1
|
Liu N, Jiang T, Cui WP, Qi XQ, Li XG, Lu Y, Wu LF, Zhang WJ. The TorRS two component system regulates expression of TMAO reductase in response to high hydrostatic pressure in Vibrio fluvialis. Front Microbiol 2023; 14:1291578. [PMID: 38029070 PMCID: PMC10662104 DOI: 10.3389/fmicb.2023.1291578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
High hydrostatic pressure (HHP) regulated gene expression is one of the most commonly adopted strategies for microbial adaptation to the deep-sea environments. Previously we showed that the HHP-inducible trimethylamine N-oxide (TMAO) reductase improves the pressure tolerance of deep-sea strain Vibrio fluvialis QY27. Here, we investigated the molecular mechanism of HHP-responsive regulation of TMAO reductase TorA. By constructing torR and torS deletion mutants, we demonstrated that the two-component regulator TorR and sensor TorS are responsible for the HHP-responsive regulation of torA. Unlike known HHP-responsive regulatory system, the abundance of torR and torS was not affected by HHP. Complementation of the ΔtorS mutant with TorS altered at conserved phosphorylation sites revealed that the three sites were indispensable for substrate-induced regulation, but only the histidine located in the alternative transmitter domain was involved in pressure-responsive regulation. Taken together, we demonstrated that the induction of TMAO reductase by HHP is mediated through the TorRS system and proposed a bifurcation of signal transduction in pressure-responsive regulation from the substrate-induction. This work provides novel knowledge of the pressure regulated gene expression and will promote the understanding of the microbial adaptation to the deep-sea HHP environment.
Collapse
Affiliation(s)
- Na Liu
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Jiang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Peng Cui
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
| | - Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
| | - Yuan Lu
- College of Information Science & Engineering, Ocean University of China, Qingdao, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
- Aix Marseille University, CNRS, LCB, Marseille, France
| | - Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-sea Life Sciences, IDSSE-BGI, Sanya, China
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CAS, Sanya, China
| |
Collapse
|
2
|
Scheffer G, Gieg LM. The Mystery of Piezophiles: Understudied Microorganisms from the Deep, Dark Subsurface. Microorganisms 2023; 11:1629. [PMID: 37512802 PMCID: PMC10384521 DOI: 10.3390/microorganisms11071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms that can withstand high pressure within an environment are termed piezophiles. These organisms are considered extremophiles and inhabit the deep marine or terrestrial subsurface. Because these microorganisms are not easily accessed and require expensive sampling methods and laboratory instruments, advancements in this field have been limited compared to other extremophiles. This review summarizes the current knowledge on piezophiles, notably the cellular and physiological adaptations that such microorganisms possess to withstand and grow in high-pressure environments. Based on existing studies, organisms from both the deep marine and terrestrial subsurface show similar adaptations to high pressure, including increased motility, an increase of unsaturated bonds within the cell membrane lipids, upregulation of heat shock proteins, and differential gene-regulation systems. Notably, more adaptations have been identified within the deep marine subsurface organisms due to the relative paucity of studies performed on deep terrestrial subsurface environments. Nevertheless, similar adaptations have been found within piezophiles from both systems, and therefore the microbial biogeography concepts used to assess microbial dispersal and explore if similar organisms can be found throughout deep terrestrial environments are also briefly discussed.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
Piezophilic Phenotype Is Growth Condition Dependent and Correlated with the Regulation of Two Sets of ATPase in Deep-Sea Piezophilic Bacterium Photobacterium profundum SS9. Microorganisms 2023; 11:microorganisms11030637. [PMID: 36985211 PMCID: PMC10054830 DOI: 10.3390/microorganisms11030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alteration of respiratory components as a function of pressure is a common strategy developed in deep-sea microorganisms, presumably to adapt to high hydrostatic pressure (HHP). While the electron transport chain and terminal reductases have been extensively studied in deep-sea bacteria, little is known about their adaptations for ATP generation. In this study, we showed that the deep-sea bacterium Photobacterium profundum SS9 exhibits a more pronounced piezophilic phenotype when grown in minimal medium supplemented with glucose (MG) than in the routinely used MB2216 complex medium. The intracellular ATP level varied with pressure, but with opposite trends in the two culture media. Between the two ATPase systems encoded in SS9, ATPase-I played a dominant role when cultivated in MB2216, whereas ATPase-II was more abundant in the MG medium, especially at elevated pressure when cells had the lowest ATP level among all conditions tested. Further analyses of the ΔatpI, ΔatpE1 and ΔatpE2 mutants showed that disrupting ATPase-I induced expression of ATPase-II and that the two systems are functionally redundant in MB2216. Collectively, we provide the first examination of the differences and relationships between two ATPase systems in a piezophilic bacterium, and expanded our understanding of the involvement of energy metabolism in pressure adaptation.
