1
|
Kishore V, Gaiwala Sharma SS, Raghunand TR. Septum site placement in Mycobacteria - identification and characterisation of mycobacterial homologues of Escherichia coli MinD. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001359. [PMID: 37526955 PMCID: PMC10482377 DOI: 10.1099/mic.0.001359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/22/2023] [Indexed: 08/02/2023]
Abstract
A major virulence trait of Mycobacterium tuberculosis (M. tb) is its ability to enter a dormant state within its human host. Since cell division is intimately linked to metabolic shut down, understanding the mechanism of septum formation and its integration with other events in the division pathway is likely to offer clues to the molecular basis of dormancy. The M. tb genome lacks obvious homologues of several conserved cell division proteins, and this study was aimed at identifying and functionally characterising mycobacterial homologues of the E. coli septum site specification protein MinD (Ec MinD). Sequence homology based analyses suggested that the genomes of both M. tb and the saprophyte Mycobacterium smegmatis (M. smegmatis) encode two putative Ec MinD homologues - Rv1708/MSMEG_3743 and Rv3660c/ MSMEG_6171. Of these, Rv1708/MSMEG_3743 were found to be the true homologues, through complementation of the E. coli ∆minDE mutant HL1, overexpression studies, and structural comparisons. Rv1708 and MSMEG_3743 fully complemented the mini-cell phenotype of HL1, and over-expression of MSMEG_3743 in M. smegmatis led to cell elongation and a drastic decrease in c.f.u. counts, indicating its essentiality in cell-division. MSMEG_3743 displayed ATPase activity, consistent with its containing a conserved Walker A motif. Interaction of Rv1708 with the chromosome associated proteins ScpA and ParB, implied a link between its septum formation role, and chromosome segregation. Comparative structural analyses showed Rv1708 to be closer in similarity to Ec MinD than Rv3660c. In summary we identify Rv1708 and MSMEG_3743 to be homologues of Ec MinD, adding a critical missing piece to the mycobacterial cell division puzzle.
Collapse
Affiliation(s)
- Vimal Kishore
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road Hyderabad - 500007, India
- Present address: National Centre for Cell Science (NCCS), NCCS Complex, University of Pune Campus, Pune University Rd, Ganeshkhind, Pune, 411007, India
| | - Sujata S. Gaiwala Sharma
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road Hyderabad - 500007, India
- Present address: Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Tirumalai R. Raghunand
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road Hyderabad - 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
2
|
Halatek J, Brauns F, Frey E. Self-organization principles of intracellular pattern formation. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0107. [PMID: 29632261 PMCID: PMC5904295 DOI: 10.1098/rstb.2017.0107] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli, Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans. By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as ‘activators’, ‘inhibitors’ or ‘substrate depletion’. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction–diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics. This article is part of the theme issue ‘Self-organization in cell biology’.
Collapse
Affiliation(s)
- J Halatek
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - F Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - E Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| |
Collapse
|
3
|
Sung MW, Shaik R, TerBush AD, Osteryoung KW, Vitha S, Holzenburg A. The chloroplast division protein ARC6 acts to inhibit disassembly of GDP-bound FtsZ2. J Biol Chem 2018; 293:10692-10706. [PMID: 29769312 DOI: 10.1074/jbc.ra117.000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/14/2018] [Indexed: 01/12/2023] Open
Abstract
Chloroplasts host photosynthesis and fulfill other metabolic functions that are essential to plant life. They have to divide by binary fission to maintain their numbers throughout cycles of cell division. Chloroplast division is achieved by a complex ring-shaped division machinery located on both the inner (stromal) and the outer (cytosolic) side of the chloroplast envelope. The inner division ring (termed the Z ring) is formed by the assembly of tubulin-like FtsZ1 and FtsZ2 proteins. ARC6 is a key chloroplast division protein that interacts with the Z ring. ARC6 spans the inner envelope membrane, is known to stabilize or maintain the Z ring, and anchors the Z ring to the inner membrane through interaction with FtsZ2. The underlying mechanism of Z ring stabilization is not well-understood. Here, biochemical and structural characterization of ARC6 was conducted using light scattering, sedimentation, and light and transmission EM. The recombinant protein was purified as a dimer. The results indicated that a truncated form of ARC6 (tARC6), representing the stromal portion of ARC6, affects FtsZ2 assembly without forming higher-order structures and exerts its effect via FtsZ2 dynamics. tARC6 prevented GDP-induced FtsZ2 disassembly and caused a significant net increase in FtsZ2 assembly when GDP was present. Single particle analysis and 3D reconstruction were performed to elucidate the structural basis of ARC6 activity. Together, the data reveal that a dimeric form of tARC6 binds to FtsZ2 filaments and does not increase FtsZ polymerization rates but rather inhibits GDP-associated FtsZ2 disassembly.
