1
|
Kumar P, Singh J, Kaur G, Adunola PM, Biswas A, Bazzer S, Kaur H, Kaur I, Kaur H, Sandhu KS, Vemula S, Kaur B, Singh V, Tseng TM. OMICS in Fodder Crops: Applications, Challenges, and Prospects. Curr Issues Mol Biol 2022; 44:5440-5473. [PMID: 36354681 PMCID: PMC9688858 DOI: 10.3390/cimb44110369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Biomass yield and quality are the primary targets in forage crop improvement programs worldwide. Low-quality fodder reduces the quality of dairy products and affects cattle's health. In multipurpose crops, such as maize, sorghum, cowpea, alfalfa, and oat, a plethora of morphological and biochemical/nutritional quality studies have been conducted. However, the overall growth in fodder quality improvement is not on par with cereals or major food crops. The use of advanced technologies, such as multi-omics, has increased crop improvement programs manyfold. Traits such as stay-green, the number of tillers per plant, total biomass, and tolerance to biotic and/or abiotic stresses can be targeted in fodder crop improvement programs. Omic technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, provide an efficient way to develop better cultivars. There is an abundance of scope for fodder quality improvement by improving the forage nutrition quality, edible quality, and digestibility. The present review includes a brief description of the established omics technologies for five major fodder crops, i.e., sorghum, cowpea, maize, oats, and alfalfa. Additionally, current improvements and future perspectives have been highlighted.
Collapse
Affiliation(s)
- Pawan Kumar
- Agrotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar 125004, India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
- Krishi Vigyan Kendra, Guru Angad Dev Veterinary and Animal Science University, Barnala 148107, India
| | - Gurleen Kaur
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Anju Biswas
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Sumandeep Bazzer
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, WA 57007, USA
| | - Harpreet Kaur
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88001, USA
| | - Ishveen Kaur
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Harpreet Kaur
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Shailaja Vemula
- Agronomy Department, UF/IFAS Research and Education Center, Belle Glade, FL 33430, USA
| | - Balwinder Kaur
- Department of Entomology, UF/IFAS Research and Education Center, Belle Glade, FL 33430, USA
| | - Varsha Singh
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA
| | - Te Ming Tseng
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA
| |
Collapse
|
2
|
Wang X, Kang W, Wu F, Miao J, Shi S. Comparative Transcriptome Analysis Reveals New Insight of Alfalfa ( Medicago sativa L.) Cultivars in Response to Abrupt Freezing Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:798118. [PMID: 35432429 PMCID: PMC9010130 DOI: 10.3389/fpls.2022.798118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 05/04/2023]
Abstract
Freezing stress is a major limiting environmental factor that affects the productivity and distribution of alfalfa (Medicago sativa L.). There is growing evidence that enhancing freezing tolerance through resistance-related genes is one of the most efficient methods for solving this problem, whereas little is known about the complex regulatory mechanism of freezing stress. Herein, we performed transcriptome profiling of the leaves from two genotypes of alfalfa, freezing tolerance "Gannong NO.3" and freezing-sensitive "WL326GZ" exposure to -10°C to investigate which resistance-related genes could improve the freezing tolerance. Our results showed that a total of 121,366 genes were identified, and there were 7,245 differentially expressed genes (DEGs) between the control and treated leaves. In particular, the DEGs in "Gannong NO.3" were mainly enriched in the metabolic pathways and biosynthesis of secondary metabolites, and most of the DEGs in "WL326GZ" were enriched in the metabolic pathways, the biosynthesis of secondary metabolites, and plant-pathogen interactions. Moreover, the weighted gene co-expression network analysis (WGCNA) showed that ATP-binding cassette (ABC) C subfamily genes were strongly impacted by freezing stress, indicating that ABCC8 and ABCC3 are critical to develop the freezing tolerance. Moreover, our data revealed that numerous Ca2+ signal transduction and CBF/DREB1 pathway-related genes were severely impacted by the freezing resistance, which is believed to alleviate the damage caused by freezing stress. Altogether, these findings contribute the comprehensive information to understand the molecular mechanism of alfalfa adaptation to freezing stress and further provide functional candidate genes that can adapt to abiotic stress.