Collapse
|
4
|
Harish B, Wang J, Hayden EJ, Grabe B, Hiller W, Winter R, Royer CA. Hidden intermediates in Mango III RNA aptamer folding revealed by pressure perturbation. Biophys J 2022; 121:421-429. [PMID: 34971617 PMCID: PMC8822612 DOI: 10.1016/j.bpj.2021.12.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
Fluorescent RNA aptamers have the potential to enable routine quantitation and localization of RNA molecules and serve as models for understanding biologically active aptamers. In recent years, several fluorescent aptamers have been selected and modified to improve their properties, revealing that small changes to the RNA or the ligands can modify significantly their fluorescent properties. Although structural biology approaches have revealed the bound, ground state of several fluorescent aptamers, characterization of low-abundance, excited states in these systems is crucial to understanding their folding pathways. Here we use pressure as an alternative variable to probe the suboptimal states of the Mango III aptamer with both fluorescence and NMR spectroscopy approaches. At moderate KCl concentrations, increasing pressure disrupted the G-quadruplex structure of the Mango III RNA and led to an intermediate with lower fluorescence. These observations indicate the existence of suboptimal RNA structural states that still bind the TO1-biotin fluorophore and moderately enhance fluorescence. At higher KCl concentration as well, the intermediate fluorescence state was populated at high pressure, but the G-quadruplex remained stable at high pressure, supporting the notion of parallel folding and/or binding pathways. These results demonstrate the usefulness of pressure for characterizing RNA folding intermediates.
Collapse
Affiliation(s)
| | - Jinqiu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy
| | - Eric J Hayden
- Department of Biology, Boise State University, Boise
| | - Bastian Grabe
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy.
| |
Collapse
|
5
|
Roles of virulence regulator ToxR in viable but non-culturable formation by controlling reactive oxygen species resistance in pathogen Vibrio alginolyticus. Microbiol Res 2021; 254:126900. [PMID: 34700184 DOI: 10.1016/j.micres.2021.126900] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/08/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023]
Abstract
Under adverse circumstances, bacteria enter the viable but non-culturable (VBNC) state, a dormancy-like state for survival. The altered gene regulation underlying the entry of the VBNC state has not yet been well elucidated. Here, we reported that a subpopulation of cells (23.8 %) in Vibrio alginolyticus cultures enters the VBNC state in response to nutrient limitation at alkaline pH. The proteolysis of pivotal virulence regulator ToxR at these conditions is associated with VBNC formation. Meantime, ToxR abrogation impaired the mobility and the expression of virulence-associated genes, resulting in attenuated virulence in V. alginolyticus. RNA-seq and ChIP-seq analyses of the cells grown in VBNC-inducing conditions revealed that ToxR directly controls the expression of ∼8 genes including ahpC and dps involved in reactive oxygen species (ROS) resistance. ToxR binds to the promoter regions of kdgR, ppiC, ahpC, and dps and further controls their respective expression under oxidative stress conditions. The cells with impaired ToxR accumulated detrimental intracellular ROS. Moreover, these genes contribute to bacterial culturability as their in-frame deletion strains exhibiting severely decreased plate counts and the complementary strain showed rescued viability. Collectively, this study revealed the role of ToxR in switching on the VBNC state by sensing unfavorable environmental signals such as endogenous ROS (hydrogen peroxide, H2O2) in V. alginolyticus and provided mechanistic insights into Vibrio lifestyle adaptation in the marine environment.
