1
|
Viswam J, Baptista M, Lee CK, Morgan H, McDonald IR. Investigating the lignocellulolytic gut microbiome of huhu grubs ( Prionoplus reticularis) using defined diets and dietary switch. PeerJ 2024; 12:e17597. [PMID: 38974417 PMCID: PMC11225714 DOI: 10.7717/peerj.17597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
The huhu beetle (Prionoplus reticularis) is the largest endemic beetle found throughout Aotearoa New Zealand, and is characterised by feeding on wood during its larval stage. It has been hypothesised that its gut microbiome plays a fundamental role in the degradation of wood. To explore this idea we examined the fungal and bacterial community composition of huhu grubs' frass, using amplicon sequencing. Grubs were reared on an exclusive diet of either a predominantly cellulose source (cotton) or lignocellulose source (pine) for 4 months; subsequently a diet switch was performed and the grubs were grown for another 4 months. The fungal community of cellulose-reared huhu grubs was abundant in potential cellulose degraders, contrasting with the community of lignocellulose-reared grubs, which showed abundant potential soft rot fungi, yeasts, and hemicellulose and cellulose degraders. Cellulose-reared grubs showed a less diverse fungal community, however, diet switch from cellulose to lignocellulose resulted in a change in community composition that showed grubs were still capable of utilising this substrate. Conversely, diet seemed to have a limited influence on huhu grub gut bacterial communities.
Collapse
Affiliation(s)
- Jay Viswam
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, Waikato, New Zealand
| | - Mafalda Baptista
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, Waikato, New Zealand
- Waikato Regional Council, Hamilton, Waikato, New Zealand
| | - Charles K. Lee
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, Waikato, New Zealand
| | - Hugh Morgan
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, Waikato, New Zealand
| | - Ian R. McDonald
- Te Aka Mātuatua-School of Science, Te Whare Wānanga o Waikato-University of Waikato, Hamilton, Waikato, New Zealand
| |
Collapse
|
2
|
Calle-Tobón A, Holguin-Rocha AF, Moore C, Rippee-Brooks M, Rozo-Lopez P, Harrod J, Fatehi S, Rua-Uribe GL, Park Y, Londoño-Rentería B. Blood Meals With Active and Heat-Inactivated Serum Modifies the Gene Expression and Microbiome of Aedes albopictus. Front Microbiol 2021; 12:724345. [PMID: 34566927 PMCID: PMC8458951 DOI: 10.3389/fmicb.2021.724345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
The Asian "tiger mosquito" Aedes albopictus is currently the most widely distributed disease-transmitting mosquito in the world. Its geographical expansion has also allowed the expansion of multiple arboviruses like dengue, Zika, and chikungunya, to higher latitudes. Due to the enormous risk to global public health caused by mosquitoes species vectors of human disease, and the challenges in slowing their expansion, it is necessary to develop new and environmentally friendly vector control strategies. Among these, host-associated microbiome-based strategies have emerged as promising options. In this study, we performed an RNA-seq analysis on dissected abdomens of Ae. albopictus females from Manhattan, KS, United States fed with sugar and human blood containing either normal or heat-inactivated serum, to evaluate the effect of heat inactivation on gene expression, the bacteriome transcripts and the RNA virome of this mosquito species. Our results showed at least 600 genes with modified expression profile when mosquitoes were fed with normal vs. heat-inactivated-containing blood. These genes were mainly involved in immunity, oxidative stress, lipid metabolism, and oogenesis. Also, we observed bacteriome changes with an increase in transcripts of Actinobacteria, Rhodospirillaceae, and Anaplasmataceae at 6 h post-feeding. We also found that feeding with normal blood seems to particularly influence Wolbachia metabolism, demonstrated by a significant increase in transcripts of this bacteria in mosquitoes fed with blood containing normal serum. However, no differences were observed in the virome core of this mosquito population. These results suggest that heat and further inactivation of complement proteins in human serum may have profound effect on mosquito and microbiome metabolism, which could influence interpretation of the pathogen-host interaction findings when using this type of reagents specially when measuring the effect of Wolbachia in vector competence.