Collapse
Affiliation(s)
| | | | | | - Jiamin Miao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Shangli Shi
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Wang Y, Meng Y, Mu S, Yan D, Xu X, Zhang L, Xu B. Changes in phenotype and gene expression under lead stress revealed key genetic responses to lead tolerance in Medicago sativa L. Gene 2021; 791:145714. [PMID: 33979680 DOI: 10.1016/j.gene.2021.145714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Lead (Pb) is a serious heavy metal soil pollutant. It can be absorbed and accumulated by plant roots and impact plant growth. Medicago sativa L. (alfalfa) is a low-input forage and potential bioenergy crop, and improving its yield and quality has always been a focus of the alfalfa breeding industry. Little is known about the mechanism by which alfalfa responds to Pb stress at the molecular level. In this study, three alfalfa genotypes (a lead-resistant type (LR), a lead-sensitive type (LS) and an intermediate type (IN)) with contrasting abilities to resist lead were exposed to different durations of Pb treatment. Next-generation sequencing (NGS)-based RNA-seq technology was employed to characterize the root transcriptomes of three genotypes of alfalfa and identify differentially expressed genes (DEGs) during Pb stress. Genotypes LR and LS displayed different mechanisms of tolerance. In LR, the accumulation of more resistant substances was induced by the upregulation of sucrose synthase, glucan endo-1,3-beta-glucosidase, beta-amylase 3, probable trehalose-phosphate phosphatase J, 6-phosphofructo-2-kinase delta-1-pyrroline-5-carboxylate synthase (P5CS) and δ-ornithine aminotransferase (δ-OAT). In addition, flavin monooxygenase (YUCCA), 4-coumarate:CoA ligase-like protein (4CL), cinnamoyl-CoA reductase-like protein (CCR), ferulate 5-hydroxylase (F5H) and caffeic acid O-methyltransferase (COMT) were upregulated, leading to root development in a short time under Pb stress. Further study of the expression levels of metal transport-related genes, such as NRAMP (metal transporter), MATE (multidrug and toxin extrusion), HIPPs (heavy metal-associated isoprenylated plant proteins), MTP (metal tolerance protein), and ABC transporter, suggested that these genes were differentially expressed after lead treatment in the three alfalfa genotypes. Our research provides useful information for further studies on the molecular mechanism of Pb resistance in Medicago sativa L.
Collapse
Affiliation(s)
- Yingzhe Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Yue Meng
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Shujing Mu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - Dong Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xiaobo Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ling Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China.
| | - Bo Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
4
|
Liu SX, Qin B, Fang QX, Zhang WJ, Zhang ZY, Liu YC, Li WJ, Du C, Liu XX, Zhang YL, Guo YX. Genome-wide identification, phylogeny and expression analysis of the bZIP gene family in Alfalfa ( Medicago sativa). BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1938674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Shu-Xia Liu
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
- Laboratory of Economic Plants, Crop Cultivation Center, Daqing Branch of Heilongjiang Academy of Sciences, Daqing, Heilongjiang, PR China
| | - Bin Qin
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Qing-xi Fang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Wen-Jing Zhang
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Zhe-Yu Zhang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yang-Cheng Liu
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wei-Jia Li
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Chao Du
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Xian-xian Liu
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - You-li Zhang
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Yong-Xia Guo
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| |
Collapse
|
5
|
Sun H, Yu J, Zhang F, Kang J, Li M, Wang Z, Liu W, Zhang J, Yang Q, Long R. iTRAQ-based comparative proteomic analysis of differences in the protein profiles of stems and leaves from two alfalfa genotypes. BMC PLANT BIOLOGY 2020; 20:447. [PMID: 32993512 PMCID: PMC7525974 DOI: 10.1186/s12870-020-02671-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND To explore the molecular regulatory mechanisms of early stem and leaf development, proteomic analysis was performed on leaves and stems of F genotype alfalfa, with thin stems and small leaves, and M genotype alfalfa, with thick stems and large leaves. RESULTS Based on fold-change thresholds of > 1.20 or < 0.83 (p < 0.05), a large number of proteins were identified as being differentially enriched between the M and F genotypes: 249 downregulated and 139 upregulated in stems and 164 downregulated and 134 upregulated in leaves. The differentially enriched proteins in stems were mainly involved in amino acid biosynthesis, phenylpropanoid biosynthesis, carbon fixation, and phenylalanine metabolism. The differentially enriched proteins in leaves were mainly involved in porphyrin and chlorophyll metabolism, phenylpropanoid biosynthesis, starch and sucrose metabolism, and carbon fixation in photosynthetic organisms. Six differentially enriched proteins were mapped onto the porphyrin and chlorophyll metabolism pathway in leaves of the M genotype, including five upregulated proteins involved in chlorophyll biosynthesis and one downregulated protein involved in chlorophyll degradation. Eleven differentially enriched proteins were mapped onto the phenylpropanoid pathway in stems of the M genotype, including two upregulated proteins and nine downregulated proteins. CONCLUSION Enhanced chlorophyll synthesis and decreased lignin synthesis provided a reasonable explanation for the larger leaves and lower levels of stem lignification in M genotype alfalfa. This proteomic study aimed to classify the functions of differentially enriched proteins and to provide information on the molecular regulatory networks involved in stem and leaf development.
