1
|
Izquierdo-Fiallo K, Muñoz-Villagrán C, Schimpf C, Mardonez MP, Rafaja D, Schlömann M, Tello M, Orellana O, Levicán G. Adaptive response of the holdase chaperone network of Acidithiobacillus ferrooxidans ATCC 23270 to stresses and energy sources. World J Microbiol Biotechnol 2025; 41:121. [PMID: 40167894 DOI: 10.1007/s11274-025-04325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium belonging to microbial communities involved in sulfide ore bioleaching. This microorganism possesses redundancy of genes encoding ATP-independent chaperone holdases like Hsp20 (hps20.1, hsp20.2, and hsp20.3), Hsp31, Hsp33, RidA (ridA.1 and ridA.2), and Lon (lon.1, lon.2, and lon.3), and single copy genes encoding SlyD and CnoX. We evaluated the response of these holdases to short and long-term stresses induced by changes in temperature (30° to 37 °C), pH (1.6 to 1.2 or 2.0), and oxidative status (1 mM H2O2) as well as to different energy sources (iron, sulfur, pyrite, sphalerite or chalcopyrite). Cells adapted under thermal and oxidative stress conditions showed a generalized upregulation of holdase genes, while short-term stress led to more discrete increases in transcript levels, with only hsp20.2 and hsp31 showing higher mRNA levels. hsp31 was also upregulated under acidic stresses, sulfur and sulfides. hsp20 variants showed different mRNA levels under different conditions, and cnoX was induced under oxidative conditions. Cells cultured on chalcopyrite had similar responses to those grown with peroxide. With some exceptions, stresses led to significant increases in intracellular ROS content, and decreases in ATP. These results pave the way to understanding proteostasis systems in extreme acidophilic bacteria.
Collapse
Affiliation(s)
- Katherin Izquierdo-Fiallo
- Laboratory of Applied and Basic Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratory of Applied and Basic Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, Freiberg, Germany
| | - Mick Parra Mardonez
- Laboratory of Natural Products Chemistry and its Applications, Faculty of Chemistry and Biology, CBA, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, Freiberg, Germany
| | - Michael Schlömann
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Freiberg, Germany
| | - Mario Tello
- Laboratory of Natural Products Chemistry and its Applications, Faculty of Chemistry and Biology, CBA, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Facultad de Medicina, ICBM, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Gloria Levicán
- Laboratory of Applied and Basic Microbiology, Department of Biology, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Santiago, Chile.
| |
Collapse
|
2
|
Muner JJ, de Oliveira PAA, Baboghlian J, Moura SC, de Andrade AG, de Oliveira MM, Campos YFD, Mançano ASF, Siqueira NMG, Pacheco T, Ferraz LFC. The transcriptional regulator Fur modulates the expression of uge, a gene essential for the core lipopolysaccharide biosynthesis in Klebsiella pneumoniae. BMC Microbiol 2024; 24:279. [PMID: 39061004 PMCID: PMC11282780 DOI: 10.1186/s12866-024-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a Gram-negative pathogen that has become a threat to public health worldwide due to the emergence of hypervirulent and multidrug-resistant strains. Cell-surface components, such as polysaccharide capsules, fimbriae, and lipopolysaccharides (LPS), are among the major virulence factors for K. pneumoniae. One of the genes involved in LPS biosynthesis is the uge gene, which encodes the uridine diphosphate galacturonate 4-epimerase enzyme. Although essential for the LPS formation in K. pneumoniae, little is known about the mechanisms that regulate the expression of uge. Ferric uptake regulator (Fur) is an iron-responsive transcription factor that modulates the expression of capsular and fimbrial genes, but its role in LPS expression has not yet been identified. This work aimed to investigate the role of the Fur regulator in the expression of the K. pneumoniae uge gene and to determine whether the production of LPS by K. pneumoniae is modulated by the iron levels available to the bacterium. RESULTS Using bioinformatic analyses, a Fur-binding site was identified on the promoter region of the uge gene; this binding site was validated experimentally through Fur Titration Assay (FURTA) and DNA Electrophoretic Mobility Shift Assay (EMSA) techniques. RT-qPCR analyses were used to evaluate the expression of uge according to the iron levels available to the bacterium. The iron-rich condition led to a down-regulation of uge, while the iron-restricted condition resulted in up-regulation. In addition, LPS was extracted and quantified on K. pneumoniae cells subjected to iron-replete and iron-limited conditions. The iron-limited condition increased the amount of LPS produced by K. pneumoniae. Finally, the expression levels of uge and the amount of the LPS were evaluated on a K. pneumoniae strain mutant for the fur gene. Compared to the wild-type, the strain with the fur gene knocked out presented a lower LPS amount and an unchanged expression of uge, regardless of the iron levels. CONCLUSIONS Here, we show that iron deprivation led the K. pneumoniae cells to produce higher amount of LPS and that the Fur regulator modulates the expression of uge, a gene essential for LPS biosynthesis. Thus, our results indicate that iron availability modulates the LPS biosynthesis in K. pneumoniae through a Fur-dependent mechanism.