Collapse
Affiliation(s)
- Arley Calle-Tobón
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- Grupo Entomología Médica, Universidad de Antioquia, Medellín, Colombia
| | | | - Celois Moore
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Meagan Rippee-Brooks
- Department of Biology, Missouri State University, Springfield, MO, United States
| | - Paula Rozo-Lopez
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Jania Harrod
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Soheila Fatehi
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | |
Collapse
|
3
|
Lavy O, Gophna U, Ayali A, Gihaz S, Fishman A, Gefen E. The maternal foam plug constitutes a reservoir for the desert locust's bacterial symbionts. Environ Microbiol 2021; 23:2461-2472. [PMID: 33645872 DOI: 10.1111/1462-2920.15448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/26/2021] [Indexed: 01/04/2023]
Abstract
A hallmark of the desert locust's ancient and deserved reputation as a devastating agricultural pest is that of the long-distance, multi-generational migration of locust swarms to new habitats. The bacterial symbionts that reside within the locust gut comprise a key aspect of its biology, augmenting its immunity and having also been reported to be involved in the swarming phenomenon through the emission of attractant volatiles. However, it is still unclear whether and how these beneficial symbionts are transmitted vertically from parent to offspring. Using comparative 16S rRNA amplicon sequencing and direct experiments with engineered bacteria, we provide evidence for vertical transmission of locust gut bacteria. The females may perform this activity by way of inoculation of the egg-pod's foam plug, through which the larvae pass upon hatching. Furthermore, analysis of the composition of the foam revealed chitin to be its major component, along with immunity-related proteins such as lysozyme, which could be responsible for the inhibition of some bacteria in the foam while allowing other, more beneficial, strains to proliferate. Our findings reveal a potential vector for the transgenerational transmission of symbionts in locusts, which contributes to the locust swarm's ability to invade and survive in new territories.
Collapse
Affiliation(s)
- Omer Lavy
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Shalev Gihaz
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eran Gefen
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa- Oranim, Kiryat Tivon, 3600600, Israel
| |
Collapse
|
4
|
Gonella E, Orrù B, Marasco R, Daffonchio D, Alma A. Disruption of Host-Symbiont Associations for the Symbiotic Control and Management of Pentatomid Agricultural Pests-A Review. Front Microbiol 2020; 11:547031. [PMID: 33329418 PMCID: PMC7728854 DOI: 10.3389/fmicb.2020.547031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
The family Pentatomidae (Hemiptera: Heteroptera) includes several invasive stink bug species capable to attack a large number of wild and cultivated plants, causing several damages to different crops. Pentatomids rely on obligate symbiotic associations with bacteria of the family Enterobacteriaceae, mainly of the genus Pantoea. A distinctive trait of these associations is the transmission route: during oviposition, females smear egg masses with symbiont-containing secretions, which are ingested by newly hatched nymphs, allowing the symbiont to pass through their digestive tract and establish in the crypts of the posterior midgut. Preventing newborns from orally acquiring symbionts seriously affects their fitness and survival. This symbiont inheritance process can be manipulated to develop innovative pest control measures by sterilization of egg masses prior to nymph hatching. This review summarizes the recent knowledge advances concerning the gut primary symbionts of pentatomids, with a specific focus on the most troubling pest species for agriculture. Current understanding of host colonization dynamics in pentatomids is presented, as well as the phenotypic effects determined in different insect species by the alteration of vertical transmission. Details on the current knowledge on the whole bacterial communities accompanying primary symbionts are analyzed. The recent research exploiting the perturbation of symbiont acquisition by pentatomid nymphs is discussed, by considering published work on laboratory and field trials with several active substances. These translational strategies are presently regarded as promising for limiting the populations of many important pentatomid pests in a sustainable way.