Collapse
Affiliation(s)
- Hao Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jie Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenwen Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaju Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Hrbáčková M, Dvořák P, Takáč T, Tichá M, Luptovčiak I, Šamajová O, Ovečka M, Šamaj J. Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa. FRONTIERS IN PLANT SCIENCE 2020; 11:592. [PMID: 32508859 PMCID: PMC7253590 DOI: 10.3389/fpls.2020.00592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 05/07/2023]
Abstract
For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
7
|
Olins JR, Lin L, Lee SJ, Trabucco GM, MacKinnon KJM, Hazen SP. Secondary Wall Regulating NACs Differentially Bind at the Promoter at a CELLULOSE SYNTHASE A4 Cis-eQTL. FRONTIERS IN PLANT SCIENCE 2018; 9:1895. [PMID: 30627134 PMCID: PMC6309453 DOI: 10.3389/fpls.2018.01895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/06/2018] [Indexed: 05/24/2023]
Abstract
Arabidopsis thaliana CELLULOSE SYNTHASE A4/7/8 (CESA4/7/8) are three non-redundant subunits of the secondary cell wall cellulose synthase complex. Transcript abundance of these genes can vary among genotypes and expression quantitative trait loci (eQTL) were identified in a recombinant population of the accessions Bay-0 and Shahdara. Genetic mapping and analysis of the transcript levels of CESAs between two distinct near isogenic lines (NILs) confirmed a change in CESA4 expression that segregates within that interval. We sequenced the promoters and identified 16 polymorphisms differentiating CESA4Sha and CESA4Bay . In order to determine which of these SNPs could be responsible for this eQTL, we screened for transcription factor protein affinity with promoter fragments of CESA4Bay, CESA4Sha , and the reference genome CESA4Col . The wall thickening activator proteins NAC SECONDARY WALL THICKENING PROMOTING FACTOR2 (NST2) and NST3 exhibited a decrease in binding with the CESA4Sha promoter with a tracheary element-regulating cis-element (TERE) polymorphism. While NILs harboring the TERE polymorphisms exhibited significantly different CESA4 expression, cellulose crystallinity and cell wall thickness were indistinguishable. These results suggest that the TERE polymorphism resulted in differential transcription factor binding and CESA4 expression; yet A. thaliana is able to tolerate this transcriptional variability without compromising the structural elements of the plant, providing insight into the elasticity of gene regulation as it pertains to cell wall biosynthesis and regulation. We also explored available DNA affinity purification sequencing data to resolve a core binding site, C(G/T)TNNNNNNNA(A/C)G, for secondary wall NACs referred to as the VNS element.
