processes that they involve through Gene Ontology (GO) annotation of their target genes. On the other hand, microarray analysis showed that genes related to mRNA processing and response to stress were overrepresented among the up-regulated genes in cold-stress, but are not directly corresponding to any of the GO molecular functions and biological processes predicted from the differential miRNAs. Using several statistical models including a novel, network-based approach, we found that miRNAs identified in this study, either individually or together, and either directly or indirectly (i.e., mediated by transcription factors), only make minor contribution to the change in gene expression patterns under the low-temperature condition. Conclusions Our results suggest that the cold-stress response of mRNA expression may be governed mainly through regulatory modes other than miRNA-mediated regulation. MiRNAs in animal brains might act more as developmental regulators than thermal adaptability regulators.
Collapse
Affiliation(s)
- Ruolin Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | |
Collapse
|
43
|
Soldà G, Robusto M, Primignani P, Castorina P, Benzoni E, Cesarani A, Ambrosetti U, Asselta R, Duga S. A novel mutation within the MIR96 gene causes non-syndromic inherited hearing loss in an Italian family by altering pre-miRNA processing. Hum Mol Genet 2011; 21:577-85. [PMID: 22038834 PMCID: PMC3259013 DOI: 10.1093/hmg/ddr493] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The miR-96, miR-182 and miR-183 microRNA (miRNA) family is essential for differentiation and function of the vertebrate inner ear. Recently, point mutations within the seed region of miR-96 were reported in two Spanish families with autosomal dominant non-syndromic sensorineural hearing loss (NSHL) and in a mouse model of NSHL. We screened 882 NSHL patients and 836 normal-hearing Italian controls and identified one putative novel mutation within the miR-96 gene in a family with autosomal dominant NSHL. Although located outside the mature miR-96 sequence, the detected variant replaces a highly conserved nucleotide within the companion miR-96*, and is predicted to reduce the stability of the pre-miRNA hairpin. To evaluate the effect of the detected mutation on miR-96/mir-96* biogenesis, we investigated the maturation of miR-96 by transient expression in mammalian cells, followed by real-time reverse-transcription polymerase chain reaction (PCR). We found that both miR-96 and miR-96* levels were significantly reduced in the mutant, whereas the precursor levels were unaffected. Moreover, miR-96 and miR-96* expression levels could be restored by a compensatory mutation that reconstitutes the secondary structure of the pre-miR-96 hairpin, demonstrating that the mutation hinders precursor processing, probably interfering with Dicer cleavage. Finally, even though the mature miR-96 sequence is not altered, we demonstrated that the identified mutation significantly impacts on miR-96 regulation of selected targets. In conclusion, we provide further evidence of the involvement of miR-96 mutations in human deafness and demonstrate that a quantitative defect of this miRNA may contribute to NSHL.
Collapse
Affiliation(s)
- Giulia Soldà
- Dipartimento di Biologia e Genetica per Scienze Mediche, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gabriel C, Stabentheiner S, Danzer M, Pröll J. What Next? The Next Transit from Biology to Diagnostics: Next Generation Sequencing for Immunogenetics. ACTA ACUST UNITED AC 2011; 38:308-317. [PMID: 22670120 DOI: 10.1159/000332433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/01/2011] [Indexed: 01/06/2023]
Abstract
The human genome project triggered the introduction of next generation sequencing (NGS) systems. Although originally developed for total genome sequencing, metagenomics and plant genetics, the ultra-deep sequencing feature of NGS was utilized for diagnostic purposes in HIV resistance and tropism as well in detecting new mutations and tumor clones in oncology. Recent publications exploited the feature of clonal sequencing for immunogenetics to dissolve the growing number of ambiguities. This concept is quite reliable if all exons of interest are tested and the amplification region includes flanking introns. Challenging questions on quality control, cost effectiveness, workflow, and management of enormous loads of data remain if NGS is considered as routine method in the immunogenetics laboratory. If solved, NGS has big potential to have a major impact on immunogenetics by way of providing ambiguity-free HLA-typing results faster, but will also have a great influence on how immunogenetics testing and workflows are organized.
Collapse
|
45
|
Characterization and comparative profiling of MiRNA transcriptomes in bighead carp and silver carp. PLoS One 2011; 6:e23549. [PMID: 21858165 PMCID: PMC3156240 DOI: 10.1371/journal.pone.0023549] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 07/20/2011] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that are processed from large ‘hairpin’ precursors and function as post-transcriptional regulators of target genes. Although many individual miRNAs have recently been extensively studied, there has been very little research on miRNA transcriptomes in teleost fishes. By using high throughput sequencing technology, we have identified 167 and 166 conserved miRNAs (belonging to 108 families) in bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix), respectively. We compared the expression patterns of conserved miRNAs by means of hierarchical clustering analysis and log2 ratio. Results indicated that there is not a strong correlation between sequence conservation and expression conservation, most of these miRNAs have similar expression patterns. However, high expression differences were also identified for several individual miRNAs. Several miRNA* sequences were also found in our dataset and some of them may have regulatory functions. Two computational strategies were used to identify novel miRNAs from un-annotated data in the two carps. A first strategy based on zebrafish genome, identified 8 and 22 novel miRNAs in bighead carp and silver carp, respectively. We postulate that these miRNAs should also exist in the zebrafish, but the methodologies used have not allowed for their detection. In the second strategy we obtained several carp-specific miRNAs, 31 in bighead carp and 32 in silver carp, which showed low expression. Gain and loss of family members were observed in several miRNA families, which suggests that duplication of animal miRNA genes may occur through evolutionary processes which are similar to the protein-coding genes.