Collapse
|
6
|
Kerou M, Ponce-Toledo RI, Zhao R, Abby SS, Hirai M, Nomaki H, Takaki Y, Nunoura T, Jørgensen SL, Schleper C. Genomes of Thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. THE ISME JOURNAL 2021; 15:2792-2808. [PMID: 33795828 PMCID: PMC8397731 DOI: 10.1038/s41396-021-00962-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
Marine sediments represent a vast habitat for complex microbiomes. Among these, ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are one of the most common, yet little explored, inhabitants, which seem extraordinarily well adapted to the harsh conditions of the subsurface biosphere. We present 11 metagenome-assembled genomes of the most abundant AOA clades from sediment cores obtained from the Atlantic Mid-Ocean ridge flanks and Pacific abyssal plains. Their phylogenomic placement reveals three independently evolved clades within the order Nitrosopumilales, of which no cultured representative is known yet. In addition to the gene sets for ammonia oxidation and carbon fixation known from other AOA, all genomes encode an extended capacity for the conversion of fermentation products that can be channeled into the central carbon metabolism, as well as uptake of amino acids probably for protein maintenance or as an ammonia source. Two lineages encode an additional (V-type) ATPase and a large repertoire of DNA repair systems that may allow to overcome the challenges of high hydrostatic pressure. We suggest that the adaptive radiation of AOA into marine sediments occurred more than once in evolution and resulted in three distinct lineages with particular adaptations to this extremely energy-limiting and high-pressure environment.
Collapse
Affiliation(s)
- Melina Kerou
- grid.10420.370000 0001 2286 1424Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rafael I. Ponce-Toledo
- grid.10420.370000 0001 2286 1424Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rui Zhao
- grid.7914.b0000 0004 1936 7443Department of Earth Science, K.G. Jebsen Centre for Deep Sea Research, University of Bergen, Bergen, Norway ,grid.33489.350000 0001 0454 4791Present Address: School of Marine Science and Policy, University of Delaware, Lewes, DE USA
| | - Sophie S. Abby
- grid.10420.370000 0001 2286 1424Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria ,grid.463716.10000 0004 4687 1979Present Address: University Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Miho Hirai
- grid.410588.00000 0001 2191 0132Super-cutting-edge Grand and Advanced Research (SUGAR) Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Hidetaka Nomaki
- grid.410588.00000 0001 2191 0132Super-cutting-edge Grand and Advanced Research (SUGAR) Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshihiro Takaki
- grid.410588.00000 0001 2191 0132Super-cutting-edge Grand and Advanced Research (SUGAR) Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takuro Nunoura
- grid.410588.00000 0001 2191 0132Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Steffen L. Jørgensen
- grid.7914.b0000 0004 1936 7443Department of Earth Science, K.G. Jebsen Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Christa Schleper
- grid.10420.370000 0001 2286 1424Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Peoples LM, Kyaw TS, Ugalde JA, Mullane KK, Chastain RA, Yayanos AA, Kusube M, Methé BA, Bartlett DH. Distinctive gene and protein characteristics of extremely piezophilic Colwellia. BMC Genomics 2020; 21:692. [PMID: 33023469 PMCID: PMC7542103 DOI: 10.1186/s12864-020-07102-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023] Open
Abstract
Background The deep ocean is characterized by low temperatures, high hydrostatic pressures, and low concentrations of organic matter. While these conditions likely select for distinct genomic characteristics within prokaryotes, the attributes facilitating adaptation to the deep ocean are relatively unexplored. In this study, we compared the genomes of seven strains within the genus Colwellia, including some of the most piezophilic microbes known, to identify genomic features that enable life in the deep sea. Results Significant differences were found to exist between piezophilic and non-piezophilic strains of Colwellia. Piezophilic Colwellia have a more basic and hydrophobic proteome. The piezophilic abyssal and hadal isolates have more genes involved in replication/recombination/repair, cell wall/membrane biogenesis, and cell motility. The characteristics of respiration, pilus generation, and membrane fluidity adjustment vary between the strains, with operons for a nuo dehydrogenase and a tad pilus only present in the piezophiles. In contrast, the piezosensitive members are unique in having the capacity for dissimilatory nitrite and TMAO reduction. A number of genes exist only within deep-sea adapted species, such as those encoding d-alanine-d-alanine ligase for peptidoglycan formation, alanine dehydrogenase for NADH/NAD+ homeostasis, and a SAM methyltransferase for tRNA modification. Many of these piezophile-specific genes are in variable regions of the genome near genomic islands, transposases, and toxin-antitoxin systems. Conclusions We identified a number of adaptations that may facilitate deep-sea radiation in members of the genus Colwellia, as well as in other piezophilic bacteria. An enrichment in more basic and hydrophobic amino acids could help piezophiles stabilize and limit water intrusion into proteins as a result of high pressure. Variations in genes associated with the membrane, including those involved in unsaturated fatty acid production and respiration, indicate that membrane-based adaptations are critical for coping with high pressure. The presence of many piezophile-specific genes near genomic islands highlights that adaptation to the deep ocean may be facilitated by horizontal gene transfer through transposases or other mobile elements. Some of these genes are amenable to further study in genetically tractable piezophilic and piezotolerant deep-sea microorganisms.