Collapse
Affiliation(s)
- Jennifer R. Olins
- Biology Department, University of Massachusetts, Amherst, MA, United States
| | - Li Lin
- Biology Department, University of Massachusetts, Amherst, MA, United States
| | - Scott J. Lee
- Biology Department, University of Massachusetts, Amherst, MA, United States
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Gina M. Trabucco
- Biology Department, University of Massachusetts, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Kirk J.-M. MacKinnon
- Biology Department, University of Massachusetts, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Samuel P. Hazen
- Biology Department, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
8
|
Zhou Q, Luo D, Chai X, Wu Y, Wang Y, Nan Z, Yang Q, Liu W, Liu Z. Multiple Regulatory Networks Are Activated during Cold Stress in Medicago sativa L. Int J Mol Sci 2018; 19:ijms19103169. [PMID: 30326607 PMCID: PMC6214131 DOI: 10.3390/ijms19103169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cultivated alfalfa (Medicago sativa L.) is one of the most important perennial legume forages in the world, and it has considerable potential as a valuable forage crop for livestock. However, the molecular mechanisms underlying alfalfa responses to cold stress are largely unknown. In this study, the transcriptome changes in alfalfa under cold stress at 4 °C for 2, 6, 24, and 48 h (three replicates for each time point) were analyzed using the high-throughput sequencing platform, BGISEQ-500, resulting in the identification of 50,809 annotated unigenes and 5283 differentially expressed genes (DEGs). Metabolic pathway enrichment analysis demonstrated that the DEGs were involved in carbohydrate metabolism, photosynthesis, plant hormone signal transduction, and the biosynthesis of amino acids. Moreover, the physiological changes of glutathione and proline content, catalase, and peroxidase activity were in accordance with dynamic transcript profiles of the relevant genes. Additionally, some transcription factors might play important roles in the alfalfa response to cold stress, as determined by the expression pattern of the related genes during 48 h of cold stress treatment. These findings provide valuable information for identifying and characterizing important components in the cold signaling network in alfalfa and enhancing the understanding of the molecular mechanisms underlying alfalfa responses to cold stress.
Collapse
Affiliation(s)
- Qiang Zhou
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Dong Luo
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Xutian Chai
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yuguo Wu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhibiao Nan
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China.
| | - Wenxian Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhipeng Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
9
|
Printz B, Guerriero G, Sergeant K, Renaut J, Lutts S, Hausman JF. Ups and downs in alfalfa: Proteomic and metabolic changes occurring in the growing stem. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:13-25. [PMID: 26259170 DOI: 10.1016/j.plantsci.2015.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/16/2015] [Indexed: 05/05/2023]
Abstract
The expanding interest for using lignocellulosic biomass in industry spurred the study of the mechanisms underlying plant cell-wall synthesis. Efforts using genetic approaches allowed the disentanglement of major steps governing stem fibre synthesis. Nonetheless, little is known about the relations between the stem maturation and the evolution of its proteome. During Medicago sativa L. maturation, the different internodes grow asynchronously allowing the discrimination of various developmental stages on a same stem. In this study, the proteome of three selected regions of the stem of alfalfa (apical, intermediate and basal) was analyzed and combined with a compositional analysis of the different stem parts. Interestingly, the apical and the median regions share many similarities: high abundance of chloroplast- and mitochondrial-related proteins together with the accumulation of proteins acting in the early steps of fibre production. In the mature basal region, forisomes and stress-related proteins accumulate. The RT-qPCR assessment of the expression of genes coding for members of the cellulose synthase family likewise indicates that fibres and the machinery responsible for the deposition of secondary cell walls are predominantly formed in the apical section. Altogether, this study reflects the metabolic change from the fibre production in the upper stem regions to the acquisition of defence-related functions in the fibrous basal part.
Collapse
Affiliation(s)
- Bruno Printz
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg; Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute Agronomy (ELI-A), Université catholique de Louvain, 5 (bte 7.07.13) Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Jenny Renaut
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute Agronomy (ELI-A), Université catholique de Louvain, 5 (bte 7.07.13) Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| |
Collapse
|
10
|
Behr M, Legay S, Hausman JF, Guerriero G. Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses. Int J Mol Sci 2015; 16:16104-24. [PMID: 26193255 PMCID: PMC4519941 DOI: 10.3390/ijms160716104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/26/2022] Open
Abstract
Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop.
Collapse
Affiliation(s)
- Marc Behr
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy, Université catholique de Louvain, 5 (bte 7.07.13) Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium.
