1
|
Li Z, Pollet N. Impact of a horizontally transferred Helitron family on genome evolution in Xenopus laevis. Mob DNA 2025; 16:19. [PMID: 40241130 PMCID: PMC12001565 DOI: 10.1186/s13100-025-00356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Within eukaryotes, most horizontal transfer of genetic material involves mobile DNA sequences and such events are called horizontal transposable element transfer (HTT). Although thousands of HTT examples have been reported, the transfer mechanisms and their impacts on host genomes remain elusive. RESULTS In this work, we carefully annotated three Helitron families within several Xenopus frog genomes. One of the Helitron family, Heli1Xen1, is recurrently involved in capturing and shuffling Xenopus laevis genes required in early embryonic development. Remarkably, we found that Heli1Xen1 is seemingly expressed in X. laevis and has produced multiple genomic polymorphisms within the X. laevis population. To identify the origin of Heli1Xen1, we searched its consensus sequence against available genome assemblies. We found highly similar copies in the genomes of another 13 vertebrate species from divergent vertebrate lineages, including reptiles, ray-finned fishes and amphibians. Further phylogenetic analysis provides evidence showing that Heli1Xen1 invaded these lineages via HTT quite recently, around 0.58-10.74 million years ago. CONCLUSIONS The frequently Heli1Xen1-involved HTT events among reptiles, fishes and amphibians could provide insights into possible vectors for transfer, such as shared viruses across lineages. Furthermore, we propose that the Heli1Xen1 sequence could be an ideal candidate for studying the mechanism and genomic impact of Helitron transposition.
Collapse
Affiliation(s)
- Zhen Li
- UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, 91198, France
| | - Nicolas Pollet
- UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, CNRS, IRD, Gif-sur-Yvette, 91198, France.
| |
Collapse
|
2
|
Barro-Trastoy D, Köhler C. Helitrons: genomic parasites that generate developmental novelties. Trends Genet 2024; 40:437-448. [PMID: 38429198 DOI: 10.1016/j.tig.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Helitrons, classified as DNA transposons, employ rolling-circle intermediates for transposition. Distinguishing themselves from other DNA transposons, they leave the original template element unaltered during transposition, which has led to their characterization as 'peel-and-paste elements'. Helitrons possess the ability to capture and mobilize host genome fragments, with enormous consequences for host genomes. This review discusses the current understanding of Helitrons, exploring their origins, transposition mechanism, and the extensive repercussions of their activity on genome structure and function. We also explore the evolutionary conflicts stemming from Helitron-transposed gene fragments and elucidate their domestication for regulating responses to environmental challenges. Looking ahead, further research in this evolving field promises to bring interesting discoveries on the role of Helitrons in shaping genomic landscapes.
Collapse
Affiliation(s)
- Daniela Barro-Trastoy
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Claudia Köhler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 75007, Sweden.
| |
Collapse
|
3
|
Gao Y, Xu Z, Zhang L, Li S, Wang S, Yang H, Liu X, Zeng D, Liu Q, Qian Q, Zhang B, Zhou Y. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nat Commun 2020; 11:5219. [PMID: 33060584 PMCID: PMC7566476 DOI: 10.1038/s41467-020-19019-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
Nitrogen (N) is a macronutrient that boosts carbon (C) metabolism and plant growth leading to biomass accumulation. The molecular connection between nitrogen utilization efficiency (NUE) and biomass production remains unclear. Here, via quantitative trait loci analysis and map-based cloning, we reveal that natural variation at the MYB61 locus leads to differences in N use and cellulose biogenesis between indica and japonica subspecies of rice. MYB61, a transcriptional factor that regulates cellulose synthesis, is directly regulated by a known NUE regulator GROWTH-REGULATING FACTOR4 (GRF4), which coordinates cellulosic biomass production and N utilization. The variation at MYB61 has been selected during indica and japonica domestication. The indica allele of MYB61 displays robust transcription resulting in higher NUE and increased grain yield at reduced N supply than that of japonica. Our study hence unravels how C metabolism is linked to N uptake and may provide an opportunity to reduce N use for sustainable agriculture. The molecular connection between nitrogen utilization efficiency (NUE) and biomass production is unclear. Here, the authors show that differences in NUE and cellulose biogenesis between rice indica and japonica subspecies can be explained by variation at the MYB61 locus, which is regulated by the NUE regulator GRF4.
