1
|
Cai XL, Zhang W, Yu H, Wen YQ, Feng JY. The Xanthomonas fragariae effector XopK suppresses stomatal immunity by perturbing abscisic acid accumulation and ABA-transciptional responses in strawberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109368. [PMID: 39721188 DOI: 10.1016/j.plaphy.2024.109368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
Xanthomonas fragariae (Xaf) is the cause of strawberry crown dry cavity rot and strawberry leaf angular spots. Despite having a long evolutionary history with strawberries, the plant-pathogen interaction is poorly understood. Pathogenicity for most plant pathogens is mostly dependent on the type-III secretion system, which introduces virulence type III effectors (T3Es) into eukaryotic host cells. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. In this study, a core conserved secreted effector called Xanthomonas Outer Protein K (XopK) was identified in Xaf strain YL19. Transgenic strawberries expressing XopK exhibit increased susceptibility to Xaf YL19, and this was associated with weakened stomatal immunity. Additionally, abscisic acid (ABA) accumulation and signaling were significantly suppressed in XopK-OX strawberry plants. Overexpression of XopK also inhibited ABA- and methyl jasmonate (MeJA)-induced stomatal closure in strawberry leaves. Moreover, endogenous ABA is critical for Xaf-induced stomatal closure. These results suggested that Xaf YL19 uses XopK to suppress ABA signaling to disrupt stomatal closure allowing bacterial colonization for disease development.
Collapse
Affiliation(s)
- Xiao-Lin Cai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Wenyao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hongwei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Jia-Yue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Wei F, Liang X, Shi JC, Luo JN, Qiu LJ, Li XX, Lu LJ, Wen YQ, Feng JY. Pan-Genomic Analysis Identifies the Chinese Strain as a New Subspecies of Xanthomonas fragariae. PLANT DISEASE 2024; 108:45-49. [PMID: 37555725 DOI: 10.1094/pdis-05-23-0933-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Xanthomonas fragariae is classified as a quarantine pathogen by the European and Mediterranean Plant Protection Organization. It commonly induces typical angular leaf spot (ALS) symptoms in strawberry leaves. X. fragariae strains from China (YL19, SHAQP01, and YLX21) exhibit ALS symptoms in leaves and more severe symptoms of dry cavity rot in strawberry crowns. Conversely, strains from other countries do not cause severe dry cavity rot symptoms in strawberries. After employing multilocus sequence analysis (MLSA), average nucleotide identity (ANI), and amino acid identity (AAI), we determined that Chinese strains of X. fragariae are genetically distinct from other strains and can be considered a new subspecies. Subsequent analysis of 63 X. fragariae genomes published at NCBI using IPGA and EDGAR3.0 revealed the pan-genomic profile, with 1,680 shared genes present in all 63 strains, including 71 virulence-related genes. Additionally, we identified 123 genes exclusive to all the Chinese strains, encompassing 12 virulence-related genes. The qRT-PCR analysis demonstrated that the expression of XopD, XopG1, CE8, GT2, and GH121 out of 12 virulence-related genes of Chinese strains (YL19) exhibited a constant increase in the early stages (6, 24, 54, and 96 hours postinoculation [hpi]) of strawberry leaf infected by YL19. So, the presence of XopD, XopG1, CE8, GT2, and GH121 in Chinese strains may play important roles in the early infection process of Chinese strains. These findings offer novel insights into comprehending the population structure and variation in the pathogenic capacity of X. fragariae.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Xia Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jian-Cheng Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jing-Nan Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Li-Juan Qiu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Xi-Xuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Li-Juan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Yue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Qiu Y, Wei F, Meng H, Peng M, Zhang J, He Y, Wei L, Ahmed W, Ji G. Whole-genome sequencing and comparative genome analysis of Xanthomonas fragariae YM2 causing angular leaf spot disease in strawberry. FRONTIERS IN PLANT SCIENCE 2023; 14:1267132. [PMID: 38192696 PMCID: PMC10773614 DOI: 10.3389/fpls.2023.1267132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Background Angular leaf spot disease caused by plant pathogenic bacterium Xanthomonas fragariae seriously threatens strawberry crop production globally. Methods In this study, we sequenced the whole genome of X. fragariae YM2, isolated from Yunnan Province, China. In addition, we performed a comparative genome analysis of X. fragariae YM2 with two existing strains of X. fragariae YL19 and SHQP01 isolated from Liaoning and Shanghai, respectively. Results The results of Nanopore sequencing showed that X. fragariae YM2 comprises one single chromosome with a contig size of 4,263,697 bp, one plasmid contig size of 0.39 Mb, a GC content ratio of 62.27%, and 3,958 predicted coding genes. The genome of YM2 comprises gum, hrp, rpf, and xps gene clusters and lipopolysaccharide (LPS), which are typical virulence factors in Xanthomonas species. By performing a comparative genomic analysis between X. fragariae strains YM2, YL19, and SHQP01, we found that strain YM2 is similar to YL19 and SHQP01 regarding genome size and GC contents. However, there are minor differences in the composition of major virulence factors and homologous gene clusters. Furthermore, the results of collinearity analysis demonstrated that YM2 has lower similarity and longer evolutionary distance with YL19 and SHQP01, but YL19 is more closely related to SHQP01. Conclusions The availability of this high-quality genetic resource will serve as a basic tool for investigating the biology, molecular pathogenesis, and virulence of X. fragariae YM2. In addition, unraveling the potential vulnerabilities in its genetic makeup will aid in developing more effective disease suppression control measures.
