1
|
Sum JS, Yamazaki Y, Yoshida K, Yonezawa K, Hayashi Y, Kataoka M, Kamikubo H. Spectroscopic and structural characteristics of a dual-light sensor protein, PYP-phytochrome related protein. Biophys Physicobiol 2020; 17:103-112. [PMID: 33194513 PMCID: PMC7610063 DOI: 10.2142/biophysico.bsj-2020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 12/01/2022] Open
Abstract
PYP-phytochrome related (Ppr) protein contains the two light sensor domains, photoactive yellow protein (PYP) and bacteriophytochrome (Bph), which mainly absorb blue and red light by the chromophores of p-coumaric acid (pCA) and biliverdin (BV), respectively. As a result, Ppr has the ability to photoactivate both domains together or separately. We investigated the photoreaction of each photosensor domain under different light irradiation conditions and clarified the inter-dependency between these domains. Within the first 10 s of blue light illumination, Ppr (Holo-Holo-Ppr) accompanied by both pCA and BV demonstrated spectrum changes reflecting PYPL accumulation, which can also be observed in Ppr containing only pCA (Holo-Apo-Ppr), and a fragment of Ppr lacking the C-terminal Bph domain. Although Holo-Apo-Ppr showed PYPL as a major photoproduct under blue light, as seen in the Bph-truncated Ppr, the equilibrium in the Holo-Holo-Ppr was shifted from PYPL to PYPM as the reaction progresses under blue light. Concomitantly, the spectrum of Bph exhibited subtle but distinguishable alteration. Together with the fact, it can be proposed that Bph with BV influences the photoreaction of PYP in Ppr, and vice versa. SAXS measurements revealed substantial tertiary structure changes in Holo-Holo-Ppr under continuous blue light irradiation within the first 5 min time domain. Interestingly, the changes in tertiary structure were partially suppressed by photoactivation of the Bph domain. These observations indicate that the photoreactions of the PYP and Bph domains are coupled with each other, and that the interplay realizes the structural switch, which might be involved in downstream signal transduction.
Collapse
Affiliation(s)
- Jia-Siang Sum
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yoichi Yamazaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Keito Yoshida
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kento Yonezawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Yugo Hayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Mikio Kataoka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hironari Kamikubo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
2
|
Wilde A, Mullineaux CW. Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiol Rev 2017; 41:900-922. [PMID: 29077840 PMCID: PMC5812497 DOI: 10.1093/femsre/fux045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/12/2017] [Indexed: 12/02/2022] Open
Abstract
The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea.
Collapse
Affiliation(s)
- Annegret Wilde
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
3
|
Kreutel S, Kuhn A, Kiefer D. Erratum to: The photosensor protein Ppr of Rhodocista centenaria is linked to the chemotaxis signalling pathway. BMC Microbiol 2017; 17:186. [PMID: 28835204 PMCID: PMC5569550 DOI: 10.1186/s12866-017-1071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sven Kreutel
- Institute of Microbiology and Molecular Biology, Garbenstrasse 30, University of Hohenheim, 70599, Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology and Molecular Biology, Garbenstrasse 30, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Dorothee Kiefer
- Institute of Microbiology and Molecular Biology, Garbenstrasse 30, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
4
|
Meyer TE, Kyndt JA, Memmi S, Moser T, Colón-Acevedo B, Devreese B, Van Beeumen JJ. The growing family of photoactive yellow proteins and their presumed functional roles. Photochem Photobiol Sci 2012; 11:1495-514. [DOI: 10.1039/c2pp25090j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Abstract
Per-Arnt-Sim (PAS) domains occur in proteins from all kingdoms of life. In the bacterial kingdom, PAS domains are commonly positioned at the amino terminus of signaling proteins such as sensor histidine kinases, cyclic-di-GMP synthases/hydrolases, and methyl-accepting chemotaxis proteins. Although these domains are highly divergent at the primary sequence level, the structures of dozens of PAS domains across a broad section of sequence space have been solved, revealing a conserved three-dimensional architecture. An all-versus-all alignment of 63 PAS structures demonstrates that the PAS domain family forms structural clades on the basis of two principal variables: (a) topological location inside or outside the plasma membrane and (b) the class of small molecule that they bind. The binding of a chemically diverse range of small-molecule metabolites is a hallmark of the PAS domain family. PAS ligand binding either functions as a primary cue to initiate a cellular signaling response or provides the domain with the capacity to respond to secondary physical or chemical signals such as gas molecules, redox potential, or photons. This review synthesizes the current state of knowledge of the structural foundations and evolution of ligand recognition and binding by PAS domains.
Collapse
Affiliation(s)
- Jonathan T. Henry
- The Committee on Microbiology, The University of Chicago, Chicago, IL 60637
| | - Sean Crosson
- The Committee on Microbiology, The University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|