Collapse
Affiliation(s)
- Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, 225009, Yangzhou, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shance Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shaogan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hanlei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, 310006, Hangzhou, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, 225009, Yangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, 310006, Hangzhou, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
4
|
Touati R, Messaoudi I, Oueslati AE, Lachiri Z, Kharrat M. Classification of intra-genomic helitrons based on features extracted from different orders of FCGS. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2019.100271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Chellapan BV, van Dam P, Rep M, Cornelissen BJC, Fokkens L. Non-canonical Helitrons in Fusarium oxysporum. Mob DNA 2016; 7:27. [PMID: 27990178 PMCID: PMC5148889 DOI: 10.1186/s13100-016-0083-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/03/2016] [Indexed: 01/18/2023] Open
Abstract
Background Helitrons are eukaryotic rolling circle transposable elements that can have a large impact on host genomes due to their copy-number and their ability to capture and copy genes and regulatory elements. They occur widely in plants and animals, and have thus far been relatively little investigated in fungi. Results Here, we comprehensively survey Helitrons in several completely sequenced genomes representing the F. oxysporum species complex (FOSC). We thoroughly characterize 5 different Helitron subgroups and determine their impact on genome evolution and assembly in this species complex. FOSC Helitrons resemble members of the Helitron2 variant that includes Helentrons and DINEs. The fact that some Helitrons appeared to be still active in FOSC provided the opportunity to determine whether Helitrons occur as a circular intermediate in FOSC. We present experimental evidence suggesting that at least one Helitron subgroup occurs with joined ends, suggesting a circular intermediate. We extend our analyses to other Pezizomycotina and find that most fungal Helitrons we identified group phylogenetically with Helitron2 and probably have similar characteristics. Conclusions FOSC genomes harbour non-canonical Helitrons that are characterized by asymmetric terminal inverted repeats, show hallmarks of recent activity and likely transpose via a circular intermediate. Bioinformatic analyses indicate that they are representative of a large reservoir of fungal Helitrons that thus far has not been characterized. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0083-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biju Vadakkemukadiyil Chellapan
- Department of Computational Biology and Bioinformatics, University of Kerala, Karyavattom Campus, Karyavattom PO, Trivandrum, Kerala India ; Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94215, 1090 Amsterdam, GE The Netherlands
| | - Peter van Dam
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94215, 1090 Amsterdam, GE The Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94215, 1090 Amsterdam, GE The Netherlands
| | - Ben J C Cornelissen
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94215, 1090 Amsterdam, GE The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, P.O. Box 94215, 1090 Amsterdam, GE The Netherlands
| |
Collapse
|
6
|
Abstract
Helitrons, the eukaryotic rolling-circle transposable elements, are widespread but most prevalent among plant and animal genomes. Recent studies have identified three additional coding and structural variants of Helitrons called Helentrons, Proto-Helentron, and Helitron2. Helitrons and Helentrons make up a substantial fraction of many genomes where nonautonomous elements frequently outnumber the putative autonomous partner. This includes the previously ambiguously classified DINE-1-like repeats, which are highly abundant in Drosophila and many other animal genomes. The purpose of this review is to summarize what we have learned about Helitrons in the decade since their discovery. First, we describe the history of autonomous Helitrons, and their variants. Second, we explain the common coding features and difference in structure of canonical Helitrons versus the endonuclease-encoding Helentrons. Third, we review how Helitrons and Helentrons are classified and discuss why the system used for other transposable element families is not applicable. We also touch upon how genome-wide identification of candidate Helitrons is carried out and how to validate candidate Helitrons. We then shift our focus to a model of transposition and the report of an excision event. We discuss the different proposed models for the mechanism of gene capture. Finally, we will talk about where Helitrons are found, including discussions of vertical versus horizontal transfer, the propensity of Helitrons and Helentrons to capture and shuffle genes and how they impact the genome. We will end the review with a summary of open questions concerning the biology of this intriguing group of transposable elements.