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| |
Collapse
|
11
|
Guerriero G, Sergeant K, Hausman JF. Wood biosynthesis and typologies: a molecular rhapsody. TREE PHYSIOLOGY 2014; 34:839-55. [PMID: 24876292 DOI: 10.1093/treephys/tpu031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Wood represents one of the most important renewable commodities for humanity and plays a crucial role in terrestrial ecosystem carbon-cycling. Wood formation is the result of a multitude of events that require the concerted action of endogenous and exogenous factors under the influence of photoperiod, for instance genes and plant growth regulators. Beyond providing mechanical support and being responsible for the increase in stem radial diameter, woody tissues constitute the vascular system of trees and are capable of reacting to environmental stimuli, and as such are therefore quite plastic and responsive. Despite the ecological and economic importance of wood, not all aspects of its formation have been unveiled. Many gaps in our knowledge are still present, which hinder the maximal exploitation of this precious bioresource. This review aims at surveying the current knowledge of wood formation and the available molecular data addressing the relationship between wood production and environmental factors, which have crucial influences on the rhythmic regulation of cambial activity and exert profound effects on tree stem growth, wood yield and properties. We will here go beyond wood sensu stricto, i.e., secondary xylem, and extend our survey to other tissues, namely vascular cambium, phloem and fibres. The purpose is to provide the reader with an overview of the complexity of the topic and to highlight the importance of progressing in the future towards an integrated knowledge on the subject.
Collapse
Affiliation(s)
- Gea Guerriero
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Kjell Sergeant
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Jean-Francois Hausman
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, Rue du Brill, L-4422 Belvaux, Luxembourg;
| |
Collapse
|
12
|
Guerriero G, Legay S, Hausman JF. Alfalfa Cellulose synthase gene expression under abiotic stress: a Hitchhiker's guide to RT-qPCR normalization. PLoS One 2014; 9:e103808. [PMID: 25084115 PMCID: PMC4118957 DOI: 10.1371/journal.pone.0103808] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/07/2014] [Indexed: 01/22/2023] Open
Abstract
Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L.), no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress) at various time points (e.g. 0, 24, 72 and 96 h). We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots), under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses.
Collapse
Affiliation(s)
- Gea Guerriero
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public, Gabriel Lippmann, Belvaux, Luxembourg
| | - Sylvain Legay
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public, Gabriel Lippmann, Belvaux, Luxembourg
| | - Jean-Francois Hausman
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public, Gabriel Lippmann, Belvaux, Luxembourg
| |
Collapse
|
13
|
Gronwald JW, Bucciarelli B. Comparison of stem morphology and anatomy of two alfalfa clonal lines exhibiting divergent cell wall composition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2858-2863. [PMID: 23117984 DOI: 10.1002/jsfa.5933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND In previous research, two alfalfa clonal lines (252 and 1283) were identified that exhibited environmentally stable differences in stem cell walls. Compared with stems of 1283, stems of 252 have a higher cell wall concentration and greater amounts of lignin and cellulose but reduced levels of pectic sugar residues. These results suggest greater deposition of secondary xylem and a reduction in pith in stems of 252 compared with 1283. RESULTS The stem morphology and anatomy of first-cut and second-cut harvests of field-grown 1283 and 252 were examined. For both harvests, stems of 1283 were thicker and had a higher leaf/stem ratio compared with stems of 252. Stem cross-sections of both genotypes were stained for lignin, and the proportions of stem area that were pith and secondary xylem were measured using ImageJ. Stems of 252 exhibited greater deposition of secondary xylem and a reduction in pith proportion compared with stems of 1283 for the first-cut harvest, but this difference was not statistically significant for the second-cut harvest. CONCLUSION The results indicate that the proportions of secondary xylem and pith are not environmentally stable in these two genotypes and hence cannot be the sole basis for the differences in cell wall concentration/composition.
