1
|
Zhang J, Qu S, Huang Y, Zhang X, Tong X, Fang Y, Rao T, Liu K, Lin J, Lin Y, Zeng C, Zhang G, Jing X, Liao J, Kan Y. Tuina Promotes Repair of Chronic Cervical Muscle Injury by Regulating Satellite Cell Proliferation and Differentiation and Inhibiting Myocyte Apoptosis. J Pain Res 2024; 17:3419-3429. [PMID: 39464413 PMCID: PMC11512779 DOI: 10.2147/jpr.s475942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose Chronic cervical muscle injury is the first common cause of the development of cervical spondylosis, and Tuina can effectively promote the repair of chronic cervical muscle injury and alleviate neck pain, but the mechanism behind its efficacy is still unknown. The proliferation and differentiation of muscle satellite cells and the apoptosis of cervical myocytes play important roles in the repair of chronic cervical muscle injuries; therefore, this study aimed to explore the potential mechanisms of Tuina to promote the repair of cervical muscle injuries in terms of the proliferation and differentiation of satellite cells and the apoptosis of myocytes. Patients and Methods Twenty-eight Wistar rats were randomly divided into control group, model group, Tuina group, and meloxicam group, with 7 rats in each group. Except for the control group, each group were establish a chronic cervical muscle injury model (CCMI). Meloxicam (0.79 mg/kg) was administered by gavage, and in the Tuina group, pressure was applied to the Fengchi acupoint on the affected side once a day. Morphological changes of cervical muscle tissues were detected by ultrasonic diagnostic instrument and HE staining, electrophysiological recordings of electromyographic changes, apoptosis rate was detected by TUNEL staining, and positive expression of Bax, Bcl-2, IGF-1, MyoD, and Pax-7 were detected by Immunohistochemistry and Western blot. Results In CCMI model rats, we observed that the cervical muscle fibers were disorganized, with irregular morphology, and the amplitude of electromyography was significantly weakened, while Tuina could significantly improve these symptoms and effectively promote the repair of chronic cervical muscle injury. Meanwhile, compared with the model group, Tuina could significantly increase the expression levels of IGF-1 (P<0.01) and MyoD (P<0.05) and decrease the expression level of Pax7 (P<0.05). In addition, we found that the number of apoptotic cells in cervical myocytes was reduced after Tuina intervention (P<0.05), and Tuina inhibited the expression of pro-apoptotic factor Bax (P<0.01) and promoted the expression of anti-apoptotic factor Bcl-2 (P<0.05). Conclusion Tuina can promote the proliferation and differentiation of satellite cells to repair chronic cervical muscle injury by regulating the expression of Pax7, MyoD, and IGF-1, as well as inhibiting the expression of Bax and promoting the expression of Bcl-2 to ameliorate the apoptosis of cervical myocytes in CCMI model rats.
Collapse
Affiliation(s)
- Jingyu Zhang
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Shenhua Qu
- Guangzhou Traditional Chinese Medicine Hospital, Guangzhou, 510000, People’s Republic of China
| | - Yuting Huang
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Xia Zhang
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Xiubing Tong
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Yanping Fang
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Tianyu Rao
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Kezhi Liu
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Jia Lin
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Yuye Lin
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Chufan Zeng
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Guojun Zhang
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People’s Republic of China
| | - Jun Liao
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| | - Yu Kan
- College of Acupuncture and Tuina, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
2
|
Abstract
Environmental stressors such as chemicals and physical agents induce various oxidative stresses and affect human health. To elucidate their underlying mechanisms, etiology and risk, analyses of gene expression signatures in environmental stress-induced human diseases, including neuronal disorders, cancer and diabetes, are crucially important. Recent studies have clarified oxidative stress-induced signaling pathways in human and experimental animals. These pathways are classifiable into several categories: reactive oxygen species (ROS) metabolism and antioxidant defenses, p53 pathway signaling, nitric oxide (NO) signaling pathway, hypoxia signaling, transforming growth factor (TGF)-beta bone morphogenetic protein (BMP) signaling, tumor necrosis factor (TNF) ligand-receptor signaling, and mitochondrial function. This review describes the gene expression signatures through which environmental stressors induce oxidative stress and regulate signal transduction pathways in rodent and human tissues.