Collapse
Affiliation(s)
- Yue Qiu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Agriculture, Anshun University, Anshun, Guizhou, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fangjun Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Han Meng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Menglin Peng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinhao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yilu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lanfang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Agricultural Foundation Experiment Teaching Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Waqar Ahmed
- College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guanghai Ji
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Morinière L, Mirabel L, Gueguen E, Bertolla F. A Comprehensive Overview of the Genes and Functions Required for Lettuce Infection by the Hemibiotrophic Phytopathogen Xanthomonas hortorum pv. vitians. mSystems 2022; 7:e0129021. [PMID: 35311560 PMCID: PMC9040725 DOI: 10.1128/msystems.01290-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The successful infection of a host plant by a phytopathogenic bacterium depends on a finely tuned molecular cross talk between the two partners. Thanks to transposon insertion sequencing techniques (Tn-seq), whole genomes can now be assessed to determine which genes are important for the fitness of several plant-associated bacteria in planta. Despite its agricultural relevance, the dynamic molecular interaction established between the foliar hemibiotrophic phytopathogen Xanthomonas hortorum pv. vitians and its host, lettuce (Lactuca sativa), remains completely unknown. To decipher the genes and functions mobilized by the pathogen throughout the infection process, we conducted a Tn-seq experiment in lettuce leaves to mimic the selective pressure occurring during natural infection. This genome-wide screening identified 170 genes whose disruption caused serious fitness defects in lettuce. A thorough examination of these genes using comparative genomics and gene set enrichment analyses highlighted that several functions and pathways were highly critical for the pathogen's survival. Numerous genes involved in amino acid, nucleic acid, and exopolysaccharide biosynthesis were critical. The xps type II secretion system operon, a few TonB-dependent transporters involved in carbohydrate or siderophore scavenging, and multiple genes of the carbohydrate catabolism pathways were also critical, emphasizing the importance of nutrition systems in a nutrient-limited environment. Finally, several genes implied in camouflage from the plant immune system and resistance to immunity-induced oxidative stress were strongly involved in host colonization. As a whole, these results highlight some of the central metabolic pathways and cellular functions critical for Xanthomonas host adaptation and pathogenesis. IMPORTANCE Xanthomonas hortorum was recently the subject of renewed interest, as several studies highlighted that its members were responsible for diseases in a wide range of plant species, including crops of agricultural relevance (e.g., tomato and carrot). Among X. hortorum variants, X. hortorum pv. vitians is a reemerging foliar hemibiotrophic phytopathogen responsible for severe outbreaks of bacterial leaf spot of lettuce all around the world. Despite recent findings, sustainable and practical means of disease control remain to be developed. Understanding the host-pathogen interaction from a molecular perspective is crucial to support these efforts. The genes and functions mobilized by X. hortorum pv. vitians during its interaction with lettuce had never been investigated. Our study sheds light on these processes by screening the whole pathogen genome for genes critical for its fitness during the infection process, using transposon insertion sequencing and comparative genomics.
Collapse
Affiliation(s)
- Lucas Morinière
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Laurène Mirabel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Erwan Gueguen
- Université Lyon, Université Claude Bernard Lyon 1, INSA, CNRS, UMR Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Franck Bertolla
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
5
|
Wei F, Wang D, Fan S, Shi J, Cai X, Li Y, Ma Y, Wen Y, Feng J. Complete Genome Sequence Resource for Xanthomonas fragariae Causing Crown Infection Pockets in Strawberry. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:170-173. [PMID: 34645282 DOI: 10.1094/mpmi-05-21-0123-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xanthomonas fragariae is a global quarantine pathogen, which typically inflicts angular leaf spots. In the present study, we report a new 4.11-Mb high-quality genome sequence of X. fragariae YL19. YL19 can cause the typical angular leaf spot symptoms on strawberry plants in China as well as crown infection pocket symptoms. This new symptom has not been reported in other X. fragariae. Compared with typical X. fragariae strains, including PD885, NBC2815, PD5205, Fap21, and Fap29, the genome and plasmid in YL19 were smaller in size, lacking 109 coding genes, and have more carbohydrate-active enzyme and secondary metabolism genes. The YL19 genome ought to clarify the molecular mechanisms of genome evolution, host adaptation, and pathological process of X. fragariae and help improve strawberry management strategies.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Danjuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Sihao Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jiancheng Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Xiaolin Cai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yulian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yangyang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yingqiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiayue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| |
Collapse
|
6
|
Draft Genome Sequences of Two Xanthomonas fragariae Strains. Microbiol Resour Announc 2021; 10:10/16/e00138-21. [PMID: 33888499 PMCID: PMC8063642 DOI: 10.1128/mra.00138-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xanthomonas fragariae is the causal agent of angular leaf spot of strawberry. Short-read sequences were generated for two X. fragariae strains with different virulence phenotypes on the Illumina HiSeq 2000 platform. The genome sequences will contribute to a better understanding of pathogen evolution and the genes contributing to virulence in X. fragariae. Xanthomonas fragariae is the causal agent of angular leaf spot of strawberry. Short-read sequences were generated for two X. fragariae strains with different virulence phenotypes on the Illumina HiSeq 2000 platform. These genome sequences will contribute to a better understanding of pathogen evolution and the genes contributing to virulence in X. fragariae.