Collapse
|
7
|
Xiong W, Du C. Mining hidden polymorphic sequence motifs from divergent plant helitrons. Mob Genet Elements 2015; 4:1-5. [PMID: 26442169 PMCID: PMC4588551 DOI: 10.4161/21592543.2014.971635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 12/02/2022] Open
Abstract
As a major driving force of genome evolution, transposons have been deviating from their original connotation as “junk” DNA ever since their important roles were revealed. The recently discovered Helitron transposons have been investigated in diverse eukaryotic genomes because of their remarkable gene-capture ability and other features that are crucial to our current understanding of genome dynamics. Helitrons are not canonical transposons in that they do not end in inverted repeats or create target site duplications, which makes them difficult to identify. Previous methods mainly rely on sequence alignment of conserved Helitron termini or manual curation. The abundance of Helitrons in genomes is still underestimated. We developed an automated and generalized tool, HelitronScanner, that identified a plethora of divergent Helitrons in many plant genomes. A local combinational variable approach as the key component of HelitronScanner offers a more granular representation of conserved nucleotide combinations and therefore is more sensitive in finding divergent Helitrons. This commentary provides an in-depth view of the local combinational variable approach and its association with Helitron sequence patterns. Analysis of Helitron terminal sequences shows that the local combinational variable approach is an efficacious representation of nucleotide patterns imperceptible at a full-sequence level.
Collapse
Affiliation(s)
- Wenwei Xiong
- Department of Biology and Molecular Biology; Montclair State University ; Montclair, NJ USA
| | - Chunguang Du
- Department of Biology and Molecular Biology; Montclair State University ; Montclair, NJ USA
| |
Collapse
|
8
|
Jiang SY, Ma A, Ramamoorthy R, Ramachandran S. Genome-wide survey on genomic variation, expression divergence, and evolution in two contrasting rice genotypes under high salinity stress. Genome Biol Evol 2014; 5:2032-50. [PMID: 24121498 PMCID: PMC3845633 DOI: 10.1093/gbe/evt152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expression profiling is one of the most important tools for dissecting biological functions of genes and the upregulation or downregulation of gene expression is sufficient for recreating phenotypic differences. Expression divergence of genes significantly contributes to phenotypic variations. However, little is known on the molecular basis of expression divergence and evolution among rice genotypes with contrasting phenotypes. In this study, we have implemented an integrative approach using bioinformatics and experimental analyses to provide insights into genomic variation, expression divergence, and evolution between salinity-sensitive rice variety Nipponbare and tolerant rice line Pokkali under normal and high salinity stress conditions. We have detected thousands of differentially expressed genes between these two genotypes and thousands of up- or downregulated genes under high salinity stress. Many genes were first detected with expression evidence using custom microarray analysis. Some gene families were preferentially regulated by high salinity stress and might play key roles in stress-responsive biological processes. Genomic variations in promoter regions resulted from single nucleotide polymorphisms, indels (1–10 bp of insertion/deletion), and structural variations significantly contributed to the expression divergence and regulation. Our data also showed that tandem and segmental duplication, CACTA and hAT elements played roles in the evolution of gene expression divergence and regulation between these two contrasting genotypes under normal or high salinity stress conditions.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
9
|
Thomas J, Phillips CD, Baker RJ, Pritham EJ. Rolling-circle transposons catalyze genomic innovation in a mammalian lineage. Genome Biol Evol 2014; 6:2595-610. [PMID: 25223768 PMCID: PMC4224331 DOI: 10.1093/gbe/evu204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rolling-circle transposons (Helitrons) are a newly discovered group of mobile DNA widespread in plant and invertebrate genomes but limited to the bat family Vespertilionidae among mammals. Little is known about the long-term impact of Helitron activity because the genomes where Helitron activity has been extensively studied are predominated by young families. Here, we report a comprehensive catalog of vetted Helitrons from the 7× Myotis lucifugus genome assembly. To estimate the timing of transposition, we scored presence/absence across related vespertilionid genome sequences with estimated divergence times. This analysis revealed that the Helibat family has been a persistent source of genomic innovation throughout the vespertilionid diversification from approximately 30–36 Ma to as recently as approximately 1.8–6 Ma. This is the first report of persistent Helitron transposition over an extended evolutionary timeframe. These findings illustrate that the pattern of Helitron activity is akin to the vertical persistence of LINE retrotransposons in primates and other mammalian lineages. Like retrotransposition in primates, rolling-circle transposition has generated lineage-specific variation and accounts for approximately 110 Mb, approximately 6% of the genome of M. lucifugus. The Helitrons carry a heterogeneous assortment of host sequence including retroposed messenger RNAs, retrotransposons, DNA transposons, as well as introns, exons and regulatory regions (promoters, 5′-untranslated regions [UTRs], and 3′-UTRs) of which some are evolving in a pattern suggestive of purifying selection. Evidence that Helitrons have contributed putative promoters, exons, splice sites, polyadenylation sites, and microRNA-binding sites to transcripts otherwise conserved across mammals is presented, and the implication of Helitron activity to innovation in these unique mammals is discussed.