Collapse
Affiliation(s)
- Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.,Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| | - Than S Kyaw
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Juan A Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Kelli K Mullane
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Roger A Chastain
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - A Aristides Yayanos
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Masataka Kusube
- Department of Material Science, National Institute of Technology, Wakayama College, 77 Noshima, Nada-cho, Gobo, Wakayama, 644-0023, Japan
| | - Barbara A Methé
- Center for Microbiome and Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.
| |
Collapse
|
8
|
Structure of a Core Promoter in Bifidobacterium longum NCC2705. J Bacteriol 2020; 202:JB.00540-19. [PMID: 31964699 DOI: 10.1128/jb.00540-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 01/04/2023] Open
Abstract
Bacterial promoters consist of core sequence motifs termed -35 and -10 boxes. The consensus motifs are TTGACA and TATAAT, respectively, which were identified from leading investigations on Escherichia coli However, the consensus sequences are not likely to fit genetically divergent bacteria. The sigma factor of the genus Bifidobacterium has a characteristic polar domain in the N terminus, suggesting the possibility of specific promoter recognition. We reevaluated the structure of Bifidobacterium longum NCC2705 promoters and compared them to other bacteria. Transcriptional start sites (TSSs) of the B. longum NCC2705 strain were identified using transcriptome sequencing (RNA-Seq) analysis to extract promoter regions. Conserved motifs of a bifidobacterial promoter were determined using regions upstream of TSSs and a hidden Markov model. As a result, consensus motifs of the -35 and -10 boxes were TTGTGC and TACAAT, respectively. To assess each base of both motifs, we constructed 37 plasmids based on pKO403-TPCTcon, including the hup promoter connected with a chloramphenicol acetyltransferase as a reporter gene. This reporter assay showed two optimal motifs of the -35 and -10 boxes, namely, TTGNNN and TANNNT, respectively. We further analyzed spacer lengths between the -35 and -10 boxes via a bioinformatics approach. The spacer lengths predominant in bacteria have been generally reported to be approximately 17 bp. In contrast, the predominant spacer lengths in the genus Bifidobacterium and related species were 11 bp, in addition to 17 bp. A reporter assay to assess the spacer lengths indicated that the 11-bp spacer length produced unusually high activity.IMPORTANCE The structures of sigma factors vary among bacterial strains, indicating that recognition rules may also vary. Therefore, we investigated the promoter structure of Bifidobacterium longum NCC2705 using a bioinformatics approach and wet analyses. The most frequent and optimal motifs were similar to other bacterial consensus motifs. The optimal spacer length between the two boxes was reported to be 17 bp. It is widely applied to a bioinformatics approach for other bacteria. Unexpectedly, conserved spacer lengths were 11 bp as well as 17 bp in the genus Bifidobacterium Moreover, the sigma factor of the genus Bifidobacterium has a characteristic domain in the N terminus which may contribute to the additional functions. Hence, it would be valuable to reevaluate the promoter in other organisms.
Collapse
|
9
|
Li XG, Zhang WJ, Xiao X, Jian HH, Jiang T, Tang HZ, Qi XQ, Wu LF. Pressure-Regulated Gene Expression and Enzymatic Activity of the Two Periplasmic Nitrate Reductases in the Deep-Sea Bacterium Shewanella piezotolerans WP3. Front Microbiol 2018; 9:3173. [PMID: 30622525 PMCID: PMC6308320 DOI: 10.3389/fmicb.2018.03173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
Shewanella species are widely distributed in marine environments, from the shallow coasts to the deepest sea bottom. Most Shewanella species possess two isoforms of periplasmic nitrate reductases (NAP-α and NAP-β) and are able to generate energy through nitrate reduction. However, the contributions of the two NAP systems to bacterial deep-sea adaptation remain unclear. In this study, we found that the deep-sea denitrifier Shewanella piezotolerans WP3 was capable of performing nitrate respiration under high hydrostatic pressure (HHP) conditions. In the wild-type strain, NAP-β played a dominant role and was induced by both the substrate and an elevated pressure, whereas NAP-α was constitutively expressed at a relatively lower level. Genetic studies showed that each NAP system alone was sufficient to fully sustain nitrate-dependent growth and that both NAP systems exhibited substrate and pressure inducible expression patterns when the other set was absent. Biochemical assays further demonstrated that NAP-α had a higher tolerance to elevated pressure. Collectively, we report for the first time the distinct properties and contributions of the two NAP systems to nitrate reduction under different pressure conditions. The results will shed light on the mechanisms of bacterial HHP adaptation and nitrogen cycling in the deep-sea environment.