Collapse
Affiliation(s)
- John W Gronwald
- USDA-ARS, Plant Science Research Unit, St Paul, MN, 55108, USA; Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN, 55108, USA
| | | |
Collapse
|
14
|
Jung HJG, Samac DA, Sarath G. Modifying crops to increase cell wall digestibility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:65-77. [PMID: 22325867 DOI: 10.1016/j.plantsci.2011.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 05/18/2023]
Abstract
Improving digestibility of roughage cell walls will improve ruminant animal performance and reduce loss of nutrients to the environment. The main digestibility impediment for dicotyledonous plants is highly lignified secondary cell walls, notably in stem secondary xylem, which become almost non-digestible. Digestibility of grasses is slowed severely by lignification of most tissues, but these cell walls remain largely digestible. Cell wall lignification creates an access barrier to potentially digestible wall material by rumen bacteria if cells have not been physically ruptured. Traditional breeding has focused on increasing total dry matter digestibility rather than cell wall digestibility, which has resulted in minimal reductions in cell wall lignification. Brown midrib mutants in some annual grasses exhibit small reductions in lignin concentration and improved cell wall digestibility. Similarly, transgenic approaches down-regulating genes in monolignol synthesis have produced plants with reduced lignin content and improved cell wall digestibility. While major reductions in lignin concentration have been associated with poor plant fitness, smaller reductions in lignin provided measurable improvements in digestibility without significantly impacting agronomic fitness. Additional targets for genetic modification to enhance digestibility and improve roughages for use as biofuel feedstocks are discussed; including manipulating cell wall polysaccharide composition, novel lignin structures, reduced lignin/polysaccharide cross-linking, smaller lignin polymers, enhanced development of non-lignified tissues, and targeting specific cell types. Greater tissue specificity of transgene expression will be needed to maximize benefits while avoiding negative impacts on plant fitness.cauliflower mosiac virus (CaMV) 35S promoter.
Collapse
Affiliation(s)
- Hans-Joachim G Jung
- USDA-Agricultural Research Service, Plant Science Research Unit, St. Paul, MN 55108, USA.
| | | | | |
Collapse
|
15
|
Verdonk JC, Hatfield RD, Sullivan ML. Proteomic analysis of cell walls of two developmental stages of alfalfa stems. FRONTIERS IN PLANT SCIENCE 2012; 3:279. [PMID: 23248635 PMCID: PMC3521126 DOI: 10.3389/fpls.2012.00279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/26/2012] [Indexed: 05/21/2023]
Abstract
Cell walls are important for the growth and development of all plants. They are also valuable resources for feed and fiber, and more recently as a potential feedstock for bioenergy production. Cell wall proteins comprise only a fraction of the cell wall, but play important roles in establishing the walls and in the chemical interactions (e.g., crosslinking) of cell wall components. This crosslinking provides structure, but restricts digestibility of cell wall complex carbohydrates, limiting available energy in animal and bioenergy production systems. Manipulation of cell wall proteins could be a strategy to improve digestibility. An analysis of the cell wall proteome of apical alfalfa stems (less mature, more digestible) and basal alfalfa stems (more mature, less digestible) was conducted using a recently developed low-salt/density gradient method for the isolation of cell walls. Walls were subsequently subjected to a modified extraction utilizing EGTA to remove pectins, followed by a LiCl extraction to isolate more tightly bound proteins. Recovered proteins were identified using shotgun proteomics. We identified 272 proteins in the alfalfa stem cell wall proteome, 153 of which had not previously been identified in cell wall proteomic analyses. Nearly 70% of the identified proteins were predicted to be secreted, as would be expected for most cell wall proteins, an improvement over previously published studies using traditional cell wall isolation methods. A comparison of our and several other cell wall proteomic studies indicates little overlap in identified proteins among them, which may be largely due to differences in the tissues used as well as differences in experimental approach.
Collapse
Affiliation(s)
- Julian C. Verdonk
- U.S. Dairy Forage Research Center, Agricultural Research Service, United States Department of AgricultureMadison, WI, USA
| | - Ronald D. Hatfield
- U.S. Dairy Forage Research Center, Agricultural Research Service, United States Department of AgricultureMadison, WI, USA
| | - Michael L. Sullivan
- U.S. Dairy Forage Research Center, Agricultural Research Service, United States Department of AgricultureMadison, WI, USA
- *Correspondence: Michael L. Sullivan, U.S. Dairy Forage Research Center, Agricultural Research Service, United States Department of Agriculture, Madison, WI 53706, USA. e-mail:
| |
Collapse
|
16
|
Yang SS, Tu ZJ, Cheung F, Xu WW, Lamb JFS, Jung HJG, Vance CP, Gronwald JW. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics 2011; 12:199. [PMID: 21504589 DOI: 10.1186/1471-2164-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/19/2011] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Alfalfa, [Medicago sativa (L.) sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling. RESULTS Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (Medicago sativa) gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the de novo assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes. CONCLUSIONS Our results demonstrate that RNA-Seq can be successfully used for gene identification, polymorphism detection and transcript profiling in alfalfa, a non-model, allogamous, autotetraploid species. The alfalfa gene index assembled in this study, and the SNPs, SSRs and candidate genes identified can be used to improve alfalfa as a forage crop and cellulosic feedstock.