Collapse
Affiliation(s)
- José Júlio Muner
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Paloma Aparecida Alves de Oliveira
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
- Central Multiusuária de Análises Genômica e Transcriptômica (CmAGT), Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Juliana Baboghlian
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Stefany Casarin Moura
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | | | | | - Yasmin Ferreira de Campos
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | | | | | - Thaisy Pacheco
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | - Lúcio Fábio Caldas Ferraz
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, SP, Brazil.
- Central Multiusuária de Análises Genômica e Transcriptômica (CmAGT), Universidade São Francisco, Bragança Paulista, SP, Brazil.
| |
Collapse
|
3
|
Wang Q, Long H, Wang H, Lau Vetter MCY. Characterize the Growth and Metabolism of Acidithiobacillus ferrooxidans under Electroautotrophic and Chemoautotrophic Conditions. Microorganisms 2024; 12:590. [PMID: 38543641 PMCID: PMC10974421 DOI: 10.3390/microorganisms12030590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 11/12/2024] Open
Abstract
Acidophiles are capable of surviving in extreme environments with low pH. Acidithiobacillus ferrooxidans is a typical acidophilic bacterium that has been extensively studied when grown chemoautotrophically, i.e., when it derives energy from oxidation of Fe2+ or reduced inorganic sulfur compounds (RISCs). Although it is also known to grow with electrons supplied by solid electrodes serving as the sole source of energy, the understanding of its electroautotrophic growth is still limited. This study aimed to compare the growth characteristics of A. ferrooxidans under electroautotrophic (ea) and chemoautotrophic (ca) conditions, with an attempt to elucidate the possible mechanism(s) of extracellular electron flow into the cells. Jarosite was identified by Raman spectroscopy, and it accumulated when A. ferrooxidans used Fe2+ as the electron donor, but negligible mineral deposition occurred during electroautotrophic growth. Scanning electron microscopy (SEM) showed that A. ferrooxidans possesses more pili and extracellular polymeric substances (EPSs) under electroautotrophic conditions. A total of 493 differentially expressed genes (DEGs) were identified, with 297 genes being down-regulated and 196 genes being up-regulated in ea versus ca conditions. The genes known to be essential for chemoautotrophic growth showed a decreased expression in the electroautotrophic condition; meanwhile, there was an increased expression of genes related to direct electron transfer across the cell's outer/inner membranes and transmembrane proteins such as pilin and porin. Joint analysis of DEGs and differentially expressed metabolites (DEMs) showed that galactose metabolism is enhanced during electroautotrophic growth, inducing A. ferrooxidans to produce more EPSs, which aids the cells in adhering to the solid electrode during their growth. These results suggested that electroautotrophy and chemoautotrophy of A. ferrooxidans have different extracellular electron uptake (EEU) pathways, and a model of EEU during electroautotrophic growth is proposed. The use of extracellular electrons as the sole energy source triggers A. ferrooxidans to adopt metabolic and subsequently phenotypic modifications.
Collapse
Affiliation(s)
- Quansheng Wang
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.W.); (H.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haijun Long
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.W.); (H.L.); (H.W.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Huiqi Wang
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.W.); (H.L.); (H.W.)
| | - Maggie C. Y. Lau Vetter
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.W.); (H.L.); (H.W.)