Collapse
Affiliation(s)
- Min Woo Sung
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Rahamthulla Shaik
- From the Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Allan D TerBush
- the Biochemistry and Molecular Biology Graduate Program and.,Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | | | - Stanislav Vitha
- the Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, and
| | - Andreas Holzenburg
- From the Department of Biology, Texas A&M University, College Station, Texas 77843.,the Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843, and.,the Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Brownsville-Edinburg-Harlingen, Texas 78550
| |
Collapse
|
4
|
Abstract
Protein patterns are known to adapt to cell shape and serve as spatial templates that choreograph downstream processes like cell polarity or cell division. However, how can pattern-forming proteins sense and respond to the geometry of a cell, and what mechanistic principles underlie pattern formation? Current models invoke mechanisms based on dynamic instabilities arising from nonlinear interactions between proteins but neglect the influence of the spatial geometry itself. Here, we show that patterns can emerge as a direct result of adaptation to cell geometry, in the absence of dynamical instability. We present a generic reaction module that allows protein densities robustly to adapt to the symmetry of the spatial geometry. The key component is an NTPase protein that cycles between nucleotide-dependent membrane-bound and cytosolic states. For elongated cells, we find that the protein dynamics generically leads to a bipolar pattern, which vanishes as the geometry becomes spherically symmetrical. We show that such a reaction module facilitates universal adaptation to cell geometry by sensing the local ratio of membrane area to cytosolic volume. This sensing mechanism is controlled by the membrane affinities of the different states. We apply the theory to explain AtMinD bipolar patterns in [Formula: see text] EcMinDE Escherichia coli. Due to its generic nature, the mechanism could also serve as a hitherto-unrecognized spatial template in many other bacterial systems. Moreover, the robustness of the mechanism enables self-organized optimization of protein patterns by evolutionary processes. Finally, the proposed module can be used to establish geometry-sensitive protein gradients in synthetic biological systems.
Collapse
|
5
|
Hanson MR, Sattarzadeh A. Fluorescent labeling and confocal microscopic imaging of chloroplasts and non-green plastids. Methods Mol Biol 2014; 1132:125-43. [PMID: 24599850 DOI: 10.1007/978-1-62703-995-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
While chlorophyll has served as an excellent label for plastids in green tissue, the development of fluorescent proteins has allowed their ready visualization in all tissues of the plants, revealing new features of their morphology and motility. Gene regulatory sequences in plastid transgenes can be optimized through the use of fluorescent protein reporters. Fluorescent labeling of plastids simultaneously with other subcellular locations reveals dynamic interactions and mutant phenotypes. Transient expression of fluorescent protein fusions is particularly valuable to determine whether or not a protein of unknown function is targeted to the plastid. Particle bombardment and agroinfiltration methods described here are convenient for imaging fluorescent proteins in plant organelles. With proper selection of fluorophores for labeling the components of the plant cell, confocal microscopy can produce extremely informative images at high resolution at depths not feasible by standard epifluorescence microscopy.
Collapse
Affiliation(s)
- Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
6
|
Differences in MinC/MinD sensitivity between polar and internal Z rings in Escherichia coli. J Bacteriol 2010; 193:367-76. [PMID: 21097625 DOI: 10.1128/jb.01095-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Escherichia coli the Z ring has the potential to assemble anywhere along the cell length but is restricted to midcell by the action of negative regulatory systems, including Min. In the current model for the Min system, the MinC/MinD division inhibitory complex is evenly distributed on the membrane and can disrupt Z rings anywhere in the cell; however, MinE spatially regulates MinC/MinD by restricting it to the cell poles, thus allowing Z ring formation at midcell. This model assumes that Z rings formed at different cellular locations have equal sensitivity to MinC/MinD in the absence of MinE. However, here we report evidence that differences in MinC/MinD sensitivity between polar and nonpolar Z rings exists even when there is no MinE. MinC/MinD at proper levels is able to block minicell production in Δmin strains without increasing the cell length, indicating that polar Z rings are preferentially blocked. In the FtsZ-I374V strain (which is resistant to MinC(C)/MinD), wild-type morphology can be easily achieved with MinC/MinD in the absence of MinE. We also show that MinC/MinD at proper levels can rescue the lethal phenotype of a min slmA double deletion mutant, which we think is due to the elimination of polar Z rings (or FtsZ structures), which frees up FtsZ molecules for assembly of Z rings at internal sites to rescue division and growth. Taken together, these data indicate that polar Z rings are more susceptible to MinC/MinD than internal Z rings, even when MinE is absent.