Collapse
Affiliation(s)
- Jainy Thomas
- Department of Human Genetics, University of Utah
| | - Caleb D Phillips
- Department of Biological Sciences and Museum, Texas Tech University
| | - Robert J Baker
- Department of Biological Sciences and Museum, Texas Tech University
| | | |
Collapse
|
10
|
HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. Proc Natl Acad Sci U S A 2014; 111:10263-8. [PMID: 24982153 DOI: 10.1073/pnas.1410068111] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transposons make up the bulk of eukaryotic genomes, but are difficult to annotate because they evolve rapidly. Most of the unannotated portion of sequenced genomes is probably made up of various divergent transposons that have yet to be categorized. Helitrons are unusual rolling circle eukaryotic transposons that often capture gene sequences, making them of considerable evolutionary importance. Unlike other DNA transposons, Helitrons do not end in inverted repeats or create target site duplications, so they are particularly challenging to identify. Here we present HelitronScanner, a two-layered local combinational variable (LCV) tool for generalized Helitron identification that represents a major improvement over previous identification programs based on DNA sequence or structure. HelitronScanner identified 64,654 Helitrons from a wide range of plant genomes in a highly automated way. We tested HelitronScanner's predictive ability in maize, a species with highly heterogeneous Helitron elements. LCV scores for the 5' and 3' termini of the predicted Helitrons provide a primary confidence level and element copy number provides a secondary one. Newly identified Helitrons were validated by PCR assays or by in silico comparative analysis of insertion site polymorphism among multiple accessions. Many new Helitrons were identified in model species, such as maize, rice, and Arabidopsis, and in a variety of organisms where Helitrons had not been reported previously to our knowledge, leading to a major upward reassessment of their abundance in plant genomes. HelitronScanner promises to be a valuable tool in future comparative and evolutionary studies of this major transposon superfamily.
Collapse
|
11
|
Thomas J, Vadnagara K, Pritham EJ. DINE-1, the highest copy number repeats in Drosophila melanogaster are non-autonomous endonuclease-encoding rolling-circle transposable elements (Helentrons). Mob DNA 2014; 5:18. [PMID: 24959209 PMCID: PMC4067079 DOI: 10.1186/1759-8753-5-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/09/2014] [Indexed: 11/11/2022] Open
Abstract
Background The Drosophila INterspersed Elements-1 (DINE-1/INE1) transposable elements (TEs) are the most abundant component of the Drosophila melanogaster genome and have been associated with functional gene duplications. DINE-1 TEs do not encode any proteins (non-autonomous) thus are moved by autonomous partners. The identity of the autonomous partners has been a mystery. They have been allied to Helitrons (rolling-circle transposons), MITEs (DNA transposons), and non-LTR retrotransposons by different authors. Results We report multiple lines of bioinformatic evidence that illustrate the relationship of DINE-1 like TEs to endonuclease-encoding rolling-circle TEs (Helentrons). The structural features of Helentrons are described, which resemble the organization of the non-autonomous partners, but differ significantly from canonical Helitrons. In addition to the presence of an endonuclease domain fused to the Rep/Helicase protein, Helentrons have distinct structural features. Evidence is presented that illustrates that Helentrons are widely distributed in invertebrate, fish, and fungal genomes. We describe an intermediate family from the Phytophthora infestans genome that phylogenetically groups with Helentrons but that displays Helitron structure. In addition, evidence is presented that Helentrons can capture gene fragments in a pattern reminiscent of canonical Helitrons. Conclusions We illustrate the relationship of DINE-1 and related TE families to autonomous partners, the Helentrons. These findings will allow their proper classification and enable a more accurate understanding of the contribution of rolling-circle transposition to the birth of new genes, gene networks, and genome composition.
