1
|
Sutera AM, Di Gerlando R, Mastrangelo S, Sardina MT, D’Alessandro E, Portolano B, Tolone M. Genome-wide association study for milk production traits in an economically important local dairy sheep breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1963865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Anna Maria Sutera
- Dipartimento di Scienze Veterinarie, Università di Messina, Messina, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | | | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| |
Collapse
|
2
|
Gurgul A, Szmatoła T, Ropka-Molik K, Jasielczuk I, Pawlina K, Semik E, Bugno-Poniewierska M. Identification of genome-wide selection signatures in the Limousin beef cattle breed. J Anim Breed Genet 2015; 133:264-76. [PMID: 26611546 DOI: 10.1111/jbg.12196] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/24/2015] [Indexed: 02/03/2023]
Abstract
The study is aimed at identifying selection footprints within the genome of Limousin cattle. With the use of Extended Haplotype Homozygosity test, supplemented with correction for variation in recombination rates across the genome, we created map of selection footprints and detected 173 significant (p < 0.01) core haplotypes being potentially under positive selection. Within these regions, a number of candidate genes associated inter alia with skeletal muscle growth (GDF15, BMP7, BMP4 and TGFB3) or postmortem proteolysis and meat maturation (CAPN1 and CAPN5) were annotated. Noticeable clusters of selection footprints were detected on chromosomes 1, 4, 8 and 14, which are known to carry several quantitative trait loci for growth traits and meat quality. The study provides information about the genes and metabolic pathways potentially modified under the influence of directional selection, aimed at improving beef production characteristics in Limousin cattle.
Collapse
Affiliation(s)
- A Gurgul
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - T Szmatoła
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - K Ropka-Molik
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - I Jasielczuk
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - K Pawlina
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - E Semik
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - M Bugno-Poniewierska
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
3
|
Gutiérrez-Gil B, Arranz JJ, Wiener P. An interpretive review of selective sweep studies in Bos taurus cattle populations: identification of unique and shared selection signals across breeds. Front Genet 2015; 6:167. [PMID: 26029239 PMCID: PMC4429627 DOI: 10.3389/fgene.2015.00167] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/13/2015] [Indexed: 12/11/2022] Open
Abstract
This review compiles the results of 21 genomic studies of European Bos taurus breeds and thus provides a general picture of the selection signatures in taurine cattle identified by genome-wide selection-mapping scans. By performing a comprehensive summary of the results reported in the literature, we compiled a list of 1049 selection sweeps described across 37 cattle breeds (17 beef breeds, 14 dairy breeds, and 6 dual-purpose breeds), and four different beef-vs.-dairy comparisons, which we subsequently grouped into core selective sweep (CSS) regions, defined as consecutive signals within 1 Mb of each other. We defined a total of 409 CSSs across the 29 bovine autosomes, 232 (57%) of which were associated with a single-breed (Single-breed CSSs), 134 CSSs (33%) were associated with a limited number of breeds (Two-to-Four-breed CSSs) and 39 CSSs (9%) were associated with five or more breeds (Multi-breed CSSs). For each CSS, we performed a candidate gene survey that identified 291 genes within the CSS intervals (from the total list of 5183 BioMart-extracted genes) linked to dairy and meat production, stature, and coat color traits. A complementary functional enrichment analysis of the CSS positional candidates highlighted other genes related to pathways underlying behavior, immune response, and reproductive traits. The Single-breed CSSs revealed an over-representation of genes related to dairy and beef production, this was further supported by over-representation of production-related pathway terms in these regions based on a functional enrichment analysis. Overall, this review provides a comparative map of the selection sweeps reported in European cattle breeds and presents for the first time a characterization of the selection sweeps that are found in individual breeds. Based on their uniqueness, these breed-specific signals could be considered as “divergence signals,” which may be useful in characterizing and protecting livestock genetic diversity.
Collapse
Affiliation(s)
| | - Juan J Arranz
- Departamento de Producción Animal, Universidad de León León, Spain
| | - Pamela Wiener
- Division of Genetics and Genomics, Roslin Institute and R(D)SVS, University of Edinburgh Midlothian, UK
| |
Collapse
|
4
|
|
5
|
Buehler D, Holderegger R, Brodbeck S, Schnyder E, Gugerli F. Validation of outlier loci through replication in independent data sets: a test on Arabis alpina. Ecol Evol 2014; 4:4296-306. [PMID: 25540691 PMCID: PMC4267868 DOI: 10.1002/ece3.1300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/11/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022] Open
Abstract
Outlier detection and environmental association analysis are common methods to search for loci or genomic regions exhibiting signals of adaptation to environmental factors. However, a validation of outlier loci and corresponding allele distribution models through functional molecular biology or transplant/common garden experiments is rarely carried out. Here, we employ another method for validation, namely testing outlier loci in specifically designed, independent data sets. Previously, an outlier locus associated with three different habitat types had been detected in Arabis alpina. For the independent validation data set, we sampled 30 populations occurring in these three habitat types across five biogeographic regions of the Swiss Alps. The allele distribution model found in the original study could not be validated in the independent test data set: The outlier locus was no longer indicative of habitat-mediated selection. We propose several potential causes of this failure of validation, of which unaccounted genetic structure and technical issues in the original data set used to detect the outlier locus were most probable. Thus, our study shows that validating outlier loci and allele distribution models in independent data sets is a helpful tool in ecological genomics which, in the case of positive validation, adds confidence to outlier loci and their association with environmental factors or, in the case of failure of validation, helps to explain inconsistencies.