Collapse
Affiliation(s)
- S Samuel Yang
- USDA-Agricultural Research Service, Plant Science Research Unit, St, Paul, MN 55108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang SS, Tu ZJ, Cheung F, Xu WW, Lamb JFS, Jung HJG, Vance CP, Gronwald JW. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genomics 2011; 12:199. [PMID: 21504589 PMCID: PMC3112146 DOI: 10.1186/1471-2164-12-199] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/19/2011] [Indexed: 02/08/2023] Open
Abstract
Background Alfalfa, [Medicago sativa (L.) sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling. Results Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (Medicago sativa) gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the de novo assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes. Conclusions Our results demonstrate that RNA-Seq can be successfully used for gene identification, polymorphism detection and transcript profiling in alfalfa, a non-model, allogamous, autotetraploid species. The alfalfa gene index assembled in this study, and the SNPs, SSRs and candidate genes identified can be used to improve alfalfa as a forage crop and cellulosic feedstock.
Collapse
Affiliation(s)
- S Samuel Yang
- USDA-Agricultural Research Service, Plant Science Research Unit, St, Paul, MN 55108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yang SS, Valdés-López O, Xu WW, Bucciarelli B, Gronwald JW, Hernández G, Vance CP. Transcript profiling of common bean (Phaseolus vulgaris L.) using the GeneChip Soybean Genome Array: optimizing analysis by masking biased probes. BMC PLANT BIOLOGY 2010; 10:85. [PMID: 20459672 PMCID: PMC3017814 DOI: 10.1186/1471-2229-10-85] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 05/07/2010] [Indexed: 05/11/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) and soybean (Glycine max) both belong to the Phaseoleae tribe and share significant coding sequence homology. This suggests that the GeneChip(R) Soybean Genome Array (soybean GeneChip) may be used for gene expression studies using common bean. RESULTS To evaluate the utility of the soybean GeneChip for transcript profiling of common bean, we hybridized cRNAs purified from nodule, leaf, and root of common bean and soybean in triplicate to the soybean GeneChip. Initial data analysis showed a decreased sensitivity and accuracy of measuring differential gene expression in common bean cross-species hybridization (CSH) GeneChip data compared to that of soybean. We employed a method that masked putative probes targeting inter-species variable (ISV) regions between common bean and soybean. A masking signal intensity threshold was selected that optimized both sensitivity and accuracy of measuring differential gene expression. After masking for ISV regions, the number of differentially-expressed genes identified in common bean was increased by 2.8-fold reflecting increased sensitivity. Quantitative RT-PCR (qRT-PCR) analysis of 20 randomly selected genes and purine-ureide pathway genes demonstrated an increased accuracy of measuring differential gene expression after masking for ISV regions. We also evaluated masked probe frequency per probe set to gain insight into the sequence divergence pattern between common bean and soybean. The sequence divergence pattern analysis suggested that the genes for basic cellular functions and metabolism were highly conserved between soybean and common bean. Additionally, our results show that some classes of genes, particularly those associated with environmental adaptation, are highly divergent. CONCLUSIONS The soybean GeneChip is a suitable cross-species platform for transcript profiling in common bean when used in combination with the masking protocol described. In addition to transcript profiling, CSH of the GeneChip in combination with masking probes in the ISV regions can be used for comparative ecological and/or evolutionary genomics studies.
Collapse
Affiliation(s)
- S Samuel Yang
- USDA-Agricultural Research Service, Plant Science Research, St Paul, MN 55108, USA
| | - Oswaldo Valdés-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, 62210 Cuernavaca, Mor. México
| | - Wayne W Xu
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruna Bucciarelli
- USDA-Agricultural Research Service, Plant Science Research, St Paul, MN 55108, USA
| | - John W Gronwald
- USDA-Agricultural Research Service, Plant Science Research, St Paul, MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, 62210 Cuernavaca, Mor. México
| | - Carroll P Vance
- USDA-Agricultural Research Service, Plant Science Research, St Paul, MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|