Collapse
Affiliation(s)
- Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Turin, Italy
| | - Bianca Orrù
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Turin, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
5
|
Kumar V, Tyagi I, Tyagi K, Chandra K. Diversity and Structure of Bacterial Communities in the Gut of Spider: Thomisidae and Oxyopidae. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.588102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Dynamics of bacterial composition in the locust reproductive tract are affected by the density-dependent phase. FEMS Microbiol Ecol 2020; 96:5807075. [DOI: 10.1093/femsec/fiaa044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/12/2020] [Indexed: 02/03/2023] Open
Abstract
ABSTRACTThe important role that locust gut bacteria play in their host biology is well accepted. Among other roles, gut bacteria are suggested to be involved in the locust swarming phenomenon. In addition, in many insect orders, the reproductive system is reported to serve as a vector for trans-generation bacterial inoculation. Knowledge of the bacterial composition of the locust reproductive tract is, however, practically absent. Here we characterized the reproductive system bacterial composition of gregarious and solitary females. We investigated its temporal dynamics and how it interacts with the locust phase, by comparative sampling and 16S rRNA amplicon sequencing. We revealed that the bacterial composition of the locust female reproductive tract is mostly constructed of three core genera: Micrococcus, Acinetobacter and Staphylococcus. While solitary females maintained a consistent bacterial composition, in the gregarious phase this consortium demonstrated large temporal shifts, mostly manifested by Brevibacterium blooms. These data are in accord with our previous report on the dynamics of locust hindgut bacterial microbiota, further indicating that locust endosymbionts are affected by their host population density. These newly understood dynamics may have implications beyond their contribution to our knowledge of locust ecology, as aggregation and mass migration are prevalent phenomena across many migrating animals.
Collapse
|
7
|
Tonelli M, Cotta SR, Rigotto A, Dias ACF, Andreote FD, Bento JMS. The composition of the bacterial community in the foam produced by Mahanarva fimbriolata is distinct from those at gut and soil. Braz J Microbiol 2020; 51:1151-1157. [PMID: 31898244 DOI: 10.1007/s42770-019-00211-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
The development of insects is strongly influenced by their resident microorganisms. Symbionts play key roles in insect nutrition, reproduction, and defense. Bacteria are important partners due to the wide diversity of their biochemical pathways that aid in the host development. We present evidence that the foam produced by nymphs of the spittlebug Mahanarva fimbriolata harbors a diversity of bacteria, including some that were previously reported as defensive symbionts of insects. Analysis of the microbiomes in the nymph gut and the soil close to the foam showed that the microorganisms in the foam were more closely related to those in the gut than in the soil, suggesting that the bacteria are actively introduced into the foam by the insect. Proteobacteria, Actinobacteria, and Acidobacteria were the predominant groups found in the foam. Since members of Actinobacteria have been found to protect different species of insects by producing secondary metabolites with antibiotic properties, we speculate that the froth produced by M. fimbriolata may aid in defending the nymphs against entomopathogenic microorganisms.
Collapse
Affiliation(s)
- Mateus Tonelli
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Simone Raposo Cotta
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Alessandra Rigotto
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Armando Cavalcante F Dias
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - José Maurício S Bento
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
- Laboratory of Chemical Ecology and Insect Behavior, ESALQ/USP, Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
8
|
Kashkouli M, Fathipour Y, Mehrabadi M. Heritable Gammaproteobacterial Symbiont Improves the Fitness of Brachynema germari Kolenati (Hemiptera: Pentatomidae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:1079-1087. [PMID: 31359038 DOI: 10.1093/ee/nvz089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 06/10/2023]
Abstract
The pistachio green stink bug, Brachynema germari Kolenati, is an abundant and economic insect pest in most pistachio-growing regions. Some physiological and ecological features of this pest have been studied, but the microbiological nature of symbiotic bacteria and biological aspects of this host-symbiont interaction have been poorly understood. In the present study, we explored the host-associated environment, phylogeny, and acquisition features of the bacterial symbiont of the insect. Furthermore, the importance of the symbiont on the biological (i.e., lifespan, stage composition, and body weight) and behavioral characteristics (i.e., resting/wandering behaviors of the newborn nymphs) of the host were investigated. We found that a rod-shaped gammaproteobacterium was persistently colonized the fourth midgut region of the insect. Molecular phylogenetic and fluorescence in situ hybridization analyses strongly suggest that this symbiont should be placed in the genus Pantoea of the Enterobacteriales. Egg surface sterilization resulted in the aposymbiotic insects suggesting the vertical transmission of symbiont via egg surface smearing upon oviposition. Symbiotic and aposymbiotic B. germari showed no significant differences in the wandering behaviors of the first nymphal stages, whereas the symbiont-free insects exhibited retarded growth, lower longevity, and adult body weight. Taken together, these data provide a better understanding of the relationship between the bacterial symbiont and B. germari and demonstrate that the insect is heavily affected by the deprival of its gut symbionts.