Collapse
Affiliation(s)
- Xue-Gong Li
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Sanya, China
| | - Wei-Jia Zhang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Sanya, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-Hua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Jiang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Zhi Tang
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qing Qi
- Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Sanya, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Sanya, China.,Aix Marseille Université, CNRS, LCB, Marseille, France
| |
Collapse
|
10
|
Yin QJ, Zhang WJ, Qi XQ, Zhang SD, Jiang T, Li XG, Chen Y, Santini CL, Zhou H, Chou IM, Wu LF. High Hydrostatic Pressure Inducible Trimethylamine N-Oxide Reductase Improves the Pressure Tolerance of Piezosensitive Bacteria Vibrio fluvialis. Front Microbiol 2018; 8:2646. [PMID: 29375513 PMCID: PMC5767261 DOI: 10.3389/fmicb.2017.02646] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/19/2017] [Indexed: 11/20/2022] Open
Abstract
High hydrostatic pressure (HHP) exerts severe effects on cellular processes including impaired cell division, abolished motility and affected enzymatic activities. Transcriptomic and proteomic analyses showed that bacteria switch the expression of genes involved in multiple energy metabolism pathways to cope with HHP. We sought evidence of a changing bacterial metabolism by supplying appropriate substrates that might have beneficial effects on the bacterial lifestyle at elevated pressure. We isolated a piezosensitive marine bacterium Vibrio fluvialis strain QY27 from the South China Sea. When trimethylamine N-oxide (TMAO) was used as an electron acceptor for energy metabolism, QY27 exhibited a piezophilic-like phenotype with an optimal growth at 30 MPa. Raman spectrometry and biochemistry analyses revealed that both the efficiency of the TMAO metabolism and the activity of the TMAO reductase increased under high pressure conditions. Among the two genes coding for TMAO reductase catalytic subunits, the expression level and enzymatic activity of TorA was up-regulated by elevated pressure. Furthermore, a genetic interference assay with the CRISPR-dCas9 system demonstrated that TorA is essential for underpinning the improved pressure tolerance of QY27. We extended the study to Vibrio fluvialis type strain ATCC33809 and observed the same phenotype of TMAO-metabolism improved the pressure tolerance. These results provide compelling evidence for the determinant role of metabolism in the adaption of bacteria to the deep-sea ecosystems with HHP.
Collapse
Affiliation(s)
- Qun-Jian Yin
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China
| | - Wei-Jia Zhang
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China.,CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xiao-Qing Qi
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China
| | - Sheng-Da Zhang
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ting Jiang
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Gong Li
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China.,CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ying Chen
- Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Claire-Lise Santini
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China.,LCB UMR 7283, CNRS-Marseille, Aix-Marseille Université, Marseille, France
| | - Hao Zhou
- Engineering Laboratory of Engineering Department, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - I-Ming Chou
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-Marseille/CAS, Beijing, China.,LCB UMR 7283, CNRS-Marseille, Aix-Marseille Université, Marseille, France
| |
Collapse
|
11
|
Kougias PG, Campanaro S, Treu L, Zhu X, Angelidaki I. A novel archaeal species belonging to Methanoculleus genus identified via de-novo assembly and metagenomic binning process in biogas reactors. Anaerobe 2017; 46:23-32. [DOI: 10.1016/j.anaerobe.2017.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2017] [Accepted: 02/12/2017] [Indexed: 10/20/2022]
|
12
|
Nawaz MZ, Jian H, He Y, Xiong L, Xiao X, Wang F. Genome-Wide Detection of Small Regulatory RNAs in Deep-Sea Bacterium Shewanella piezotolerans WP3. Front Microbiol 2017; 8:1093. [PMID: 28663744 PMCID: PMC5471319 DOI: 10.3389/fmicb.2017.01093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/30/2017] [Indexed: 11/13/2022] Open
Abstract
Shewanella are one of the most abundant Proteobacteria in the deep-sea and are renowned for their versatile electron accepting capacities. The molecular mechanisms involved in their adaptation to diverse and extreme environments are not well understood. Small non-coding RNAs (sRNAs) are known for modulating the gene expression at transcriptional and posttranscriptional levels, subsequently playing a key role in microbial adaptation. To understand the potential roles of sRNAs in the adaptation of Shewanella toward deep-sea environments, here an in silico approach was utilized to detect the sRNAs in the genome of Shewanella piezotolerans WP3, a piezotolerant and psychrotolerant deep-sea iron reducing bacterium. After scanning 3673 sets of 5' and 3' UTRs of orthologous genes, 209 sRNA candidates were identified with high confidence in S. piezotolerans WP3. About 92% (193 out of 209) of these putative sRNAs belong to the class trans-encoded RNAs, suggesting that trans-regulatory RNAs are the dominant class of sRNAs in S. piezotolerans WP3. The remaining 16 cis-regulatory RNAs were validated through quantitative polymerase chain reaction. Five cis-sRNAs were further shown to act as cold regulated sRNAs. Our study provided additional evidence at the transcriptional level to decipher the microbial adaptation mechanisms to extreme environmental conditions.