Collapse
|
7
|
Firrao G, Scortichini M, Pagliari L. Orthology-Based Estimate of the Contribution of Horizontal Gene Transfer from Distantly Related Bacteria to the Intraspecific Diversity and Differentiation of Xylella fastidiosa. Pathogens 2021; 10:46. [PMID: 33430372 PMCID: PMC7828034 DOI: 10.3390/pathogens10010046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Xylella fastidiosa is a xylem-limited bacterium phylogenetically related to the xanthomonads, with an unusually large and diversified range of plant hosts. To ascertain the origin of its peculiarities, its pan-genome was scanned to identify the genes that are not coherent with its phylogenetic position within the order Xanthomonadales. The results of the analysis revealed that a large fraction of the genes of the Xylella pan-genome have no ortholog or close paralog in the order Xanthomonadales. For a significant part of the genes, the closest homologue was found in bacteria belonging to distantly related taxonomic groups, most frequently in the Betaproteobacteria. Other species, such as Xanthomonas vasicola and Xanthomonas albilineans which were investigated for comparison, did not show a similar genetic contribution from distant branches of the prokaryotic tree of life. This finding indicates that the process of acquisition of DNA from the environment is still a relevant component of Xylella fastidiosa evolution. Although the ability of Xylella fastidiosa strains to recombine among themselves is well known, the results of the pan-genome analyses stressed the additional relevance of environmental DNA in shaping their genomes, with potential consequences on their phytopathological features.
Collapse
Affiliation(s)
- Giuseppe Firrao
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Marco Scortichini
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria-Centro di ricerca per l’Olivicoltura, Frutticoltura e Agrumicoltura, Via di Fioranello, 52, 00134 Rome, Italy;
| | - Laura Pagliari
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| |
Collapse
|
8
|
Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2020; 19:279-302. [PMID: 33425257 PMCID: PMC7777525 DOI: 10.1016/j.csbj.2020.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.
Collapse
|
9
|
Puławska J, Kałużna M, Warabieda W, Pothier JF, Gétaz M, van der Wolf JM. Transcriptome analysis of Xanthomonas fragariae in strawberry leaves. Sci Rep 2020; 10:20582. [PMID: 33239704 PMCID: PMC7688646 DOI: 10.1038/s41598-020-77612-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022] Open
Abstract
Xanthomonas fragariae is a quarantine bacterial pathogen that causes angular leaf spot on strawberry. The aim of our study was to analyse the mechanism of interaction of this bacterium with its host plant at the transcriptome level. For this purpose, mRNAs of X. fragariae growing in Wilbrink’s medium and from infected strawberry cv. Elsanta plants were isolated and sequenced using the Illumina MiSeq platform. The expression profiles of the bacteria in Wilbrink’s medium and in planta were very diverse. Of the 3939 CDSs recorded, 1995 had significantly different expression in planta (966 and 1029 genes were down- and upregulated, respectively). Among the genes showing increased expression in planta, those with eggNOG/COG (evolutionary genealogy of genes: Non-supervised Orthologous Groups/Cluster of Orthologous Groups) categories associated with bacterial cell motility, signal transduction, transport and metabolism of inorganic ions and carbohydrates and transcription were overrepresented. Among the genes with the most increased expression in planta, genes primarily associated with flagella synthesis and chemotaxis were found. It is also interesting to note that out of the 31 genes localized on a plasmid, 16 were expressed differently in planta, which may indicate their potential role in plant–pathogen interactions. Many genes with differentiated expression that were localized on chromosome and plasmid encode proteins of unknown function.
Collapse
Affiliation(s)
- Joanna Puławska
- Department of Phytopathology, Research Institute of Horticulture, 96-100, Skierniewice, Poland.
| | - Monika Kałużna
- Department of Phytopathology, Research Institute of Horticulture, 96-100, Skierniewice, Poland
| | - Wojciech Warabieda
- Department of Phytopathology, Research Institute of Horticulture, 96-100, Skierniewice, Poland
| | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Michael Gétaz
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | | |
Collapse
|
10
|
Gétaz M, Puławska J, Smits TH, Pothier JF. Host-Pathogen Interactions between Xanthomonas fragariae and Its Host Fragaria × ananassa Investigated with a Dual RNA-Seq Analysis. Microorganisms 2020; 8:E1253. [PMID: 32824783 PMCID: PMC7465820 DOI: 10.3390/microorganisms8081253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022] Open
Abstract
Strawberry is economically important and widely grown, but susceptible to a large variety of phytopathogenic organisms. Among them, Xanthomonas fragariae is a quarantine bacterial pathogen threatening strawberry productions by causing angular leaf spots. Using whole transcriptome sequencing, the gene expression of both plant and bacteria in planta was analyzed at two time points, 12 and 29 days post inoculation, in order to compare the pathogen and host response between the stages of early visible and of well-developed symptoms. Among 28,588 known genes in strawberry and 4046 known genes in X. fragariae expressed at both time points, a total of 361 plant and 144 bacterial genes were significantly differentially expressed, respectively. The identified higher expressed genes in the plants were pathogen-associated molecular pattern receptors and pathogenesis-related thaumatin encoding genes, whereas the more expressed early genes were related to chloroplast metabolism as well as photosynthesis related coding genes. Most X. fragariae genes involved in host interaction, recognition, and pathogenesis were lower expressed at late-phase infection. This study gives a first insight into the interaction of X. fragariae with its host. The strawberry plant changed gene expression in order to consistently adapt its metabolism with the progression of infection.
Collapse
Affiliation(s)
- Michael Gétaz
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland; (M.G.); (T.H.S.)
| | - Joanna Puławska
- Department of Phytopathology, Research Institute of Horticulture, 96-100 Skierniewice, Poland;
| | - Theo H.M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland; (M.G.); (T.H.S.)