Collapse
Affiliation(s)
- Marzieh Kashkouli
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Coatsworth H, Caicedo PA, Van Rossum T, Ocampo CB, Lowenberger C. The Composition of Midgut Bacteria in Aedes aegypti (Diptera: Culicidae) That Are Naturally Susceptible or Refractory to Dengue Viruses. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5228717. [PMID: 30508201 PMCID: PMC6276830 DOI: 10.1093/jisesa/iey118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Indexed: 06/09/2023]
Abstract
The composition, abundance, and diversity of midgut bacteria in mosquitoes can influence pathogen transmission. We used 16S rRNA microbiome profiling to survey midgut microbial diversity in pooled samples of laboratory colonized dengue-refractory, Cali-MIB, and dengue-susceptible, Cali-S Aedes aegypti (Linnaeus). The 16S rRNA sequences from the sugar-fed midguts of adult females clustered to 63 amplicon sequence variants (ASVs), primarily from Proteobacteria, Firmicutes, Flavobacteria, and Actinobacteria. An average of five ASVs dominated the midguts, and most ASVs were present in both Cali-MIB and Cali-S midguts. No differences in abundance were noted at any phylogenetic level (Phylum, Class, Order, Family, Genus) by analysis of composition of microbiome (w = 0). No community diversity metrics were significantly different between refractory and susceptible mosquitoes. These data suggest that phenotypic differences in the susceptibility to dengue virus between Cali-MIB and Cali-S are not likely due to major differences in midgut bacterial communities.
Collapse
Affiliation(s)
- Heather Coatsworth
- C2D2 Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Paola A Caicedo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Thea Van Rossum
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Clara B Ocampo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Carl Lowenberger
- C2D2 Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
10
|
Scopel W, Cônsoli FL. Culturable symbionts associated with the reproductive and digestive tissues of the Neotropical brown stinkbug Euschistus heros. Antonie van Leeuwenhoek 2018; 111:2413-2424. [PMID: 30019154 DOI: 10.1007/s10482-018-1130-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022]
Abstract
Symbionts are widely distributed in eukaryotes, and potentially affect the physiology, ecology and evolution of their host. Most insects harbour free-living bacteria in their haemocoel and gut lumen, intracellular-living bacteria in a range of tissues or bacteria in host-derived specialized cells. Stinkbugs, as do many arthropods, harbour extracellular bacteria in the gut that may affect the fitness of their host. This study identified the culturable symbionts associated with the ovaries, spermatheca, seminal vesicle and posterior midgut region (V4) of males and females of Euschistus heros (F.) (Hemiptera: Pentatomidae). Several culture media were used to isolate the bacteria associated with these structures. The selected colonies (morphotypes) were cultured in liquid medium, subjected to genomic DNA extraction, 16S rRNA gene amplification, and restriction fragment length polymorphism (RFLP) analyses. Morphotypes with distinct RFLP patterns were purified and sequenced, and the sequences obtained were used for putative identification and phylogenetic analysis. Comparison of the sequences with those available in the EzTaxon-e database and the use of a matrix of paired distances grouped the isolates in phylotypes belonging to the Phylum Proteobacteria. Proteobacteria was represented by γ-Proteobacteria phylotypes belonging to Enterobacteriaceae, while Firmicutes had Bacilli phylotypes distributed in Enterococcaceae and Staphylococcaceae. Some of the phylotypes identified were associated exclusively with single structures, such as ovaries, spermatheca and the V4 midgut region of males and females. All culturable bacteria associated with the seminal vesicle were also associated with other tissues.
Collapse
Affiliation(s)
- Wanessa Scopel
- Insect Interactions Laboratory, Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
11
|
Medina V, Sardoy PM, Soria M, Vay CA, Gutkind GO, Zavala JA. Characterized non-transient microbiota from stinkbug (Nezara viridula) midgut deactivates soybean chemical defenses. PLoS One 2018; 13:e0200161. [PMID: 30001328 PMCID: PMC6042706 DOI: 10.1371/journal.pone.0200161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/20/2018] [Indexed: 11/19/2022] Open
Abstract
The Southern green stinkbug (N. viridula) feeds on developing soybean seeds in spite of their strong defenses against herbivory, making this pest one of the most harmful to soybean crops. To test the hypothesis that midgut bacterial community allows stinkbugs to tolerate chemical defenses of soybean developing seeds, we identified and characterized midgut microbiota of stinkbugs collected from soybean crops, different secondary plant hosts or insects at diapause on Eucalyptus trees. Our study demonstrated that while more than 54% of N. viridula adults collected in the field had no detectable bacteria in the V1-V3 midgut ventricles, the guts of the rest of stinkbugs were colonized by non-transient microbiota (NTM) and transient microbiota not present in stinkbugs at diapause. While transient microbiota Bacillus sp., Micrococcus sp., Streptomyces sp., Staphylococcus sp. and others had low abundance, NTM microbiota was represented by Yokenella sp., Pantoea sp. and Enterococcus sp. isolates. We found some isolates that showed in vitro β-glucosidase and raffinase activities plus the ability to degrade isoflavonoids and deactivate soybean protease inhibitors. Our results suggest that the stinkbugs´ NTM microbiota may impact on nutrition, detoxification and deactivation of chemical defenses, and Enterococcus sp., Yokenella sp. and Pantoea sp. strains might help stinkbugs to feed on soybean developing seeds in spite of its chemical defenses.