Collapse
Affiliation(s)
- Jainy Thomas
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Komal Vadnagara
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ellen J Pritham
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
New insights into helitron transposable elements in the mesopolyploid species Brassica rapa. Gene 2013; 532:236-45. [DOI: 10.1016/j.gene.2013.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022]
|
13
|
Han MJ, Shen YH, Xu MS, Liang HY, Zhang HH, Zhang Z. Identification and evolution of the silkworm helitrons and their contribution to transcripts. DNA Res 2013; 20:471-84. [PMID: 23771679 PMCID: PMC3789558 DOI: 10.1093/dnares/dst024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this study, we developed a structure-based approach to identify Helitrons in four lepidopterans and systematically analysed Helitrons in the silkworm genome. We found that the content of Helitrons varied greatly among genomes. The silkworm genome harboured 67,555 Helitron-related sequences that could be classified into 21 families and accounted for ≈ 4.23% of the genome. Thirteen of the families were new. Three families were putatively autonomous and included the replication initiator motif and helicase domain. The silkworm Helitrons were widely and randomly distributed in the genome. Most Helitron families radiated within the past 2 million years and experienced a single burst of expansion. These Helitron families captured 3724 gene fragments and contributed to at least 1.4% of the silkworm full-length cDNAs, suggesting important roles of Helitrons in the evolution of the silkworm genes. In addition, we found that some new Helitrons were generated by combinations of other Helitrons. Overall, the results presented in this study provided insights into the generation and evolution of Helitron transposons and their contribution to transcripts.
Collapse
Affiliation(s)
- Min-Jin Han
- 1State Key Laboratory of Silkworm Genome Biology, The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, Chongqing 400715, China
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Dong Y, Lu X, Song W, Shi L, Zhang M, Zhao H, Jiao Y, Lai J. Structural characterization of helitrons and their stepwise capturing of gene fragments in the maize genome. BMC Genomics 2011; 12:609. [PMID: 22177531 PMCID: PMC3288121 DOI: 10.1186/1471-2164-12-609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/17/2011] [Indexed: 12/30/2022] Open
Abstract
Background As a newly identified category of DNA transposon, helitrons have been found in a large number of eukaryotes genomes. Helitrons have contributed significantly to the intra-specific genome diversity in maize. Although many characteristics of helitrons in the maize genome have been well documented, the sequence of an intact autonomous helitrons has not been identified in maize. In addition, the process of gene fragment capturing during the transposition of helitrons has not been characterized. Results The whole genome sequences of maize inbred line B73 were analyzed, 1,649 helitron-like transposons including 1,515 helAs and 134 helBs were identified. ZmhelA1, ZmhelB1 and ZmhelB2 all encode an open reading frame (ORF) with intact replication initiator (Rep) motif and a DNA helicase (Hel) domain, which are similar to previously reported autonomous helitrons in other organisms. The putative autonomous ZmhelB1 and ZmhelB2 contain an extra replication factor-a protein1 (RPA1) transposase (RPA-TPase) including three single strand DNA-binding domains (DBD)-A/-B/-C in the ORF. Over ninety percent of maize helitrons identified have captured gene fragments. HelAs and helBs carry 4,645 and 249 gene fragments, which yield 2,507 and 187 different genes respectively. Many helitrons contain mutilple terminal sequences, but only one 3'-terminal sequence had an intact "CTAG" motif. There were no significant differences in the 5'-termini sequence between the veritas terminal sequence and the pseudo sequence. Helitrons not only can capture fragments, but were also shown to lose internal sequences during the course of transposing. Conclusions Three putative autonomous elements were identified, which encoded an intact Rep motif and a DNA helicase domain, suggesting that autonomous helitrons may exist in modern maize. The results indicate that gene fragments captured during the transposition of many helitrons happen in a stepwise way, with multiple gene fragments within one helitron resulting from several sequential transpositions. In addition, we have proposed a potential mechanism regarding how helitrons with multiple termini are generated.
Collapse
Affiliation(s)
- Yongbin Dong
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Coates BS, Hellmich RL, Grant DM, Abel CA. Mobilizing the genome of Lepidoptera through novel sequence gains and end creation by non-autonomous Lep1 Helitrons. DNA Res 2011; 19:11-21. [PMID: 22086996 PMCID: PMC3276263 DOI: 10.1093/dnares/dsr038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) can affect the structure of genomes through their acquisition and transposition of novel DNA sequences. The 134-bp repetitive elements, Lep1, are conserved non-autonomous Helitrons in lepidopteran genomes that have characteristic 5′-CT and 3′-CTAY nucleotide termini, a 3′-terminal hairpin structure, a 5′- and 3′-subterminal inverted repeat (SIR), and integrations that occur between AT or TT nucleotides. Lep1 Helitrons have acquired and propagated sequences downstream of their 3′-CTAY termini that are 57–344-bp in length and have termini composed of a 3′-CTRR preceded by a 3′-hairpin structure and a region complementary to the 5′-SIR (3′-SIRb). Features of both the Lep1 Helitron and multiple acquired sequences indicate that secondary structures at the 3′-terminus may have a role in rolling circle replication or genome integration mechanisms, and are a prerequisite for novel end creation by Helitron-like TEs. The preferential integration of Lep1 Helitrons in proximity to gene-coding regions results in the creation of genetic novelty that is shown to impact gene structure and function through the introduction of novel exon sequence (exon shuffling). These findings are important in understanding the structural requirements of genomic DNA sequences that are acquired and transposed by Helitron-like TEs.