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland; (M.G.); (T.H.S.)
| |
Collapse
|
11
|
mRNA extraction of Xanthomonas fragariae in strawberry and validation of reference genes for the RT-qPCR for study of bacterial gene expression. Mol Biol Rep 2019; 46:5723-5733. [PMID: 31368022 DOI: 10.1007/s11033-019-05006-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/26/2019] [Indexed: 01/11/2023]
Abstract
This is the first study which describes a unique procedure of isolating of high-quality, intact RNA from strawberry leaves of Xanthomonas fragariae, three most suitable reference genes, crucial for the normalization of RT-qPCR data for this pathogen and accurate expression analysis of target genes. In our study, various mathematic algorithms: NormFinder geNorm, BestKeeper, the delta CT method, RefFinder were adopted for validation of most stable reference genes from nine candidate genes (ffh, glyA, gyrA, gyrB, proC, pykA, recA, rpoB, rpoD). The analyses allowing to select three most suitable pioneer reference genes, gyrB, ffh, and pykA, that we recommend for the normalization of RT-qPCR data and for the study of the expression of target genes in Xf. Moreover, their combination as references allowed for an accurate expression analysis and computation of the fold change of the flhF and iroN2 genes in Xf. These two genes are important for the success of the colonization of plant tissue and pathogenicity and sequences of primers designed to study these genes, are presented.
Collapse
|
12
|
Garita-Cambronero J, Sena-Vélez M, Ferragud E, Sabuquillo P, Redondo C, Cubero J. Xanthomonas citri subsp. citri and Xanthomonas arboricola pv. pruni: Comparative analysis of two pathogens producing similar symptoms in different host plants. PLoS One 2019; 14:e0219797. [PMID: 31318915 PMCID: PMC6639005 DOI: 10.1371/journal.pone.0219797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023] Open
Abstract
Comparative studies in Xanthomonas have provided a vast amount of data that enabled to deepen in the knowledge of those factors associated with virulence and Xanthomonas plant interaction. The species of this genus present a wide range of host plants and a large number of studies have been focused to elucidate which mechanism are involved in this characteristic. In this study, comparative genomic and phenotypic analysis were performed between X. citri subsp. citri (Xcc), one of the most studied pathogens within Xanthomonas, and X. arboricola pv. pruni (Xap), a pathogen which has aroused great interest in recent time. The work was aimed to find those elements that contribute to their host divergence despite the convergence in the symptoms that each species cause on Citrus spp. and Prunus spp., respectively. This study reveals a set of genes that could be putatively associated with the adaptation of these pathogens to their hosts, being the most remarkable those involved in environmental sensing systems such as the case of the TonB-dependent transporters, the sensors of the two-component system and the methyl accepting chemotaxis proteins. Other important variants were found in processes related to the decomposition of the cell wall as could be appreciated by their dissimilar set of cell-wall degrading enzymes. Type three effectors, as one of the most important factors in delineating the host specificity in Xanthomonas, also showed a different array when comparing both species, being some of them unique to each pathogen. On the other hand, only small variations could be connected to other features such as the motility appendages and surface adhesion proteins, but these differences were accompanied by a dissimilar capacity to attach on host and non-host leaf surface. The molecular factors found in this work provide the basis to perform a more in-depth functional analyses that unveil those actual factors associated with pathogenesis and host specificity in Xcc and Xap.
Collapse
Affiliation(s)
- Jerson Garita-Cambronero
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Madrid, Spain.,Centro de Investigación de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo, Leon, Spain
| | - Marta Sena-Vélez
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Madrid, Spain.,Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Elisa Ferragud
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Madrid, Spain
| | - Pilar Sabuquillo
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Madrid, Spain
| | - Cristina Redondo
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Madrid, Spain
| | - Jaime Cubero
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Madrid, Spain
| |
Collapse
|
13
|
Liu F, McDonald M, Schwessinger B, Joe A, Pruitt R, Erickson T, Zhao X, Stewart V, Ronald PC. Variation and inheritance of the Xanthomonas raxX-raxSTAB gene cluster required for activation of XA21-mediated immunity. MOLECULAR PLANT PATHOLOGY 2019; 20:656-672. [PMID: 30773771 PMCID: PMC6637879 DOI: 10.1111/mpp.12783] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The rice XA21-mediated immune response is activated on recognition of the RaxX peptide produced by the bacterium Xanthomonas oryzae pv. oryzae (Xoo). The 60-residue RaxX precursor is post-translationally modified to form a sulfated tyrosine peptide that shares sequence and functional similarity with the plant sulfated tyrosine (PSY) peptide hormones. The 5-kb raxX-raxSTAB gene cluster of Xoo encodes RaxX, the RaxST tyrosylprotein sulfotransferase, and the RaxA and RaxB components of a predicted type I secretion system. To assess raxX-raxSTAB gene cluster evolution and to determine its phylogenetic distribution, we first identified rax gene homologues in other genomes. We detected the complete raxX-raxSTAB gene cluster only in Xanthomonas spp., in five distinct lineages in addition to X. oryzae. The phylogenetic distribution of the raxX-raxSTAB gene cluster is consistent with the occurrence of multiple lateral (horizontal) gene transfer events during Xanthomonas speciation. RaxX natural variants contain a restricted set of missense substitutions, as expected if selection acts to maintain peptide hormone-like function. Indeed, eight RaxX variants tested all failed to activate the XA21-mediated immune response, yet retained peptide hormone activity. Together, these observations support the hypothesis that the XA21 receptor evolved specifically to recognize Xoo RaxX.