Collapse
Affiliation(s)
- H Sone
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
3
|
Wang Y, Shi X, Ren L, Yao Y, Wang DA. In vitro osteogenesis of synovium mesenchymal cells induced by controlled release of alendronate and dexamethasone from a sintered microspherical scaffold. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 21:1227-38. [PMID: 20507717 DOI: 10.1163/092050609x12481751806259] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In vitro osteogenesis was successfully achieved with synovium-derived mesenchymal stem cells (SMSCs), which intrinsically have a strong chondrogenic tendency, by in situ release of alendronate (AL) and dexamethasone (Dex) from poly(lactic-co-glycolic acid) (PLGA)/hydroxyapatite (HA) sintered microspherical scaffold (PLGA/HA-SMS). Cumulative release profiles of AL and Dex from PLGA/HA-SMS and the influence on SMSCs osteogenic commitment were investigated. SMSCs seeded in Al-/Dex-loaded PLGA/HA-SMS (PLGA/HA-Com-SMS) exhibited significant osteogenic differentiation, as indicated by high yields of alkaline phosphatase (ALP) and bone calcification. In addition, mechanical properties (compressional) of PLGA/HA-Com-SMSs were also evaluated and approved. In conclusion, by promoting osteogenic commitment of SMSCs in vitro, this newly designed controlled-release system opens a new door to bone reparation and regeneration.
Collapse
Affiliation(s)
- Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | | | | | | | | |
Collapse
|
4
|
Lin L, Dai SD, Fan GY. Glucocorticoid-induced differentiation of primary cultured bone marrow mesenchymal cells into adipocytes is antagonized by exogenous Runx2. APMIS 2010; 118:595-605. [PMID: 20666741 DOI: 10.1111/j.1600-0463.2010.02634.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Long-term clinical use of glucocorticoids often causes the serious side effect of non-traumatic avascular osteonecrosis. The aim of this study was to examine the effects and mechanisms of a glucocorticoid, dexamethasone (Dex), on differentiation of primary cultured rat bone marrow mesenchymal cells (BMCs). We also tried to block the inhibitory effects of Dex on osteoblast differentiation. Adipocyte markers (peroxisome proliferator-activated receptorgamma-2 and aP2) were increased in response to Dex treatment in a dose- and time-dependent manner, while osteoblastic markers [Runx2, COL 1, osterix, alkaline phosphatase (ALP) and OC] were down-regulated, consistent with ALP and osteocalcin promoter activity. To validate the effects of Runx2 on the expression of osteogenesis and adipocyte genes, pCMV/Flag-Runx2 was transfected into BMCs, and relevant markers were detected after 10(-7) M Dex treatment for 48 h. The results indicated that Dex treatment induced adipogenic differentiation and suppressed proliferation. No significant difference was detected in expressions of these genes between Runx2-transfected cells and Dex-treated BMCs. These data suggest that Dex primarily induced adipocyte differentiation of BMCs. Exogenous Runx2 can antagonize the effect of Dex on osteoblast differentiation.
Collapse
Affiliation(s)
- Le Lin
- Departments of Orthopedics, First Affiliated Hospital China Medical University, Shenyang 110001, China
| | | | | |
Collapse
|
5
|
Shi X, Wang Y, Varshney RR, Ren L, Gong Y, Wang DA. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro. Eur J Pharm Sci 2009; 39:59-67. [PMID: 19895885 DOI: 10.1016/j.ejps.2009.10.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 10/15/2009] [Accepted: 10/25/2009] [Indexed: 01/09/2023]
Abstract
In this study, in vitro osteogenesis was successfully achieved in human mesenchymal stem cells (hMSCs) by controlled release of the osteogenesis-inducing drugs dexamethasone, ascorbic acid (AA) and beta-glycerophosphate (GP) from poly(lactic-co-glycolic acid) (PLGA) sintered microsphere scaffolds (SMS). We investigated the osteogenesis of human MSCs (hMSCs) on dexamethasone laden PLGA-SMS (PLGA-Dex-SMS), and dexamethasone, AA and GP laden PLGA-SMS (PLGA-Com-SMS). hMSCs cultured on the microsphere systems, which act as drug release vehicles and also promote cell growth/tissue formation-displayed a strong osteogenic commitment locally. The osteogenic commitment of hMSCs on the scaffolds were verified by alkaline phosphatase (ALP) activity assay, calcium secretion assay, real-time PCR and immunohistochemistry analysis. The results indicated hMSCs cultured on PLGA-Com-SMS exhibited superior osteogenic differentiation owing to significantly high phenotypic expression of typical osteogenic genes-osteocalcin (OC), type I collagen, alkaline phosphatase (ALP), and Runx-2/Cbfa-1, and protein secretion of bone-relevant markers such as osteoclast and type I collagen when compared with PLGA-Dex-SMS. In conclusion, by promoting osteogenic development of hMSCs in vitro, this newly designed controlled release system opens a new door to bone reparation and regeneration.