Collapse
Affiliation(s)
- Muhammad Z Nawaz
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Ying He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Lei Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
13
|
Impact of high hydrostatic pressure on bacterial proteostasis. Biophys Chem 2017; 231:3-9. [PMID: 28365058 DOI: 10.1016/j.bpc.2017.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 02/01/2023]
Abstract
High hydrostatic pressure (HHP) is an important factor that limits microbial growth in deep-sea ecosystems to specifically adapted piezophiles. Furthermore, HHP treatment is used as a novel food preservation technique because of its ability to inactivate pathogenic and spoilage bacteria while minimizing the loss of food quality. Disruption of protein homeostasis (i.e. proteostasis) as a result of HHP-induced conformational changes in ribosomes and proteins has been considered as one of the limiting factors for both microbial growth and survival under HHP conditions. This work therefore reviews the effects of sublethal (≤100MPa) and lethal (>100MPa) pressures on protein synthesis, structure, and functionality in bacteria. Furthermore, current understanding on the mechanisms adopted by piezophiles to maintain proteostasis in HHP environments and responses developed by atmospheric-adapted bacteria to protect or restore proteostasis after HHP exposure are discussed.
Collapse
|
14
|
Sun J, Gao X, Qun J, Du X, Bi K, Zhang X, Lin L. Comparative analysis of the survival and gene expression of pathogenic strains Vibrio harveyi after starvation. FEMS Microbiol Lett 2016; 363:fnw250. [PMID: 27810886 DOI: 10.1093/femsle/fnw250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/01/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the survival and gene expression of Vibrio harveyi under starvation conditions. The microcosms V. harveyi were incubated in sterilized seawater for 4 weeks at room temperature. Overall, the cell numeration declined rapidly about 103 CFU/ml during starvation, with a tiny rebound at day 21. Scanning electron microscopy revealed that rod-shaped cells became sphere with a rippled cell surface. By polymerase chain reaction (PCR) assay, nine genes, named luxR, toxR, vhhB, flaA, topA, fur, rpoS, mreB and ftsZ, were detected in the non-starved cells. In the starved cells, the expression levels of the detected genes declined substantially ranging from 0.005-fold to 0.028-fold compared to the non-starved cells performed by reverse transcription quantitative real-time PCR with 16S rRNA as the internal control. In the recovering cells, the expression levels of the detected genes, except luxR and mreB, were upregulated dramatically compared to the wild, especially topA (23.720-fold), fur (39.400-fold) and toxR (9.837-fold), validating that the expressions of both the metabolism and virulence genes were important for growth and survival of V. harveyi. The results may shed a new light on understanding of stress adaptation in bacteria.