Collapse
Affiliation(s)
- Furong Liu
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
| | - Megan McDonald
- Research School of BiologyAustralian National UniversityCanberra0200Australia
| | - Benjamin Schwessinger
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
- Research School of BiologyAustralian National UniversityCanberra0200Australia
| | - Anna Joe
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
| | - Rory Pruitt
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
| | - Teresa Erickson
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
| | - Xiuxiang Zhao
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
| | - Valley Stewart
- Department of Microbiology & Molecular GeneticsUniversity of CaliforniaDavisCA95616USA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome CenterUniversity of CaliforniaDavisCA95616USA
| |
Collapse
|
14
|
Garita‐Cambronero J, Palacio‐Bielsa A, Cubero J. Xanthomonas arboricola pv. pruni, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the X. arboricola species context. MOLECULAR PLANT PATHOLOGY 2018; 19:2053-2065. [PMID: 29575564 PMCID: PMC6638108 DOI: 10.1111/mpp.12679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Xanthomonas arboricola pv. pruni (Xap) causes bacterial spot of stone fruits and almond, an important disease that may reduce the yield and vigour of the trees, as well as the marketability of affected fruits. Xap lies within the Xanthomonas genus, which has been intensively studied because of its strain specialization and host range complexity. Here, we summarize the recent advances in our understanding of the complexities of Xap, including studies of the molecular features that result after comparative phenotypic and genomic analyses, in order to obtain a clearer overview of the bacterial behaviour and infection mechanism in the context of the X. arboricola species. TAXONOMIC STATUS Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species X. arboricola; Pathovar pruni. HOST RANGE AND SYMPTOMS Xap infects most Prunus species, including apricot, peach, nectarine, plum and almond, and occasionally cherry. Symptoms are found on leaves, fruits, twigs and branches or trunks. In severe infections, defoliation and fruit dropping may occur. DISTRIBUTION Bacterial spot of stone fruits and almond is worldwide in distribution, with Xap being isolated in Africa, North and South America, Asia, Europe and Oceania. It is a common disease in geographical areas in which stone fruits and almonds are grown. Xap is listed as a quarantine organism in several areas of the world. GENOME The genomes of six isolates from Xap have been publicly released. The genome consists of a single chromosome of around 5 000 000 bp with 65 mol% GC content and an extrachromosomal plasmid element of around 41 000 bp with 62 mol% GC content. Genomic comparative studies in X. arboricola have allowed the identification of putative virulence components associated with the infection process of bacterial spot of stone fruits and almond. DISEASE CONTROL Management of bacterial spot of stone fruits and almond is based on an integrated approach that comprises essential measures to avoid Xap introduction in a production zone, as well as the use of tolerant or resistant plant material and chemical treatments, mainly based on copper compounds. Management programmes also include the use of appropriate cultivation practices when the disease is already established. Finally, for the effective control of the disease, appropriate detection and characterization methods are needed for use in symptomatic or asymptomatic samples as a first approach for pathogen exclusion. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTPR; http://www.cost.eu/COST_Actions/ca/CA16107; http://www.xanthomonas.org.
Collapse
Affiliation(s)
- Jerson Garita‐Cambronero
- Departamento de Protección VegetalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Madrid 28040Spain
- Centro de Investigación de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo 24358LeónSpain
| | - Ana Palacio‐Bielsa
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón‐IA2 ‐ (CITA ‐ Universidad de Zaragoza)Zaragoza 50059Spain
| | - Jaime Cubero
- Departamento de Protección VegetalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Madrid 28040Spain
| |
Collapse
|
15
|
Jibrin MO, Potnis N, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Jones JB, Goss EM. Genomic Inference of Recombination-Mediated Evolution in Xanthomonas euvesicatoria and X. perforans. Appl Environ Microbiol 2018; 84:e00136-18. [PMID: 29678917 PMCID: PMC6007113 DOI: 10.1128/aem.00136-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/06/2018] [Indexed: 01/23/2023] Open
Abstract
Recombination is a major driver of evolution in bacterial populations, because it can spread and combine independently evolved beneficial mutations. Recombinant lineages of bacterial pathogens of plants are typically associated with the colonization of novel hosts and the emergence of new diseases. Here we show that recombination between evolutionarily and phenotypically distinct plant-pathogenic lineages generated recombinant lineages with unique combinations of pathogenicity and virulence factors. Xanthomonas euvesicatoria and Xanthomonas perforans are two closely related lineages causing bacterial spot disease on tomato and pepper worldwide. We sequenced the genomes of atypical strains collected from tomato in Nigeria and observed recombination in the type III secretion system and effector genes, which showed alleles from both X. euvesicatoria and X. perforans Wider horizontal gene transfer was indicated by the fact that the lipopolysaccharide cluster of one strain was most similar to that of a distantly related Xanthomonas pathogen of barley. This strain and others have experienced extensive genomewide homologous recombination, and both species exhibited dynamic open pangenomes. Variation in effector gene repertoires within and between species must be taken into consideration when one is breeding tomatoes for disease resistance. Resistance breeding strategies that target specific effectors must consider possibly dramatic variation in bacterial spot populations across global production regions, as illustrated by the recombinant strains observed here.IMPORTANCE The pathogens that cause bacterial spot of tomato and pepper are extensively studied models of plant-microbe interactions and cause problematic disease worldwide. Atypical bacterial spot strains collected from tomato in Nigeria, and other strains from Italy, India, and Florida, showed evidence of genomewide recombination that generated genetically distinct pathogenic lineages. The strains from Nigeria and Italy were found to have a mix of type III secretion system genes from X. perforans and X. euvesicatoria, as well as effectors from Xanthomonas gardneri These genes and effectors are important in the establishment of disease, and effectors are common targets of resistance breeding. Our findings point to global diversity in the genomes of bacterial spot pathogens, which is likely to affect the host-pathogen interaction and influence management decisions.