Collapse
Affiliation(s)
- Xuetao Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | | | | | | | | | | |
Collapse
|
6
|
Ron A, Shur I, Daniel R, Singh RR, Fishelson N, Croitoru N, Benayahu D, Shacham-Diamand Y. Dielectric screening of early differentiation patterns in mesenchymal stem cells induced by steroid hormones. Bioelectrochemistry 2009; 78:161-72. [PMID: 19837013 DOI: 10.1016/j.bioelechem.2009.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/23/2009] [Accepted: 09/18/2009] [Indexed: 11/19/2022]
Abstract
In the framework of this study, target identification and localization of differentiation patterns by means of dielectric spectroscopy is presented. Here, a primary pre-osteoblastic bone marrow-derived MBA-15 cellular system was used to study the variations in the dielectric properties of mesenchymal stem cells while exposed to differentiation regulators. Using the fundamentals of mixed dielectric theories combined with finite numerical tools, the permittivity spectra of MBA-15 cell suspensions have been uniquely analyzed after being activated by steroid hormones to express osteogenic phenotypes. Following the spectral analysis, significant variations were revealed in the dielectric properties of the activated cells in comparison to the untreated populations. Based on the differentiation patterns of MBA-15, the electrical modifications were found to be highly correlated with the activation of specific cellular mechanisms which directly react to the hormonal inductions. In addition, by describing the dielectric dispersion in terms of transfer functions, it is shown that the spectral perturbations are well adapted to variations in the electrical characteristics of the cells. The reported findings vastly emphasize the tight correlation between the cellular and electrical state of the differentiated cells. It therefore emphasizes the vast abilities of impedance-based techniques as potential screening tools for stem cell analysis.
Collapse
Affiliation(s)
- Amit Ron
- Department of Physical Electronics, Faculty of Engineering, Tel-Aviv University, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Heart failure is a complex, complicated disease that is not yet fully understood. We used the Module Map algorithm to uncover groups of genes that have a similar pattern of expression under various conditions of heart stress. These groups of genes are called modules and may serve as computational predictions of biological pathways for the various clinical situations. The Module Map algorithm allows a large-scale analysis of genes expressed. We applied this algorithm to 700 different mouse experiments downloaded from the Gene Expression Omnibus database, which identified 884 modules. The analysis reconstructed partially known principles that play a role in governing the response of heart to stress, thus demonstrating the strength of the method. We have shown a role of genes related to the immune system in conditions of heart remodeling and failure. We have also shown changes in the expression of genes involved with energy metabolism and changes in the expression of contractile proteins of the heart following myocardial infarction. When focusing on another module we noted a new correlation between genes related to osteogenesis and heart failure, including Runx2 and Ahsg, whose role in heart failure was unknown so far. Despite a lack of prior biological knowledge, the Module Map algorithm has reconstructed known pathways, which demonstrates the strength of this new method for analyzing gene profiles related to clinical phenomenon. The method and the analysis presented are a new avenue to uncover the correlation of clinical conditions to the molecular level.
Collapse
Affiliation(s)
- Uri David Akavia
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
9
|
Pierotti S, Gandini L, Lenzi A, Isidori AM. Pre-receptorial regulation of steroid hormones in bone cells: insights on glucocorticoid-induced osteoporosis. J Steroid Biochem Mol Biol 2008; 108:292-9. [PMID: 17950597 DOI: 10.1016/j.jsbmb.2007.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the past decades, concern on glucocorticoid-induced osteoporosis has increased with the widespread use of exogenous glucocorticoids (GC). Mature bone-forming cells (osteoblasts) are considered to be the principal site of action of GC in the skeleton. More likely, it is the entire cellular and molecular network surrounding these cells that is targeted by pharmacological doses of GC. Not only osteoblast and osteocyte metabolism, but the whole differentiation of mesenchymal stem cell toward the osteoblast lineage has been proven to be sensitive to GC. The effects of GC on this process are different according to the stage of differentiation of bone cell precursors. The presence of intact GC signalling is crucial for normal bone development and physiology, as opposed to the detrimental effect of high dose exposure. Both the physiological and pharmacological effects of GC are locally modulated by the activity of the 11beta-hydroxysteroid dehydrogenase 1 (HSD1) that acts primarily as a glucocorticoid activator converting the inactive glucocorticoid (cortisone) into the active hormone (cortisol). We reviewed the metabolic and differentiation pathways controlled by GC signalling. These data have been merged with the recent evidences that 11beta-HSD1 exert an important role by regulating the vulnerability of bone cells to GC. The different kinetics of 11beta-HSD1 at various stage of differentiation and the GC-dependency of enzymatic activity have been presented.
Collapse
Affiliation(s)
- Silvia Pierotti
- Department of Medical Pathophysiology, University of Rome La Sapienza, Viale del Policlinico 155, Rome, Italy
| | | | | | | |
Collapse
|