Collapse
Affiliation(s)
- Brad S Coates
- 1USDA-ARS, Corn Insect and Crop Genetics Research Unit, 113 Genetics Laboratory, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
17
|
Javelle M, Klein-Cosson C, Vernoud V, Boltz V, Maher C, Timmermans M, Depège-Fargeix N, Rogowsky PM. Genome-wide characterization of the HD-ZIP IV transcription factor family in maize: preferential expression in the epidermis. PLANT PHYSIOLOGY 2011; 157:790-803. [PMID: 21825105 PMCID: PMC3192571 DOI: 10.1104/pp.111.182147] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription factors of the plant-specific homeodomain leucine zipper IV (HD-ZIP IV) family have been found from moss to higher plants, and several family members have been associated with epidermis-related expression and/or function. In maize (Zea mays), four of the five characterized HD-ZIP IV family members are expressed specifically in the epidermis, one contributes to trichome development, and target genes of another one are involved in cuticle biosynthesis. Assessing the phylogeny, synteny, gene structure, expression, and regulation of the entire family in maize, 12 novel ZmHDZIV genes were identified in the recently sequenced maize genome. Among the 17 genes, eight form homeologous pairs duplicated after the split of maize and sorghum (Sorghum bicolor), whereas a fifth duplication is shared with sorghum. All 17 ZmHDZIV genes appear to be derived from a basic module containing seven introns in the coding region. With one possible exception, all 17 ZmHDZIV genes are expressed and show preferential expression in immature reproductive organs. Fourteen of 15 ZmHDZIV genes with detectable expression in laser-dissected tissues exhibit a moderate to very strong expression preference for the epidermis, suggesting that at least in maize, the majority of HD-ZIP IV family members may have epidermis-related functions. Thirteen ZmHDZIV genes carry conserved motifs of 19 and 21 nucleotides in their 3' untranslated region. The strong evolutionary conservation and the size of the conserved motifs in the 3' untranslated region suggest that the expression of HD-ZIP IV genes may be regulated by small RNAs.
Collapse
|
18
|
Wolff P, Weinhofer I, Seguin J, Roszak P, Beisel C, Donoghue MTA, Spillane C, Nordborg M, Rehmsmeier M, Köhler C. High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis Endosperm. PLoS Genet 2011; 7:e1002126. [PMID: 21698132 PMCID: PMC3116908 DOI: 10.1371/journal.pgen.1002126] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/21/2011] [Indexed: 12/28/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon leading to parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, genomic imprinting has mainly been observed in the endosperm, an ephemeral triploid tissue derived after fertilization of the diploid central cell with a haploid sperm cell. In an effort to identify novel imprinted genes in Arabidopsis thaliana, we generated deep sequencing RNA profiles of F1 hybrid seeds derived after reciprocal crosses of Arabidopsis Col-0 and Bur-0 accessions. Using polymorphic sites to quantify allele-specific expression levels, we could identify more than 60 genes with potential parent-of-origin specific expression. By analyzing the distribution of DNA methylation and epigenetic marks established by Polycomb group (PcG) proteins using publicly available datasets, we suggest that for maternally expressed genes (MEGs) repression of the paternally inherited alleles largely depends on DNA methylation or PcG-mediated repression, whereas repression of the maternal alleles of paternally expressed genes (PEGs) predominantly depends on PcG proteins. While maternal alleles of MEGs are also targeted by PcG proteins, such targeting does not cause complete repression. Candidate MEGs and PEGs are enriched for cis-proximal transposons, suggesting that transposons might be a driving force for the evolution of imprinted genes in Arabidopsis. In addition, we find that MEGs and PEGs are significantly faster evolving when compared to other genes in the genome. In contrast to the predominant location of mammalian imprinted genes in clusters, cluster formation was only detected for few MEGs and PEGs, suggesting that clustering is not a major requirement for imprinted gene regulation in Arabidopsis.