Collapse
|
46
|
Wiszniak SE, Dredge BK, Jensen KB. HuB (elavl2) mRNA is restricted to the germ cells by post-transcriptional mechanisms including stabilisation of the message by DAZL. PLoS One 2011; 6:e20773. [PMID: 21695151 PMCID: PMC3113899 DOI: 10.1371/journal.pone.0020773] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/09/2011] [Indexed: 11/19/2022] Open
Abstract
The ability of germ cells to carry out a gene regulatory program distinct from the surrounding somatic tissue, and their capacity to specify an entire new organism has made them a focus of many studies that seek to understand how specific regulatory mechanisms, particularly post-transcriptional mechanisms, contribute to cell fate. In zebrafish, germ cells are specified through the inheritance of cytoplasmic determinants, termed the germ plasm, which contains a number of maternal mRNAs and proteins. Investigation of several of these messages has revealed that the restricted localisation of these mRNAs to the germ plasm and subsequent germ cells is due to cis-acting sequence elements present in their 3'UTRs. Here we show that a member of the Hu family of RNA-binding proteins, HuB, is maternally provided in the zebrafish embryo and exhibits germ cell specific expression during embryogenesis. Restriction of HuB mRNA to the germ cells is dependent on a number of sequence elements in its 3'UTR, which act to degrade the mRNA in the soma and stabilise it in the germ cells. In addition, we show that the germ cell specific RNA-binding protein DAZL is able to promote HuB mRNA stability and translation in germ cells, and further demonstrate that these activities require a 30 nucleotide element in the 3'UTR. Our study suggests that DAZL specifically binds the HuB 3'UTR and protects the message from degradation and/or enhances HuB translation, leading to the germ cell specific expression of HuB protein.
Collapse
Affiliation(s)
- Sophie E. Wiszniak
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - B. Kate Dredge
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Kirk B. Jensen
- Discipline of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
47
|
Rasoulpour RJ, LeBaron MJ, Ellis-Hutchings RG, Klapacz J, Gollapudi BB. Epigenetic screening in product safety assessment: are we there yet? Toxicol Mech Methods 2011; 21:298-311. [DOI: 10.3109/15376516.2011.557883] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Beck D, Ayers S, Wen J, Brandl MB, Pham TD, Webb P, Chang CC, Zhou X. Integrative analysis of next generation sequencing for small non-coding RNAs and transcriptional regulation in Myelodysplastic Syndromes. BMC Med Genomics 2011; 4:19. [PMID: 21342535 PMCID: PMC3060843 DOI: 10.1186/1755-8794-4-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 02/23/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Myelodysplastic Syndromes (MDSS) are pre-leukemic disorders with increasing incident rates worldwide, but very limited treatment options. Little is known about small regulatory RNAs and how they contribute to pathogenesis, progression and transcriptome changes in MDS. METHODS Patients' primary marrow cells were screened for short RNAs (RNA-seq) using next generation sequencing. Exon arrays from the same cells were used to profile gene expression and additional measures on 98 patients obtained. Integrative bioinformatics algorithms were proposed, and pathway and ontology analysis performed. RESULTS In low-grade MDS, observations implied extensive post-transcriptional regulation via microRNAs (miRNA) and the recently discovered Piwi interacting RNAs (piRNA). Large expression differences were found for MDS-associated and novel miRNAs, including 48 sequences matching to miRNA star (miRNA*) motifs. The detected species were predicted to regulate disease stage specific molecular functions and pathways, including apoptosis and response to DNA damage. In high-grade MDS, results suggested extensive post-translation editing via transfer RNAs (tRNAs), providing a potential link for reduced apoptosis, a hallmark for this disease stage. Bioinformatics analysis confirmed important regulatory roles for MDS linked miRNAs and TFs, and strengthened the biological significance of miRNA*. The "RNA polymerase II promoters" were identified as the tightest controlled biological function. We suggest their control by a miRNA dominated feedback loop, which might be linked to the dramatically different miRNA amounts seen between low and high-grade MDS. DISCUSSION The presented results provide novel findings that build a basis of further investigations of diagnostic biomarkers, targeted therapies and studies on MDS pathogenesis.