Collapse
Affiliation(s)
- Virginia Medina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica -Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Buenos Aires, Argentina
| | - Pedro M. Sardoy
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica -Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Buenos Aires, Argentina
| | - Marcelo Soria
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Microbiología -Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Buenos Aires, Argentina
| | - Carlos A. Vay
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Gabriel O. Gutkind
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, (CONICET), Buenos Aires, Argentina
| | - Jorge A. Zavala
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica -Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Bapatla KG, Singh A, Yeddula S, Patil RH. Annotation of gut bacterial taxonomic and functional diversity in Spodoptera litura and Spilosoma obliqua. J Basic Microbiol 2018; 58:217-226. [PMID: 29380873 DOI: 10.1002/jobm.201700462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 11/05/2022]
Abstract
The insect gut has been the house of many taxonomically and physiologically diverse groups of microbial colonizers as symbionts and commensals, which are evolving to support the physiological requirement of insects. Lepidoptera is one of the important family of class hexapoda, comprising agriculture insect pest Spodoptera litura and Spilosoma obliqua. Information on gut microbiota and their functional role in these insects was meager to elucidate the wide-ranging survivalist mechanisms. In this context, we analyzed the composition, diversity and functional role of gut bacteria in S. litura and S. obliqua collected from soybean and sunflower crops, respectively, using Next Generation Sequencing of 16S rRNA. A total of 3427 and 206 Operation Taxonomic Units (OTUs) were identified in S. litura and S. obliqua gut metagenome, respectively. Highest number of sequences were annotated to unclassified bacteria (34%), followed by Proteobacteria (27%), and Chlorobi (14%) in S. litura, while S. obliqua has significant representation of Firmicutes (48%), followed by Bacteroidetes (20%), and unclassified bacteria (11%). Functionality of both metagenomes revealed, high abundance of ammonia oxidizers (20.1 58.0%) followed by relative abundance of detoxifying processes - dehalogenation (17.4-41.2%) and aromatic hydrocarbons degradation (1.1-3.1%). This study highlights the significance of the inherent microbiome of two defoliators in shaping the metagenome for nutrition and detoxifying the chemical molecules, and opens an avenue for exploring role of insect gut bacteria in host selection, metabolic endurance of insecticides and synergistic or agonistic mechanisms inside gut of insects feeding on insect-resistant biotech crops.