Collapse
Affiliation(s)
- Jingjing Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.,College of Ocean, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.,College of Ocean, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China
| | - Jiang Qun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuedi Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Keran Bi
- College of Ocean, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Jian H, Li S, Tang X, Xiao X. A transcriptome resource for the deep-sea bacterium Shewanella piezotolerans WP3 under cold and high hydrostatic pressure shock stress. Mar Genomics 2016; 30:87-91. [PMID: 27720170 DOI: 10.1016/j.margen.2016.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/27/2022]
Abstract
Low temperature and high hydrostatic pressure (HHP) are two of the most remarkable environmental factors influencing deep-sea ecosystem. The adaptive mechanisms of microorganisms which live in these extreme environments to low temperature and high pressure warrant investigation. In this study, the global gene expression patterns of the deep-sea bacterium Shewanella piezotolerans WP3 in response to cold (0 °C) and HHP (50 MPa) shock were evaluated through DNA microarray analysis. Results revealed that 22, 66, and 106 genes were differentially expressed after WP3 was respectively exposed to cold shock for 30, 60, and 90 min. Of these genes, 16 genes were identified as common differentially expressed genes (DEGs). After 30 min and 120 min of HHP shock, 5 and 10 genes were respectively identified as DEGs. The hierarchical clustering analysis of the DEG pattern indicated that WP3 may employ different adaptive strategies to cope with cold and HHP shock stress. Taken together, our study provided a transcriptome resource for deep-sea bacterial responses to cold and HHP stress. This study also established a basis for further investigations on environmental adaptive mechanisms utilized by benthic bacteria.
Collapse
Affiliation(s)
- Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, PR China; Marine Biology Institute, Shantou University, Shantou, PR China
| | - Xixiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Xiamen, PR China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
16
|
Taha, Siddiqui KS, Campanaro S, Najnin T, Deshpande N, Williams TJ, Aldrich‐Wright J, Wilkins M, Curmi PMG, Cavicchioli R. Single
TRAM
domain
RNA
‐binding proteins in
A
rchaea
: functional insight from
C
tr3 from the
A
ntarctic methanogen
M
ethanococcoides burtonii. Environ Microbiol 2016; 18:2810-24. [DOI: 10.1111/1462-2920.13229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Taha
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - K. S. Siddiqui
- Life Sciences Department King Fahd University of Petroleum and Minerals Dhahran Kingdom of Saudi Arabia
| | - S. Campanaro
- Department of Biology University of Padua Via U. Bassi 58/B 35121 Padova Italy
| | - T. Najnin
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - N. Deshpande
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - T. J. Williams
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - J. Aldrich‐Wright
- Nanoscale Organization and Dynamic Group School of Science and Health Western Sydney University Penrith 2560 NSW Australia
| | - M. Wilkins
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW 2052 Australia
| | - P. M. G. Curmi
- School of Physics The University of New South Wales Sydney NSW 2052 Australia
| | - R. Cavicchioli
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
17
|
Single cells within the Puerto Rico trench suggest hadal adaptation of microbial lineages. Appl Environ Microbiol 2015; 81:8265-76. [PMID: 26386059 DOI: 10.1128/aem.01659-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/12/2015] [Indexed: 11/20/2022] Open
Abstract
Hadal ecosystems are found at a depth of 6,000 m below sea level and below, occupying less than 1% of the total area of the ocean. The microbial communities and metabolic potential in these ecosystems are largely uncharacterized. Here, we present four single amplified genomes (SAGs) obtained from 8,219 m below the sea surface within the hadal ecosystem of the Puerto Rico Trench (PRT). These SAGs are derived from members of deep-sea clades, including the Thaumarchaeota and SAR11 clade, and two are related to previously isolated piezophilic (high-pressure-adapted) microorganisms. In order to identify genes that might play a role in adaptation to deep-sea environments, comparative analyses were performed with genomes from closely related shallow-water microbes. The archaeal SAG possesses genes associated with mixotrophy, including lipoylation and the glycine cleavage pathway. The SAR11 SAG encodes glycolytic enzymes previously reported to be missing from this abundant and cosmopolitan group. The other SAGs, which are related to piezophilic isolates, possess genes that may supplement energy demands through the oxidation of hydrogen or the reduction of nitrous oxide. We found evidence for potential trench-specific gene distributions, as several SAG genes were observed only in a PRT metagenome and not in shallower deep-sea metagenomes. These results illustrate new ecotype features that might perform important roles in the adaptation of microorganisms to life in hadal environments.
