1
|
Sapp V, Aguirre A, Mainkar G, Ding J, Adler E, Liao R, Sharma S, Jain M. Genome-wide CRISPR/Cas9 screening in human iPS derived cardiomyocytes uncovers novel mediators of doxorubicin cardiotoxicity. Sci Rep 2021; 11:13866. [PMID: 34230586 PMCID: PMC8260754 DOI: 10.1038/s41598-021-92988-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
Human induced pluripotent stem (iPS) cell technologies coupled with genetic engineering now facilitate the study of the molecular underpinnings of disease in relevant human cell types. Application of CRISPR/Cas9-based approaches for genome-scale functional screening in iPS-derived cells, however, has been limited by technical constraints, including inefficient transduction in pooled format, loss of library representation, and poor cellular differentiation. Herein, we present optimized approaches for whole-genome CRISPR/Cas9 based screening in human iPS derived cardiomyocytes with near genome-wide representation at both the iPS and differentiated cell stages. As proof-of-concept, we perform a screen to investigate mechanisms underlying doxorubicin mediated cell death in iPS derived cardiomyocytes. We identified two poorly characterized, human-specific transporters (SLCO1A2, SLCO1B3) whose loss of function protects against doxorubicin-cardiotoxicity, but does not affect cell death in cancer cells. This study provides a technical framework for genome-wide functional screening in iPS derived cells and identifies new targets to mitigate doxorubicin-cardiotoxicity in humans.
Collapse
Affiliation(s)
- Valerie Sapp
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Aitor Aguirre
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Gayatri Mainkar
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Jeffrey Ding
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Eric Adler
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Ronglih Liao
- Department of Medicine, Stanford University, Palo Alto, USA
| | - Sonia Sharma
- La Jolla Institute for Immunology, San Diego, CA, USA
| | - Mohit Jain
- Department of Medicine, University of California, San Diego, San Diego, CA, USA.
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
2
|
Introduction of shRNAs, miRNAs, or AntagomiRs into Primary Human Liver Cells Through Lentiviral Vectors. Methods Mol Biol 2018; 1448:77-84. [PMID: 27317174 DOI: 10.1007/978-1-4939-3753-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
RNA interference (RNAi) is a specific and efficient method to silence gene expression in mammalian cells. However, genetic manipulation of primary cells including human hepatocytes by RNAi remained challenging. Therefore an efficient gene transfer protocol to modify gene expression in primary cells by using VSV-G-pseudotyped, EGFP-expressing lentiviral vectors was established. The protocol comprises the production of lentiviral vectors as well as the steps for efficient delivery of short-hairpin RNAs (shRNAs), microRNAs, or antagomiRs to human hepatocytes. With this method the amount of preparative work is reduced, by achieving high transduction efficiencies with low multiplicity of infection (MOI). Depending on the laboratory equipment, we provide two alternative workflows. The procedure of lentiviral vector production with subsequent titer determination takes approx. 6-10 working days.
Collapse
|
3
|
Han S, Bae HJ, Kim SD, Park W, Kwon S. An encoded viral micropatch for multiplex cell-based assays through localized gene delivery. LAB ON A CHIP 2017; 17:2435-2442. [PMID: 28555213 DOI: 10.1039/c7lc00372b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The increasing number of potential drug targets and compounds has led to the development of high-throughput cell-based assays. Simultaneous processing of multiple targets in the same experiment based on localized target gene expression is a very efficient strategy for this purpose. To address this need, we present an adenoviral vector-immobilized microparticle with two-dimensional (2D) shape-encoding properties that allows localized patch-like gene delivery to monolayer-cultured cells. This format conveniently achieves multiplexed gene delivery compatible with both high-throughput cellular assays and fluorescence high-content imaging instruments. A multiplex G protein-coupled receptor (GPCR) internalization assay was developed to demonstrate the compatibility of this system with high-throughput image-based cellular assays.