| |
Collapse
|
4
|
Sahoo S, Dehury B, Narang PK, Raina V, Misra N, Suar M. Comprehensive sequence and structure analysis of algal lipid catabolic enzyme Triacylglycerol lipase: an in silico study to vitalize the development of optimum engineered strains with high lipid productivity. J Biomol Struct Dyn 2022; 40:11989-12007. [PMID: 34415234 DOI: 10.1080/07391102.2021.1967194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microalgae as an alternative renewable resource for biofuel production have captured much significance. Nonetheless, its economic viability is a field of major concern for researchers. Unraveling the lipid catabolic pathway and gaining insights into the sequence-structural features of its primary functioning enzyme, Triacylglycerol lipase, will impart valuable information to target microalgae for augmented lipid content. In the present study, a genome-wide comparative study on putative Triacylglycerol lipase (TAGL) enzyme from algal species belonging to varied phylogenetic lineages was performed. The comprehensive sequence analysis revealed that TAGL comprises of three distinct conserved domains, such as, Patatin, Class III Lipase, and Abhydro_lipase, and also confirmed the ubiquitous presence of GXSXG motif in the sequences analyzed. In the absence of a crystal structure of algal TAGL till date, we developed the first 3D model of patatin domain of TAGL from an oleaginous microalga, Phaedactylum tricornutum, employing homology modeling, docking and molecular dynamic simulations methods. The domain-substrate complex having the low-ranking docking score revealed the binding of palmitic acid to the TAGL patatin domain surface with strong hydrogen bond interactions. The simulation results implied that the substrate-complexed patatin domain and the free enzyme adopted a more stable conformation after 40 ns. This is the first ever attempt to provide in-silico insights into the structural and dynamical insights on catalytic mechanism of the TAGL patatin domain. Subsequently, these findings aided our understanding on their structural stability, folding mechanism and protein-substrate interactions, which could be further utilized to design site-specific mutagenic experiments for engineering microalgal strains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Susrita Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Budheswar Dehury
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Parminder Kaur Narang
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,SGTB Khalsa College, Delhi University, Delhi, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
5
|
Ghosh S, Gandhi M, van Hullebusch ED, Das AP. Proteomic insights into Lysinibacillus sp.-mediated biosolubilization of manganese. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40249-40263. [PMID: 33011949 DOI: 10.1007/s11356-020-10863-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
There has been alarming depletion of manganese (Mn) reserves owing to the ongoing extensive mining operations for catering the massive industrial demand of this element. Moreover, the mining operations have been leading to the generation of Mn-rich waste, thereby contaminating both terrestrial and aquatic bodies. The current scenario necessitates the development of alternative processes for bioremediation as well as economic recovery of Mn from mining wastes. The present investigation aims to report the bioleaching of Mn by Lysinibacillus sp. from mining waste residues in the context of mine waste remediation. Results confirmed that the native isolate had a high Mn biosolubilization potential with a solubilizing efficiency of 84% at the end of a 21-day study under optimized conditions of pulp density 2% (< 150-μm particle size), pH 6.5, and temperature 30 °C. Fourier transform infrared spectroscopy (FTIR) studies followed by liquid chromatography mass spectrometry (LC-MS) analysis were used to ascertain the change in microbial protein conformation, configuration, and protein identification. The results revealed the expression of heat shock proteins (HSP) from the family HSP which is predominantly expressed in bacteria during stress conditions. This study represents the application of native bacterial strain in Mn biosolubilization. We foresee the utility of proteomics-based studies to provide a methodological framework to the underlying mechanism of metal solubilization, thereby facilitating the two-tier benefit of recovery of Mn from alternative sources as well as bioremediation of waste having high manganese content.
Collapse
Affiliation(s)
- Shreya Ghosh
- Amity Institute of Biotechnology, Amity University, New Town, Kolkata, 700135, India
| | - Mayuri Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Bombay, Mumbai, India
| | - Eric D van Hullebusch
- Institut de physique du globe de Paris, CNRS, Université de Paris, F-75005, Paris, France
| | - Alok Prasad Das
- Department of Life Science, Rama Devi Women's University, Bhoinagar P.O, Bhubaneswar, Odisha, 751002, India.
| |
Collapse
|
6
|
Junprung W, Supungul P, Tassanakajon A. Structure, gene expression, and putative functions of crustacean heat shock proteins in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103875. [PMID: 32987013 DOI: 10.1016/j.dci.2020.103875] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones with critical roles in the maintenance of cellular proteostasis. HSPs, which regulate protein folding and refolding, assembly, translocation, and degradation, are induced in response to physiological and environmental stressors. In recent years, HSPs have been recognized for their potential role in immunity; in particular, these proteins elicit a variety of immune responses to infection and modulate inflammation. This review focuses on delineating the structural and functional roles of crustacean HSPs in the innate immune response. Members of crustacean HSPs include high molecular weight HSPs (HSP90, HSP70, and HSP60) and small molecular weight HSPs (HSP21 and HSP10). The sequences and structures of these HSPs are highly conserved across various crustacean species, indicating strong evolutionary links among this group of organisms. The expression of HSP-encoding genes across different crustacean species is significantly upregulated upon exposure to a wide range of pathogens, emphasizing the important role of HSPs in the immune response. Functional studies of crustacean HSPs, particularly HSP70s, have demonstrated their involvement in the activation of several immune pathways, including those mediating anti-bacterial resistance and combating viral infections, upon heat exposure. The immunomodulatory role of HSPs indicates their potential use as an immunostimulant to enhance shrimp health for control of disease in aquaculture.