Collapse
Affiliation(s)
- Dominik Beck
- Bioengineering and Bioinformatics Program, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, 77030, USA
- School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT, 2600, Australia
| | - Steve Ayers
- Department for Genomic Medicine, The Methodist Hospital Research Institute and Department of Radiology, Weill Cornell Medical College, Houston, TX, 77030, USA
| | - Jianguo Wen
- Department of Pathology, The Methodist Hospital and The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, 77030, USA
| | - Miriam B Brandl
- Bioengineering and Bioinformatics Program, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, 77030, USA
- School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT, 2600, Australia
| | - Tuan D Pham
- Bioengineering and Bioinformatics Program, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, 77030, USA
| | - Paul Webb
- Department for Genomic Medicine, The Methodist Hospital Research Institute and Department of Radiology, Weill Cornell Medical College, Houston, TX, 77030, USA
| | - Chung-Che Chang
- Department of Pathology, The Methodist Hospital and The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, 77030, USA
| | - Xiaobo Zhou
- Bioengineering and Bioinformatics Program, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, 77030, USA
| |
Collapse
|
49
|
Zou J, Li WQ, Li Q, Li XQ, Zhang JT, Liu GQ, Chen J, Qiu XX, Tian FJ, Wang ZZ, Zhu N, Qin YW, Shen B, Liu TX, Jing Q. Two functional microRNA-126s repress a novel target gene p21-activated kinase 1 to regulate vascular integrity in zebrafish. Circ Res 2011; 108:201-209. [PMID: 21148433 DOI: 10.1161/circresaha.110.225045] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/29/2010] [Indexed: 11/16/2022]
Abstract
RATIONALE MicroRNAs (miRNAs) are key regulators of vascular development and diseases. The function and underlying mechanism of endothelial miRNAs have not been fully defined. OBJECTIVE To investigate the role of endothelial miR-126 in zebrafish vascular development. METHODS AND RESULTS Two homologs of miR-126, miR-126a (namely miR-126 in previous literature) and miR-126b, with only 1 nucleotide difference in their mature sequences, were identified in zebrafish genome. In vitro analysis showed that both precursors could sufficiently produce mature functional miRNAs. Expression analyses by Northern blot and quantitative RT-PCR showed that both miR-126s accumulated significantly 12 hours after fertilization and were specifically expressed in endothelial cells of zebrafish. Inhibition of miR-126a or miR-126b with specific morpholinos caused cranial hemorrhage, and simultaneous inhibition of both miR-126s resulted in a pronounced hemorrhage in higher percentage of embryos. Bioinformatics prediction showed that the targets of miR-126a/b partially overlapped but essentially differed. p21-activated kinase1 (pak1) was identified as a novel target of miR-126a/b, and pak1 3' untranslated region was differently regulated by these 2 miRNAs. Quantitative RT-PCR, in situ hybridization, and Western blot analyses showed that the level of pak1 was reduced when miR-126a/b were overexpressed. Notably, pak1 expression in endothelial cells was increased when miR-126a/b were knocked down. Furthermore, overexpression of the active form of human pak1 caused cranial hemorrhage, and knockdown pak1 effectively rescued the hemorrhage caused by inhibiting miR-126a/b. CONCLUSIONS Two functional endothelial cell-specific miRNAs, miR-126a and miR-126b, synergistically regulate zebrafish vascular integrity, and pak1 is a critical target of miR-126a/b in vascular development.
Collapse
Affiliation(s)
- Jun Zou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Buermans HPJ, Ariyurek Y, van Ommen G, den Dunnen JT, 't Hoen PAC. New methods for next generation sequencing based microRNA expression profiling. BMC Genomics 2010; 11:716. [PMID: 21171994 PMCID: PMC3022920 DOI: 10.1186/1471-2164-11-716] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 12/20/2010] [Indexed: 12/31/2022] Open
Abstract
Background MicroRNAs are small non-coding RNA transcripts that regulate post-transcriptional gene expression. The millions of short sequence reads generated by next generation sequencing technologies make this technique explicitly suitable for profiling of known and novel microRNAs. A modification to the small-RNA expression kit (SREK, Ambion) library preparation method for the SOLiD sequencing platform is described to generate microRNA sequencing libraries that are compatible with the Illumina Genome Analyzer. Results High quality sequencing libraries can successfully be prepared from as little as 100 ng small RNA enriched RNA. An easy to use perl-based analysis pipeline called E-miR was developed to handle the sequencing data in several automated steps including data format conversion, 3' adapter removal, genome alignment and annotation to non-coding RNA transcripts. The sample preparation and E-miR pipeline were used to identify 37 cardiac enriched microRNAs in stage 16 chicken embryos. Isomir expression profiles between the heart and embryo were highly correlated for all miRNAs suggesting that tissue or cell specific miRNA modifications do not occur. Conclusions In conclusion, our alternative sample preparation method can successfully be applied to generate high quality miRNA sequencing libraries for the Illumina genome analyzer.
Collapse
Affiliation(s)
- Henk P J Buermans
- Center for Human and Clinical Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|