Collapse
Affiliation(s)
- Kiran G Bapatla
- Department of Agricultural Entomology, UAS Dharwad, Karnataka, India
| | - Arjun Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath, Uttar Pradesh, India
| | - Srujana Yeddula
- Department of Agricultural Entomology, UAS Dharwad, Karnataka, India
| | | |
Collapse
|
13
|
Microbiota associated with Bactrocera carambolae and B. dorsalis (Insecta: Tephritidae) revealed by next-generation sequencing of 16S rRNA gene. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Hong Y, Yi T, Tan X, Zhao Z, Ge F. High Ozone (O 3) Affects the Fitness Associated with the Microbial Composition and Abundance of Q Biotype Bemisia tabaci. Front Microbiol 2016; 7:1593. [PMID: 27799921 PMCID: PMC5065991 DOI: 10.3389/fmicb.2016.01593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/23/2016] [Indexed: 12/22/2022] Open
Abstract
Ozone (O3) affects the fitness of an insect, such as its development, reproduction and protection against fungal pathogens, but the mechanism by which it does so remains unclear. Here, we compared the fitness (i.e., the growth and development time, reproduction and protection against Beauveria bassiana (B. bassiana) of Q biotype whiteflies fumigated under hO3 (280 ± 20 ppb) and control O3 (50 ± 10 ppb) concentrations. Moreover, we determined that gene expression was related to development, reproduction and immunity to B. bassiana and examined the abundance and composition of bacteria and fungi inside of the body and on the surface of the Q biotype whitefly. We observed a significantly enhanced number of eggs that were laid by a female, shortened developmental time, prolonged adult lifespan, decreased weight of one eclosion, and reduced immunity to B. bassiana in whiteflies under hO3, but hO3 did not significantly affect the expression of genes related to development, reproduction and immunity. However, hO3 obviously changed the composition of the bacterial communities inside of the body and on the surface of the whiteflies, significantly reducing Rickettsia and enhancing Candidatus_Cardinium. Similarly, hO3 significantly enhanced Thysanophora penicillioides from the Trichocomaceae family and reduced Dothideomycetes (at the class level) inside of the body. Furthermore, positive correlations were found between the abundance of Candidatus_Cardinium and the female whitefly ratio and the fecundity of a single female, and positive correlations were found between the abundance of Rickettsia and the weight of adult whiteflies just after eclosion and immunity to B. bassiana. We conclude that hO3 enhances whitefly development and reproduction but impairs immunity to B. bassiana, and our results also suggest that the changes to the microbial environments inside of the body and on the surface could be crucial factors that alter whitefly fitness under hO3.
Collapse
Affiliation(s)
- Yanyun Hong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Plant Protection, Hunan Agricultural UniversityChangsha, China
| | - Tuyong Yi
- College of Plant Protection, Hunan Agricultural University Changsha, China
| | - Xiaoling Tan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Zihua Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
15
|
Kuechler SM, Matsuura Y, Dettner K, Kikuchi Y. Phylogenetically Diverse Burkholderia Associated with Midgut Crypts of Spurge Bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae). Microbes Environ 2016; 31:145-53. [PMID: 27265344 PMCID: PMC4912149 DOI: 10.1264/jsme2.me16042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diverse phytophagous heteropteran insects, commonly known as stinkbugs, are associated with specific gut symbiotic bacteria, which have been found in midgut cryptic spaces. Recent studies have revealed that members of the stinkbug families Coreidae and Alydidae of the superfamily Coreoidea are consistently associated with a specific group of the betaproteobacterial genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, and horizontally acquire specific symbionts from the environment every generation. However, the symbiotic system of another coreoid family, Stenocephalidae remains undetermined. We herein investigated four species of the stenocephalid genus Dicranocephalus. Examinations via fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) revealed the typical arrangement and ultrastructures of midgut crypts and gut symbionts. Cloning and molecular phylogenetic analyses of bacterial genes showed that the midgut crypts of all species are colonized by Burkholderia strains, which were further assigned to different subgroups of the genus Burkholderia. In addition to the SBE-group Burkholderia, a number of stenocephalid symbionts belonged to a novel clade containing B. sordidicola and B. udeis, suggesting a specific symbiont clade for the Stenocephalidae. The symbiotic systems of stenocephalid bugs may provide a unique opportunity to study the ongoing evolution of symbiont associations in the stinkbug-Burkholderia interaction.
Collapse
|
16
|
Abstract
A dataset of bacterial diversity found in mites was compiled from 193 publications (from 1964 to January 2015). A total of 143 mite species belonging to the 3 orders (Mesostigmata, Sarcoptiformes and Trombidiformes) were recorded and found to be associated with approximately 150 bacteria species (in 85 genera, 51 families, 25 orders and 7 phyla). From the literature, the intracellular symbiont Cardinium, the scrub typhus agent Orientia, and Wolbachia (the most prevalent symbiont of arthropods) were the dominant mite-associated bacteria, with approximately 30 mite species infected each. Moreover, a number of bacteria of medical and veterinary importance were also reported from mites, including species from the genera Rickettsia, Anaplasma, Bartonella, Francisella, Coxiella, Borrelia, Salmonella, Erysipelothrix and Serratia. Significant differences in bacterial infection patterns among mite taxa were identified. These data will not only be useful for raising awareness of the potential for mites to transmit disease, but also enable a deeper understanding of the relationship of symbionts with their arthropod hosts, and may facilitate the development of intervention tools for disease vector control. This review provides a comprehensive overview of mite-associated bacteria and is a valuable reference database for future research on mites of agricultural, veterinary and/or medical importance.