Collapse
Affiliation(s)
- Sangkwon Han
- QuantaMatrix Inc., Seoul National University Hospital, Daehak-ro, Jongno-gu, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
4
|
McConnell KI, Schweller RM, Diehl MR, Suh J. Live-cell microarray surface coatings supporting reverse transduction by adeno-associated viruses. Biotechniques 2012; 51:255-8. [PMID: 21988691 DOI: 10.2144/000113748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/25/2011] [Indexed: 11/23/2022] Open
Abstract
High-throughput live-cell microarray technologies that facilitate combinatorial screening of genes and RNA interference (RNAi) would be invaluable in the identification of key gene expression profiles involved in complex cellular behaviors. Each spot on such a microarray can comprise a unique combination of genes or RNAi packaged into gene delivery vectors. Live target cells seeded on top of the microarrays would express the combination of genetic factors, potentially leading to phenotypic changes within cells. Here, we investigate the feasibility of using adeno-associated virus (AAV) as a gene delivery agent for such live-cell genetic microarrays. A robotic spotter was used to deposit AAV onto gamma-amino propyl silane, amine silane, or nitrocellulose-coated glass slides. Virus deposition and reverse transduction of target cells were found to be surface coating-dependent with nitrocellulose coating yielding the best AAV deposition, while also producing discrete islands of highly transduced cells. Our results demonstrate the feasibility of using nitrocellulose-coated surfaces for the development of AAV-based genetic microarrays.
Collapse
|
5
|
Abstract
Cell-based microarrays were first described by Ziauddin and Sabatini in 2001 as a novel method for performing high-throughput screens of gene function. They reported a technique whereby expression vectors containing the open reading frame (ORF) of human genes were printed onto glass microscope slides to form a microarray. Transfection reagents were added pre- or post-spotting and cells grown over the surface of the array. They demonstrated that cells growing in the immediate vicinity of the expression vectors underwent 'reverse transfection' and that subsequent alterations in cell function could then be detected by secondary assays performed on the array. Subsequent publications have adapted the technique to a variety of applications and have also shown that the approach works when arrays are fabricated using siRNAs and compounds. The potential of this method for performing analyses of gene function and identification of novel therapeutic agents has now been clearly demonstrated. Current efforts are focused on improving and harnessing this technology for high-throughput screening applications.
Collapse
Affiliation(s)
- Ella Palmer
- Clinical Sciences Centre, Hammersmith Hospital, London, UK.
| |
Collapse
|
6
|
Rajan S, Djambazian H, Dang HCP, Sladek R, Hudson TJ. The living microarray: a high-throughput platform for measuring transcription dynamics in single cells. BMC Genomics 2011; 12:115. [PMID: 21324195 PMCID: PMC3050818 DOI: 10.1186/1471-2164-12-115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 02/16/2011] [Indexed: 12/15/2022] Open
Abstract
Background Current methods of measuring transcription in high-throughput have led to significant improvements in our knowledge of transcriptional regulation and Systems Biology. However, endpoint measurements obtained from methods that pool populations of cells are not amenable to studying time-dependent processes that show cell heterogeneity. Results Here we describe a high-throughput platform for measuring transcriptional changes in real time in single mammalian cells. By using reverse transfection microarrays we are able to transfect fluorescent reporter plasmids into 600 independent clusters of cells plated on a single microscope slide and image these clusters every 20 minutes. We use a fast-maturing, destabilized and nuclear-localized reporter that is suitable for automated segmentation to accurately measure promoter activity in single cells. We tested this platform with synthetic drug-inducible promoters that showed robust induction over 24 hours. Automated segmentation and tracking of over 11 million cell images during this period revealed that cells display substantial heterogeneity in their responses to the applied treatment, including a large proportion of transfected cells that do not respond at all. Conclusions The results from our single-cell analysis suggest that methods that measure average cellular responses, such as DNA microarrays, RT-PCR and chromatin immunoprecipitation, characterize a response skewed by a subset of cells in the population. Our method is scalable and readily adaptable to studying complex systems, including cell proliferation, differentiation and apoptosis.
Collapse
Affiliation(s)
- Saravanan Rajan
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
7
|
Volkmer H, Weise F. Cell-based microarrays of infectious adenovirus encoding short hairpin RNA (shRNA). Methods Mol Biol 2010; 706:97-106. [PMID: 21104057 DOI: 10.1007/978-1-61737-970-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Genome-wide screening procedures have developed into a useful tool for assigning new functions to known proteins or for identifying new interplayers in cell metabolism, especially under pathological conditions. Since primary cells reflect the physiological situation more closely than transformed cell lines, their employment in such screenings is highly desirable. A difficulty to overcome--besides the shortage in cell supply--is that primary cells are less amenable to classical methods of genetic manipulation such as lipofection or electroporation. By using adenovirus as the vehicle for genetic manipulation, efficient transfer of genetic information can be achieved without drastic effects on cell viability, and by using a microarray format even small amounts of cells suffice to perform a screen.
Collapse
Affiliation(s)
- Hansjürgen Volkmer
- Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany.
| | | |
Collapse
|