Collapse
Affiliation(s)
- Mustafa O Jibrin
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Southwest Research and Education Center, University of Florida, Immokalee, Florida, USA
- Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Gerald V Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Gary E Vallad
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Pamela D Roberts
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Southwest Research and Education Center, University of Florida, Immokalee, Florida, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Gétaz M, Krijger M, Rezzonico F, Smits THM, van der Wolf JM, Pothier JF. Genome-based population structure analysis of the strawberry plant pathogen Xanthomonas fragariae reveals two distinct groups that evolved independently before its species description. Microb Genom 2018; 4:e000189. [PMID: 29874158 PMCID: PMC6113873 DOI: 10.1099/mgen.0.000189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/11/2018] [Indexed: 11/18/2022] Open
Abstract
Xanthomonas fragariae is a quarantine organism in Europe, causing angular leaf spots on strawberry plants. It is spreading worldwide in strawberry-producing regions due to import of plant material through trade and human activities. In order to resolve the population structure at the strain level, we have employed high-resolution molecular typing tools on a comprehensive strain collection representing global and temporal distribution of the pathogen. Clustered regularly interspaced short palindromic repeat regions (CRISPRs) and variable number of tandem repeats (VNTRs) were identified within the reference genome of X. fragariae LMG 25863 as a potential source of variation. Strains from our collection were whole-genome sequenced and used in order to identify variable spacers and repeats for discriminative purpose. CRISPR spacer analysis and multiple-locus VNTR analysis (MLVA) displayed a congruent population structure, in which two major groups and a total of four subgroups were revealed. The two main groups were genetically separated before the first X. fragariae isolate was described and are potentially responsible for the worldwide expansion of the bacterial disease. Three primer sets were designed for discriminating CRISPR-associated markers in order to streamline group determination of novel isolates. Overall, this study describes typing methods to discriminate strains and monitor the pathogen population structure, more especially in the view of a new outbreak of the pathogen.
Collapse
Affiliation(s)
- Michael Gétaz
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland
| | - Marjon Krijger
- Wageningen University and Research, Wageningen, the Netherlands
| | - Fabio Rezzonico
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland
| | | | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland
| |
Collapse
|
17
|
Wang H, McTavish C, Turechek WW. Colonization and Movement of Xanthomonas fragariae in Strawberry Tissues. PHYTOPATHOLOGY 2018; 108:681-690. [PMID: 29298111 DOI: 10.1094/phyto-10-17-0356-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Xanthomonas fragariae causes angular leaf spot of strawberry, an important disease in strawberry growing regions worldwide. To better understand how X. fragariae multiplies and moves in strawberry plants, a green fluorescent protein (GFP)-labeled strain was constructed and used to monitor the pathogen's presence in leaf, petiole, and crown tissue with fluorescence microscopy following natural and wound inoculation in three strawberry cultivars. Taqman PCR was used to quantify bacterial densities in these same tissues regardless of the presence of GFP signal. Results showed X. fragariae colonized leaf mesophyll, the top 1 cm portion of the petiole adjacent to the leaf blade, and was occasionally found colonizing xylem vessels down to the middle of the petioles. The colonization of vascular bundles and the limited systemic movement that was observed appeared to be a passive process, of which the frequency increased with wounding and direct infiltration of bacteria into leaf veins. X. fragariae was able to directly enter petioles and colonize the space under the epidermis. Systemic movement of the bacteria into crown and other uninoculated tissues was not detected visually by GFP. However, X. fragariae was occasionally detected in these tissues by qPCR, but at quantities very near the qPCR detection limit. Petiole tissue harboring bacteria introduced either by direct entry through natural openings or wounds, or by systemic movement from infected foliar tissue, likely serves as a main source of initial inoculum in field plantings.
Collapse
Affiliation(s)
- Hehe Wang
- First author: Department of Plant and Environmental Sciences, Clemson University, Blackville, SC; second author: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Physiology and Pathology of Tree Fruits Research, Wenatchee, WA; and third author: USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL
| | - Christine McTavish
- First author: Department of Plant and Environmental Sciences, Clemson University, Blackville, SC; second author: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Physiology and Pathology of Tree Fruits Research, Wenatchee, WA; and third author: USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL
| | - William W Turechek
- First author: Department of Plant and Environmental Sciences, Clemson University, Blackville, SC; second author: U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Physiology and Pathology of Tree Fruits Research, Wenatchee, WA; and third author: USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL
| |
Collapse
|
18
|
Complete Genome Sequences of Three Isolates of Xanthomonas fragariae, the Bacterium Responsible for Angular Leaf Spots on Strawberry Plants. GENOME ANNOUNCEMENTS 2017; 5:5/32/e00642-17. [PMID: 28798165 PMCID: PMC5552974 DOI: 10.1128/genomea.00642-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xanthomonas fragariae is a worldwide-spread plant bacterial disease causing angular leaf spots, thus reducing the yield of production for strawberry fruits. Three isolates with various geographic and time origins were sequenced with long-read technology (PacBio) to generate finished genome sequences of virulent strains and observe the variability in their contents.
Collapse
|
19
|
Henry PM, Leveau JHJ. Finished Genome Sequences of Xanthomonas fragariae, the Cause of Bacterial Angular Leaf Spot of Strawberry. GENOME ANNOUNCEMENTS 2016; 4:e01271-16. [PMID: 27834715 PMCID: PMC5105108 DOI: 10.1128/genomea.01271-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 11/29/2022]
Abstract
Xanthomonas fragariae is a foliar pathogen of strawberry that is of significant concern to nursery production of strawberry transplants and field production of strawberry fruit. Long-read sequencing was employed to generate finished genomes for two isolates (each with one chromosome and two plasmids) from symptomatic plants in northern California.