Collapse
Affiliation(s)
- Philip Wolff
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Isabelle Weinhofer
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Jonathan Seguin
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Pawel Roszak
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Christian Beisel
- Department Biosystems Science and Engineering, Swiss Federal Institute of Technology, Basel, Switzerland
| | - Mark T. A. Donoghue
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway, Aras de Brun, Ireland
| | - Charles Spillane
- Genetics and Biotechnology Lab, Botany and Plant Science, National University of Ireland Galway, Aras de Brun, Ireland
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna, Austria
| | - Marc Rehmsmeier
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Vienna, Austria
| | - Claudia Köhler
- Department of Biology and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, Zurich, Switzerland
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
19
|
Shapiro JA. Mobile DNA and evolution in the 21st century. Mob DNA 2010; 1:4. [PMID: 20226073 PMCID: PMC2836002 DOI: 10.1186/1759-8753-1-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 01/25/2010] [Indexed: 01/05/2023] Open
Abstract
Scientific history has had a profound effect on the theories of evolution. At the beginning of the 21st century, molecular cell biology has revealed a dense structure of information-processing networks that use the genome as an interactive read-write (RW) memory system rather than an organism blueprint. Genome sequencing has documented the importance of mobile DNA activities and major genome restructuring events at key junctures in evolution: exon shuffling, changes in cis-regulatory sites, horizontal transfer, cell fusions and whole genome doublings (WGDs). The natural genetic engineering functions that mediate genome restructuring are activated by multiple stimuli, in particular by events similar to those found in the DNA record: microbial infection and interspecific hybridization leading to the formation of allotetraploids. These molecular genetic discoveries, plus a consideration of how mobile DNA rearrangements increase the efficiency of generating functional genomic novelties, make it possible to formulate a 21st century view of interactive evolutionary processes. This view integrates contemporary knowledge of the molecular basis of genetic change, major genome events in evolution, and stimuli that activate DNA restructuring with classical cytogenetic understanding about the role of hybridization in species diversification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Science W123B, 929 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
Yang L, Bennetzen JL. Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci U S A 2009; 106:19922-7. [PMID: 19926865 PMCID: PMC2785268 DOI: 10.1073/pnas.0908008106] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Indexed: 01/11/2023] Open
Abstract
Homology and structure-based approaches were used to identify Helitrons in the genome of maize inbred B73. A total of 1,930 intact Helitrons from eight families (62 subfamilies) and >20,000 Helitron fragments were identified, accounting for approximately 2.2% of the B73 genome. Transposition of at least one of these families is ongoing, but the most prominent burst of amplification activity was approximately 250,000 years ago. Sixty percent of maize Helitrons were found to have captured fragments of nuclear genes ( approximately 840 different fragment acquisitions, with tens of thousands of predicted gene fragments inside Helitrons within the B73 assembly). Most acquired gene fragments are undergoing random drift, but 4% were calculated to be under purifying selection, whereas another 4% exhibit apparent adaptive selection, suggesting beneficial effects for the host or Helitron transposition/retention. Gene fragment capture is frequent in some Helitron subfamilies, with as many as 10 unlinked genes providing DNA inserts within a single element. Gene fragment acquisition appears to positively influence element survival and/or ability of the Helitron to acquire additional gene fragments. Helitrons with gene fragment captures in the antisense orientation have a lesser chance of survival. Helitron distribution in maize exhibits severe biases, including preferential accumulation in relatively gene-rich regions. Insertions, however, are not usually found inside genes. Rather, Helitrons preferentially insert near (but not into) other Helitrons. This biased accumulation is not caused by a preference for cis or nearby transposition, suggesting a specific association between Helitron integration functions and unknown chromatin characteristics that specifically mark Helitrons.