Collapse
Affiliation(s)
- Dominique Buehler
- WSL Swiss Federal Research Institute Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland ; Department of Environmental Systems Science, ETH Zürich Universitätsstrasse 16, CH-8092, Zürich, Switzerland
| | - Rolf Holderegger
- WSL Swiss Federal Research Institute Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland ; Department of Environmental Systems Science, ETH Zürich Universitätsstrasse 16, CH-8092, Zürich, Switzerland
| | - Sabine Brodbeck
- WSL Swiss Federal Research Institute Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Elvira Schnyder
- WSL Swiss Federal Research Institute Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | - Felix Gugerli
- WSL Swiss Federal Research Institute Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| |
Collapse
|
6
|
de Simoni Gouveia JJ, da Silva MVGB, Paiva SR, de Oliveira SMP. Identification of selection signatures in livestock species. Genet Mol Biol 2014; 37:330-42. [PMID: 25071397 PMCID: PMC4094609 DOI: 10.1590/s1415-47572014000300004] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/27/2014] [Indexed: 11/22/2022] Open
Abstract
The identification of regions that have undergone selection is one of the principal goals of theoretical and applied evolutionary genetics. Such studies can also provide information about the evolutionary processes involved in shaping genomes, as well as physical and functional information about genes/genomic regions. Domestication followed by breed formation and selection schemes has allowed the formation of very diverse livestock breeds adapted to a wide variety of environments and with special characteristics. The advances in genomics in the last five years have enabled the development of several methods to detect selection signatures and have resulted in the publication of a considerable number of studies involving livestock species. The aims of this review are to describe the principal effects of natural/artificial selection on livestock genomes, to present the main methods used to detect selection signatures and to discuss some recent results in this area. This review should be useful also to research scientists working with wild animals/non-domesticated species and plant biologists working with breeding and evolutionary biology.
Collapse
Affiliation(s)
- João José de Simoni Gouveia
- Colegiado Acadêmico de Zootecnia , Universidade Federal do Vale do São Francisco , Petrolina, PE , Brazil . ; Programa de Doutorado Integrado em Zootecnia , Universidade Federal do Ceará , Fortaleza, CE , Brazil
| | | | | | | |
Collapse
|
7
|
A preliminary study for identification of candidate AFLP markers under artificial selection for shell color in pearl oyster Pinctada fucata. Gene 2014; 542:8-15. [DOI: 10.1016/j.gene.2014.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 12/20/2013] [Accepted: 03/11/2014] [Indexed: 11/20/2022]
|
8
|
Mattersdorfer K, Koblmüller S, Sefc KM. AFLP genome scans suggest divergent selection on colour patterning in allopatric colour morphs of a cichlid fish. Mol Ecol 2012; 21:3531-44. [PMID: 22625655 DOI: 10.1111/j.1365-294x.2012.05634.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Genome scan-based tests for selection are directly applicable to natural populations to study the genetic and evolutionary mechanisms behind phenotypic differentiation. We conducted AFLP genome scans in three distinct geographic colour morphs of the cichlid fish Tropheus moorii to assess whether the extant, allopatric colour pattern differentiation can be explained by drift and to identify markers mapping to genomic regions possibly involved in colour patterning. The tested morphs occupy adjacent shore sections in southern Lake Tanganyika and are separated from each other by major habitat barriers. The genome scans revealed significant genetic structure between morphs, but a very low proportion of loci fixed for alternative AFLP alleles in different morphs. This high level of polymorphism within morphs suggested that colour pattern differentiation did not result exclusively from neutral processes. Outlier detection methods identified six loci with excess differentiation in the comparison between a bluish and a yellow-blotch morph and five different outlier loci in comparisons of each of these morphs with a red morph. As population expansions and the genetic structure of Tropheus make the outlier approach prone to false-positive signals of selection, we examined the correlation between outlier locus alleles and colour phenotypes in a genetic and phenotypic cline between two morphs. Distributions of allele frequencies at one outlier locus were indeed consistent with linkage to a colour locus. Despite the challenges posed by population structure and demography, our results encourage the cautious application of genome scans to studies of divergent selection in subdivided and recently expanded populations.
Collapse
Affiliation(s)
- Karin Mattersdorfer
- Department of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | | | | |
Collapse
|
9
|
Wiener P, Wilkinson S. Deciphering the genetic basis of animal domestication. Proc Biol Sci 2011; 278:3161-70. [PMID: 21885467 DOI: 10.1098/rspb.2011.1376] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Genomic technologies for livestock and companion animal species have revolutionized the study of animal domestication, allowing an increasingly detailed description of the genetic changes accompanying domestication and breed development. This review describes important recent results derived from the application of population and quantitative genetic approaches to the study of genetic changes in the major domesticated species. These include findings of regions of the genome that show between-breed differentiation, evidence of selective sweeps within individual genomes and signatures of demographic events. Particular attention is focused on the study of the genetics of behavioural traits and the implications for domestication. Despite the operation of severe bottlenecks, high levels of inbreeding and intensive selection during the history of domestication, most domestic animal species are genetically diverse. Possible explanations for this phenomenon are discussed. The major insights from the surveyed studies are highlighted and directions for future study are suggested.
Collapse
Affiliation(s)
- Pamela Wiener
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | | |
Collapse
|