Collapse
Affiliation(s)
- Peter M Henry
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Johan H J Leveau
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| |
Collapse
|
20
|
Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits. PLoS One 2016; 11:e0161977. [PMID: 27571391 PMCID: PMC5003339 DOI: 10.1371/journal.pone.0161977] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola.
Collapse
|
21
|
Kim DR, Gang GH, Jeon CW, Kang NJ, Lee SW, Kwak YS. Epidemiology and Control of Strawberry Bacterial Angular Leaf Spot Disease Caused by Xanthomonas fragariae. THE PLANT PATHOLOGY JOURNAL 2016; 32:290-9. [PMID: 27493604 PMCID: PMC4968639 DOI: 10.5423/ppj.oa.01.2016.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 05/22/2023]
Abstract
Strawberry bacterial angular leaf spot (ALS) disease, caused by Xanthomonas fragariae has become increasingly problematic in the strawberry agro-industry. ALS causes small angular water-soaked lesions to develop on the abaxial leaf surface. Studies reported optimum temperature conditions for X. fragariae are 20°C and the pathogen suffers mortality above 32°C. However, at the nursery stage, disease symptoms have been observed under high temperature conditions. In the present study, results showed X. fragariae transmission was via infected maternal plants, precipitation, and sprinkler irrigation systems. Systemic infections were detected using X. fragariae specific primers 245A/B and 295A/B, where 300-bp and 615-bp were respectively amplified. During the nursery stage (from May to August), the pathogen was PCR detected only in maternal plants, but not in soil or irrigation water through the nursery stage. During the cultivation period, from September to March, the pathogen was detected in maternal plants, progeny, and soil, but not in water. Additionally, un-infected plants, when planted with infected plants were positive for X. fragariae via PCR at the late cultivation stage. Chemical control for X. fragariae with oxolinic acid showed 87% control effects against the disease during the nursery period, in contrast to validamycin-A, which exhibited increased efficacy against the disease during the cultivation stage (control effect 95%). To our knowledge, this is the first epidemiological study of X. fragariae in Korean strawberry fields.
Collapse
Affiliation(s)
- Da-Ran Kim
- Dvision of Applied Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Gun-hye Gang
- Department of Plant Medicine and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju 52828,
Korea
| | - Chang-Wook Jeon
- Dvision of Applied Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Nam Jun Kang
- Department of Agricultural Plant Science and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju 52828,
Korea
| | - Sang-woo Lee
- Department of Horticulture, Gyeongnam National University of Science and Technology, Jinju 52725,
Korea
| | - Youn-Sig Kwak
- Department of Plant Medicine and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
22
|
Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Fischer-Le Saux M, Jacques MA. Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation. FRONTIERS IN PLANT SCIENCE 2015; 6:1126. [PMID: 26734033 DOI: 10.3389/fpls.2015.01126.ecollection2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/27/2015] [Indexed: 05/24/2023]
Abstract
The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.
Collapse
Affiliation(s)
- Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | - Martial Briand
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | - Salwa Essakhi
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | - Sophie Gironde
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | - Tristan Boureau
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences Angers, France
| | - Charles Manceau
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | | | - Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| |
Collapse
|
23
|
Aremu BR, Babalola OO. Classification and Taxonomy of Vegetable Macergens. Front Microbiol 2015; 6:1361. [PMID: 26640465 PMCID: PMC4661320 DOI: 10.3389/fmicb.2015.01361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/16/2015] [Indexed: 11/24/2022] Open
Abstract
Macergens are bacteria capable of releasing pectic enzymes (pectolytic bacteria). These enzymatic actions result in the separation of plant tissues leading to total plant destruction. This can be attributed to soft rot diseases in vegetables. These macergens primarily belong to the genus Erwinia and to a range of opportunistic pathogens namely: the Xanthomonas spp., Pseudomonas spp., Clostridium spp., Cytophaga spp., and Bacillus spp. They consist of taxa that displayed considerable heterogeneity and intermingled with members of other genera belonging to the Enterobacteriaceae. They have been classified based on phenotypic, chemotaxonomic and genotypic which obviously not necessary in the taxonomy of all bacterial genera for defining bacterial species and describing new ones These taxonomic markers have been used traditionally as a simple technique for identification of bacterial isolates. The most important fields of taxonomy are supposed to be based on clear, reliable and worldwide applicable criteria. Hence, this review clarifies the taxonomy of the macergens to the species level and revealed that their taxonomy is beyond complete. For discovery of additional species, further research with the use modern molecular methods like phylogenomics need to be done. This can precisely define classification of macergens resulting in occasional, but significant changes in previous taxonomic schemes of these macergens.
Collapse
Affiliation(s)
- Bukola R. Aremu
- Department of Biological Sciences, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Olubukola O. Babalola
- Department of Biological Sciences, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| |
Collapse
|
24
|
Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J, Martins J, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, Vallad GE, Barak JD, White FF, Miller SA, Ritchie D, Goss E, Bart RS, Setubal JC, Jones JB, Staskawicz BJ. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front Microbiol 2015; 6:535. [PMID: 26089818 PMCID: PMC4452888 DOI: 10.3389/fmicb.2015.00535] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/15/2015] [Indexed: 11/24/2022] Open
Abstract
Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors.