Collapse
|
18
|
Comparative transcriptome analysis reveals that lactose acts as an inducer and provides proper carbon sources for enhancing exopolysaccharide yield in the deep-sea bacterium Zunongwangia profunda SM-A87. PLoS One 2015; 10:e0115998. [PMID: 25679965 PMCID: PMC4332637 DOI: 10.1371/journal.pone.0115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/03/2014] [Indexed: 11/23/2022] Open
Abstract
Many marine bacteria secrete exopolysaccharides (EPSs) that have important ecological and physiological functions. Numerous nutritional and environmental factors influence bacterial EPS production. However, the regulatory mechanisms of EPS production are poorly understood. The deep-sea Bacteroidetes bacterium Zunongwangia profunda SM-A87 can produce high quantities of EPS, and its EPS production is enhanced significantly by lactose. Here, we studied the reasons behind the significant advantage that lactose has over other carbon sources in EPS production in SM-A87. RNA-seq technologies were used to study lactose-regulated genes in SM-A87. The expression level of genes within the EPS gene cluster was up-regulated when lactose was added. Supplement of lactose also influenced the expression of genes located outside the EPS gene cluster that are also involved in EPS biosynthesis. The major glycosyl components of SM-A87 EPS are mannose, glucose and galactose. Genomic metabolic pathway analyses showed that the EPS precursor GDP-mannose can be synthesized from glucose, while the precursor UDP-glucose must be synthesized from galactose. Lactose can provide glucose and galactose simultaneously and prevent glucose inhibition. Lactose can also greatly stimulate the growth of SM-A87. Taken together, lactose acts not only as an inducer but also as a carbohydrate source for EPS production. This research broadens our knowledge of the regulation of EPS production in marine bacteria.
Collapse
|
19
|
Sardu A, Treu L, Campanaro S. Transcriptome structure variability in Saccharomyces cerevisiae strains determined with a newly developed assembly software. BMC Genomics 2014; 15:1045. [PMID: 25441755 PMCID: PMC4302112 DOI: 10.1186/1471-2164-15-1045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/20/2014] [Indexed: 11/17/2022] Open
Abstract
Background RNA-seq studies have an important role for both large-scale analysis of gene expression and for transcriptome reconstruction. However, the lack of software specifically developed for the analysis of the transcriptome structure in lower eukaryotes, has so far limited the comparative studies among different species and strains. Results In order to fill this gap, an innovative software called ORA (Overlapped Reads Assembler) was developed. This software allows a simple and reliable analysis of the transcriptome structure in organisms with a low number of introns. It can also determine the size and the position of the untranslated regions (UTR) and of polycistronic transcripts. As a case study, we analyzed the transcriptional landscape of six S. cerevisiae strains in two different key steps of the fermentation process. This comparative analysis revealed differences in the UTR regions of transcripts. By extending the transcriptome analysis to yeast species belonging to the Saccharomyces genus, it was possible to examine the conservation level of unknown non-coding RNAs and their putative functional role. Conclusions By comparing the results obtained using ORA with previous studies and with the transcriptome structure determined with other software, it was proven that ORA has a remarkable reliability. The results obtained from the training set made it possible to detect the presence of transcripts with variable UTRs between S. cerevisiae strains. Finally, we propose a regulatory role for some non-coding transcripts conserved within the Saccharomyces genus and localized in the antisense strand to genes involved in meiosis and cell wall biosynthesis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1045) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Stefano Campanaro
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.
| |
Collapse
|
20
|
Metagenomic analysis of the microbial community in fermented grape marc reveals that Lactobacillus fabifermentans is one of the dominant species: insights into its genome structure. Appl Microbiol Biotechnol 2014; 98:6015-37. [DOI: 10.1007/s00253-014-5795-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/23/2014] [Accepted: 04/26/2014] [Indexed: 02/07/2023]
|
21
|
Ecotype diversity and conversion in Photobacterium profundum strains. PLoS One 2014; 9:e96953. [PMID: 24824441 PMCID: PMC4019646 DOI: 10.1371/journal.pone.0096953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/12/2014] [Indexed: 12/03/2022] Open
Abstract
Photobacterium profundum is a cosmopolitan marine bacterium capable of growth at low temperature and high hydrostatic pressure. Multiple strains of P. profundum have been isolated from different depths of the ocean and display remarkable differences in their physiological responses to pressure. The genome sequence of the deep-sea piezopsychrophilic strain Photobacterium profundum SS9 has provided some clues regarding the genetic features required for growth in the deep sea. The sequenced genome of Photobacterium profundum strain 3TCK, a non-piezophilic strain isolated from a shallow-water environment, is now available and its analysis expands the identification of unique genomic features that correlate to environmental differences and define the Hutchinsonian niche of each strain. These differences range from variations in gene content to specific gene sequences under positive selection. Genome plasticity between Photobacterium bathytypes was investigated when strain 3TCK-specific genes involved in photorepair were introduced to SS9, demonstrating that horizontal gene transfer can provide a mechanism for rapid colonisation of new environments.
Collapse
|