Collapse
Affiliation(s)
- Lixing Yang
- Department of Genetics, University of Georgia, Athens, GA 30602
| | | |
Collapse
|
21
|
Abstract
Maize Helitron transposons are intriguing because of their notable ability to capture gene fragments and move them around the genome. To document more extensively their variability and their contribution to the remarkable genome structure variation of present-day maize, we have analyzed their composition, copy number, timing of insertion, and chromosomal distribution. First, we searched 2.4 Gb of sequences generated by the Maize Genome Sequencing Project with our HelitronFinder program. We identified 2,791 putative nonautonomous Helitrons and manually curated a subset of 272. The predicted Helitrons measure 11.9 kb on average and carry from zero to nine gene fragments, captured from 376 different genes. Although the diversity of Helitron gene fragments in maize is greater than in other species, more than one-third of annotated Helitrons carry fragments derived from just one of two genes. Most members in these two subfamilies inserted in the genome less than one million years ago. Second, we conducted a BLASTN search of the maize sequence database with queries from two previously described agenic Helitrons not detected by HelitronFinder. Two large subfamilies of Helitrons or Helitron-related transposons were identified. One subfamily, termed Cornucopious, consists of thousands of copies of an approximately 1.0-kb agenic Helitron that may be the most abundant transposon in maize. The second subfamily consists of >150 copies of a transposon-like sequence, termed Heltir, that has terminal inverted repeats resembling Helitron 3' termini. Nonautonomous Helitrons make up at least 2% of the maize genome and most of those tested show +/- polymorphisms among modern inbred lines.
Collapse
|
22
|
|
23
|
Jiang SY, Christoffels A, Ramamoorthy R, Ramachandran S. Expansion mechanisms and functional annotations of hypothetical genes in the rice genome. PLANT PHYSIOLOGY 2009; 150:1997-2008. [PMID: 19535473 PMCID: PMC2719134 DOI: 10.1104/pp.109.139402] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/15/2009] [Indexed: 05/18/2023]
Abstract
In each completely sequenced genome, 30% to 50% of genes are annotated as uncharacterized hypothetical genes. In the rice (Oryza sativa) genome, 10,918 hypothetical genes were annotated in the latest version (release 6) of the Michigan State University rice genome annotation. We have implemented an integrative approach to analyze their duplication/expansion and function. The analyses show that tandem/segmental duplication and transposition/retrotransposition have significantly contributed to the expansion of hypothetical genes despite their different contribution rates. A total of 3,769 hypothetical genes have been detected from retrogene, tandem, segmental, Pack-MULE, or long terminated direct repeat-related duplication/expansion. The nonsynonymous substitutions per site and synonymous substitutions per site analyses showed that 21.65% of them were still functional, accounting for 7.47% of total hypothetical genes. Global expression analyses have identified 1,672 expressed hypothetical genes. Among them, 415 genes might function in a developmental stage-specific manner. Antisense strand expression and small RNA analyses have demonstrated that a high percentage of these hypothetical genes might play important roles in negatively regulating gene expression. Homologous searches against Arabidopsis (Arabidopsis thaliana), maize (Zea mays), sorghum (Sorghum bicolor), and indica rice genomes suggest that most of the hypothetical genes could be annotated from recently evolved genomic sequences. These data advance the understanding of rice hypothetical genes as being involved in lineage-specific expansion and that they function in a specific developmental stage. Our analyses also provide a valuable means to facilitate the characterization and functional annotation of hypothetical genes in other organisms.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | | | | | | |
Collapse
|
24
|
Structure-based discovery and description of plant and animal Helitrons. Proc Natl Acad Sci U S A 2009; 106:12832-7. [PMID: 19622734 DOI: 10.1073/pnas.0905563106] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Helitrons are recently discovered eukaryotic transposons that are predicted to amplify by a rolling-circle mechanism. They are present in most plant and animal species investigated, but were previously overlooked partly because they lack terminal repeats and do not create target site duplications. Helitrons are particularly abundant in flowering plants, where they frequently acquire, and sometimes express, 1 or more gene fragments. A structure-based search protocol was developed to find Helitrons and was used to analyze several plant and animal genomes, leading to the discovery of hundreds of new Helitrons. Analysis of these Helitrons has uncovered mechanisms of element evolution, including end creation and sequence acquisition. Preferential accumulation in gene-poor regions and target site specificities were also identified. Overall, these studies provide insights into the transposition and evolution of Helitrons and their contributions to evolved gene content and genome structure.
Collapse
|
25
|
Abstract
Helitrons are novel transposons discovered by bioinformatic analysis of eukaryotic genome sequences. They are believed to move by rolling circle (RC) replication because their predicted transposases are homologous to those of bacterial RC transposons. We report here evidence of somatic Helitron excision in maize, an unexpected finding suggesting that Helitrons can exhibit an excisive mode of transposition.
Collapse
|