Collapse
Affiliation(s)
- Allison R. Schwartz
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, USA
| | - Neha Potnis
- Department of Plant Pathology, University of FloridaGainesville, FL, USA
| | - Sujan Timilsina
- Department of Plant Pathology, University of FloridaGainesville, FL, USA
| | - Mark Wilson
- Donald Danforth Plant Science CenterSt. Louis, MO, USA
| | - José Patané
- Department of Biochemistry, Institute of Chemistry, University of São PauloSão Paulo, Brazil
| | - Joaquim Martins
- Department of Biochemistry, Institute of Chemistry, University of São PauloSão Paulo, Brazil
| | | | - Douglas Dahlbeck
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, USA
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State UniversityManhattan, KS, USA
| | - Nalvo Almeida
- School of Computing, Federal University of Mato Grosso do SulCampo Grande, Brazil
| | - Gary E. Vallad
- Gulf Coast Research and Education Center, University of FloridaWimauma, FL, USA
| | - Jeri D. Barak
- Department of Plant Pathology, University of Wisconsin, MadisonMadison, WI, USA
| | - Frank F. White
- Department of Plant Pathology, Kansas State UniversityManhattan, KS, USA
| | - Sally A. Miller
- Department of Plant Pathology, Ohio Agricultural Research and Development CenterWooster, MA, USA
| | - David Ritchie
- Department of Plant Pathology, NC State UniversityRaleigh, NC, USA
| | - Erica Goss
- Department of Plant Pathology, University of FloridaGainesville, FL, USA
| | | | - João C. Setubal
- Department of Biochemistry, Institute of Chemistry, University of São PauloSão Paulo, Brazil
- Virginia Bioinformatics Institute, Virginia TechBlacksburg, VA, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of FloridaGainesville, FL, USA
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, USA
| |
Collapse
|
25
|
Pieretti I, Pesic A, Petras D, Royer M, Süssmuth RD, Cociancich S. What makes Xanthomonas albilineans unique amongst xanthomonads? FRONTIERS IN PLANT SCIENCE 2015; 6:289. [PMID: 25964795 PMCID: PMC4408752 DOI: 10.3389/fpls.2015.00289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. Compared to other species of Xanthomonas, X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy. Its genome, which has experienced significant erosion, has unique genomic features. It lacks two loci required for pathogenicity in other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis and the Hrp-T3SS (hypersensitive response and pathogenicity-type three secretion system) gene clusters. Instead, X. albilineans harbors in its genome an SPI-1 (Salmonella pathogenicity island-1) T3SS gene cluster usually found in animal pathogens. X. albilineans produces a potent DNA gyrase inhibitor called albicidin, which blocks chloroplast differentiation, resulting in the characteristic white foliar stripe symptoms. The antibacterial activity of albicidin also confers on X. albilineans a competitive advantage against rival bacteria during sugarcane colonization. Recent chemical studies have uncovered the unique structure of albicidin and allowed us to partially elucidate its fascinating biosynthesis apparatus, which involves an enigmatic hybrid PKS/NRPS (polyketide synthase/non-ribosomal peptide synthetase) machinery.
Collapse
Affiliation(s)
| | - Alexander Pesic
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Daniel Petras
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
26
|
Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Fischer-Le Saux M, Jacques MA. Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation. FRONTIERS IN PLANT SCIENCE 2015; 6:1126. [PMID: 26734033 PMCID: PMC4686621 DOI: 10.3389/fpls.2015.01126] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/27/2015] [Indexed: 05/03/2023]
Abstract
The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.
Collapse
Affiliation(s)
- Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
- *Correspondence: Sophie Cesbron
| | - Martial Briand
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | - Salwa Essakhi
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | - Sophie Gironde
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | - Tristan Boureau
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et SemencesAngers, France
| | - Charles Manceau
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | | | - Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| |
Collapse
|
27
|
Aritua V, Musoni A, Kabeja A, Butare L, Mukamuhirwa F, Gahakwa D, Kato F, Abang MM, Buruchara R, Sapp M, Harrison J, Studholme DJ, Smith J. The draft genome sequence of Xanthomonas species strain Nyagatare, isolated from diseased bean in Rwanda. FEMS Microbiol Lett 2014; 362:fnu055. [PMID: 25688063 DOI: 10.1093/femsle/fnu055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We announce the genome sequence for Xanthomonas species strain Nyagatare, isolated from beans showing unusual disease symptoms in Rwanda. This strain represents the first sequenced genome belonging to an as-yet undescribed Xanthomonas species known as species-level clade 1. It has at least 100 kb of genomic sequence that shows little or no sequence similarity to other xanthomonads, including a unique lipopolysaccharide synthesis gene cluster. At least one genomic region appears to have been acquired from relatives of Agrobacterium or Rhizobium species. The genome encodes homologues of only three known type-three secretion system effectors: AvrBs2, XopF1 and AvrXv4. Availability of the genome sequence will facilitate development of molecular tools for detection and diagnostics for this newly discovered pathogen of beans and facilitate epidemiological investigations of a potential causal link between this pathogen and the disease outbreak.
Collapse
Affiliation(s)
- Valente Aritua
- International Center for Tropical Agriculture, P.O. Box 6247, Kampala, Uganda
| | | | - Alice Kabeja
- Rwanda Agriculture Board, P.O. Box 5016, Kigali, Rwanda
| | - Louis Butare
- Rwanda Agriculture Board, P.O. Box 5016, Kigali, Rwanda
| | | | | | - Fred Kato
- International Center for Tropical Agriculture, P.O. Box 6247, Kampala, Uganda
| | - Mathew M Abang
- FAO Sub-regional Office for Eastern Africa, P.O. Box 5536, Addis Ababa, Ethiopia
| | - Robin Buruchara
- International Centre for Tropical Agriculture (CIAT) P.O. Box 823-00621, Nairobi, Kenya
| | - Melanie Sapp
- International Development, The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK
| | - James Harrison
- Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | | | - Julian Smith
- International Development, The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK
| |
Collapse
|