Collapse
Affiliation(s)
- Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Klong Luang, Pathum Thani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Petitjean C, Makarova KS, Wolf YI, Koonin EV. Extreme Deviations from Expected Evolutionary Rates in Archaeal Protein Families. Genome Biol Evol 2018; 9:2791-2811. [PMID: 28985292 PMCID: PMC5737733 DOI: 10.1093/gbe/evx189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Origin of new biological functions is a complex phenomenon ranging from single-nucleotide substitutions to the gain of new genes via horizontal gene transfer or duplication. Neofunctionalization and subfunctionalization of proteins is often attributed to the emergence of paralogs that are subject to relaxed purifying selection or positive selection and thus evolve at accelerated rates. Such phenomena potentially could be detected as anomalies in the phylogenies of the respective gene families. We developed a computational pipeline to search for such anomalies in 1,834 orthologous clusters of archaeal genes, focusing on lineage-specific subfamilies that significantly deviate from the expected rate of evolution. Multiple potential cases of neofunctionalization and subfunctionalization were identified, including some ancient, house-keeping gene families, such as ribosomal protein S10, general transcription factor TFIIB and chaperone Hsp20. As expected, many cases of apparent acceleration of evolution are associated with lineage-specific gene duplication. On other occasions, long branches in phylogenetic trees correspond to horizontal gene transfer across long evolutionary distances. Significant deceleration of evolution is less common than acceleration, and the underlying causes are not well understood; functional shifts accompanied by increased constraints could be involved. Many gene families appear to be “highly evolvable,” that is, include both long and short branches. Even in the absence of precise functional predictions, this approach allows one to select targets for experimentation in search of new biology.
Collapse
Affiliation(s)
- Celine Petitjean
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Sehgal SA, Mannan S, Ali S. Pharmacoinformatic and molecular docking studies reveal potential novel antidepressants against neurodegenerative disorders by targeting HSPB8. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1605-18. [PMID: 27226709 PMCID: PMC4866741 DOI: 10.2147/dddt.s101929] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Charcot-Marie-Tooth (CMT) disease is an inherited peripheral neuromuscular disorder characterized by length-dependent and progressive degeneration of peripheral nerves, leading to muscular weakness. Research has shown that mutated HSPB8 may be responsible for depression, neurodegenerative disorders, and improper functioning of peripheral nerves, resulting in neuromuscular disorders like CMT. In the current work, a hybrid approach of virtual screening and molecular docking studies was followed by homology modeling and pharmacophore identification. Detailed screening analyses were carried out by 2-D similarity search against prescribed antidepressant drugs with physicochemical properties. LigandScout was employed to ascertain novel molecules and pharmacophore properties. In this study, we report three novel compounds that showed maximum binding affinity with HSPB8. Docking analysis elucidated that Met37, Ser57, Ser58, Trp60, Thr63, Thr114, Lys115, Asp116, Gly117, Val152, Val154, Leu186, Asp189, Ser190, Gln191, and Glu192 are critical residues for ligand-receptor interactions. Our analyses suggested paroxetine as a potent compound for targeting HSPB8. Selected compounds have more effective energy scores than the selected drug analogs. Additionally, site-directed mutagenesis could be significant for further analysis of the binding pocket. The novel findings based on an in silico approach may be momentous for potent drug design against depression and CMT.
Collapse
Affiliation(s)
- Sheikh Arslan Sehgal
- Department of Bioscience, COMSATS Institute of Information Technology, Sahiwal, Pakistan; State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China; Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Shazia Mannan
- Department of Bioscience, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Sannia Ali
- Department of Bioscience, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| |
Collapse
|
9
|
Dubińska-Magiera M, Jabłońska J, Saczko J, Kulbacka J, Jagla T, Daczewska M. Contribution of small heat shock proteins to muscle development and function. FEBS Lett 2014; 588:517-30. [PMID: 24440355 DOI: 10.1016/j.febslet.2014.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/17/2013] [Accepted: 01/02/2014] [Indexed: 12/17/2022]
Abstract
Investigations undertaken over the past years have led scientists to introduce the concept of protein quality control (PQC) systems, which are responsible for polypeptide processing. The PQC system monitors proteostasis and involves activity of different chaperones such as small heat shock proteins (sHSPs). These proteins act during normal conditions as housekeeping proteins regulating cellular processes, and during stress conditions. They also mediate the removal of toxic misfolded polypeptides and thereby prevent development of pathogenic states. It is postulated that sHSPs are involved in muscle development. They could act via modulation of myogenesis or by maintenance of the structural integrity of signaling complexes. Moreover, mutations in genes coding for sHSPs lead to pathological states affecting muscular tissue functioning. This review focuses on the question how sHSPs, still relatively poorly understood proteins, contribute to the development and function of three types of muscle tissue: skeletal, cardiac and smooth.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jadwiga Jabłońska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Teresa Jagla
- Institut National de la Santé et de la Recherche Médicale U384, Faculté de Medecine, Clermont-Ferrand, France
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| |
Collapse
|