Collapse
|
17
|
Bistolas KSI, Sakamoto RI, Fernandes JAM, Goffredi SK. Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Front Microbiol 2014; 5:349. [PMID: 25076943 PMCID: PMC4097960 DOI: 10.3389/fmicb.2014.00349] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022] Open
Abstract
Interdomain symbioses with bacteria allow insects to take advantage of underutilized niches and provide the foundation for their evolutionary success in neotropical ecosystems. The gut microbiota of 13 micro-allopatric tropical pentatomid species, from a Costa Rican lowland rainforest, was characterized and compared with insect and host plant phylogenies. Like other families within the Pentatomomorpha, these insects (within seven genera—Antiteuchus, Arvelius, Edessa, Euschistus, Loxa, Mormidea, and Sibaria) house near-monocultures of gamma-proteobacteria in midgut crypts, comprising three distinct lineages within the family Enterobacteriaceae. Identity of the dominant bacteria (78–100% of the recovered 16S rRNA genes) was partially congruent with insect phylogeny, at the level of subfamily and tribe, with bacteria closely related to Erwinia observed in six species of the subfamily Pentatominae, and bacteria in a novel clade of Enterobacteriaceae for seven species within the subfamilies Edessinae and Discocephalinae. Symbiont replacement (i.e., bacterial “contamination” from the environment) may occur during maternal transmission by smearing of bacteria onto the egg surfaces during oviposition. This transmission strategy was experimentally confirmed for Sibaria englemani, and suspected for four species from two subfamilies, based on observation of egg probing by nymphs. Symbiont-deprived S. englemani, acquired via egg surface sterilization, exhibited significantly extended second instars (9.1 days compared with 7.9 days for symbiotic nymphs; p = 0.0001, Wilcoxon's rank with Bonferroni correction), slower linearized growth rates (p = 0.005, Welch 2-sample t-test), and qualitative differences in ceca morphology, including increased translucency of crypts, elongation of extracellular cavities, and distribution of symbionts, compared to symbiotic nymphs. Combined, these results suggest a role of the symbiont in host development, the reliable transference of symbionts via egg surfaces, and a suggestion of co-evolution between symbiont and tropical pentatomid host insects.
Collapse
Affiliation(s)
| | | | - José A M Fernandes
- Instituto de Ciências Biológicas, Universidade Federal do Pará Belém-Pará, Brazil
| | | |
Collapse
|
18
|
Bansal R, Michel AP, Sabree ZL. The crypt-dwelling primary bacterial symbiont of the polyphagous pentatomid pest Halyomorpha halys (Hemiptera: Pentatomidae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:617-625. [PMID: 24874153 DOI: 10.1603/en13341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A recent invader of North America, the brown marmorated stink bug (Halyomorpha halys Stål) is a polyphagous pentatomid that harbors a gammaproteobacterial mutualist in the crypts of specialized midgut gastric caeca (region V4). Histological analyses revealed a single rod-shaped morphology abundant in distal V4 midgut caecal crypts. A strong fluorescence signal was detected when thin sections of these tissues were hybridized with a fluorescently-labeled, Enterobacteriaceae-specific oligonucleotide probe. A single operational taxonomic unit (OTU) assigned to the Pantoea genus represented >99% of 3,454 16S rDNA amplicons obtained from midgut V4 tissues and egg samples. Detection of H. halys primary symbiont in DNA extracted from eggs suggested vertical maternal inheritance as the mode of intergenerational transmission. Consistent detection of the bacterial symbiont in geographically distinct H. halys populations strongly supports an intimate association between these two organisms. An inferred phylogeny of gammaproteobacterial symbionts of pentatomids placed the Pantoea-assigned OTU from H. halys within a clade distinct from primary bacterial symbionts of related stink bugs, Nezara viridula (L.) and Eurydema rugosa Motschulsky. Given these data, Candidatus "Pantoea carbekii" is proposed as the name of the primary bacterial symbiont of H. halys.
Collapse
Affiliation(s)
- Raman Bansal
- Department of Entomology, Ohio Agricultural Research And Development Center, The Ohio State University, 1680 Madison Ave, Wooster, OH 44691, USA
| | | | | |
Collapse
|