Collapse
|
7
|
Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 2010; 11:338. [PMID: 20507633 PMCID: PMC2895629 DOI: 10.1186/1471-2164-11-338] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 05/28/2010] [Indexed: 11/24/2022] Open
Abstract
Background Pollen development from the microspore involves a series of coordinated cellular events, and the resulting mature pollen has a specialized function to quickly germinate, produce a polar-growth pollen tube derived from the vegetative cell, and deliver two sperm cells into the embryo sac for double fertilization. The gene expression profiles of developing and germinated pollen have been characterised by use of the eudicot model plant Arabidopsis. Rice, one of the most important cereal crops, has been used as an excellent monocot model. A comprehensive analysis of transcriptome profiles of developing and germinated pollen in rice is important to understand the conserved and diverse mechanism underlying pollen development and germination in eudicots and monocots. Results We used Affymetrix GeneChip® Rice Genome Array to comprehensively analyzed the dynamic changes in the transcriptomes of rice pollen at five sequential developmental stages from microspores to germinated pollen. Among the 51,279 transcripts on the array, we found 25,062 pollen-preferential transcripts, among which 2,203 were development stage-enriched. The diversity of transcripts decreased greatly from microspores to mature and germinated pollen, whereas the number of stage-enriched transcripts displayed a "U-type" change, with the lowest at the bicellular pollen stage; and a transition of overrepresented stage-enriched transcript groups associated with different functional categories, which indicates a shift in gene expression program at the bicellular pollen stage. About 54% of the now-annotated rice F-box protein genes were expressed preferentially in pollen. The transcriptome profile of germinated pollen was significantly and positively correlated with that of mature pollen. Analysis of expression profiles and coexpressed features of the pollen-preferential transcripts related to cell cycle, transcription, the ubiquitin/26S proteasome system, phytohormone signalling, the kinase system and defense/stress response revealed five expression patterns, which are compatible with changes in major cellular events during pollen development and germination. A comparison of pollen transcriptomes between rice and Arabidopsis revealed that 56.6% of the rice pollen preferential genes had homologs in Arabidopsis genome, but 63.4% of these homologs were expressed, with a small proportion being expressed preferentially, in Arabidopsis pollen. Rice and Arabidopsis pollen had non-conservative transcription factors each. Conclusions Our results demonstrated that rice pollen expressed a set of reduced but specific transcripts in comparison with vegetative tissues, and the number of stage-enriched transcripts displayed a "U-type" change during pollen development, with the lowest at the bicellular pollen stage. These features are conserved in rice and Arabidopsis. The shift in gene expression program at the bicellular pollen stage may be important to the transition from earlier cell division to later pollen maturity. Pollen at maturity pre-synthesized transcripts needed for germination and early pollen tube growth. The transcription regulation associated with pollen development would have divergence between the two species. Our results also provide novel insights into the molecular program and key components of the regulatory network regulating pollen development and germination.
Collapse
Affiliation(s)
- Li Q Wei
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
8
|
Smith AG, Johnson CB, Vitha S, Holzenburg A. Plant FtsZ1 and FtsZ2 expressed in a eukaryotic host: GTPase activity and self-assembly. FEBS Lett 2010; 584:166-72. [PMID: 19925792 DOI: 10.1016/j.febslet.2009.11.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/06/2009] [Accepted: 11/11/2009] [Indexed: 11/19/2022]
Abstract
Plants and algae contain the FtsZ1 and FtsZ2 protein families that perform specific, non-redundant functions in plastid division. In vitro studies of chloroplast division have been hampered by the lack of a suitable expression system. Here we report the expression and purification of FtsZ1-1 and FtsZ2-1 from Arabidopsis thaliana using a eukaryotic host. Specific GTPase activities were determined and found to be different for FtsZ1-1 vs. FtsZ2-1. The purified proteins readily assembled into previously unreported assembly products named type-I and -II filaments. In contrast to bacterial FtsZ, the Arabidopsis proteins do not form bundled sheets in the presence of Ca(2+).
Collapse
Affiliation(s)
- Aaron G Smith
- Microscopy and Imaging Center, Texas A&M University, College Station, TX 77843-2257, USA
| | | | | | | |
Collapse
|
9
|
Pavlendová N, Muchová K, Barák I. Expression of Escherichia coli Min system in Bacillus subtilis and its effect on cell division. FEMS Microbiol Lett 2009; 302:58-68. [PMID: 19903201 DOI: 10.1111/j.1574-6968.2009.01832.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In both rod-shaped Bacillus subtilis and Escherichia coli cells, Min proteins are involved in the regulation of division septa formation. In E. coli, dynamic oscillation of MinCD inhibitory complex and MinE, a topological specificity protein, prevents improper polar septation. However, in B. subtilis no MinE is present and no oscillation of Min proteins can be observed. The function of MinE is substituted by that of an unrelated DivIVA protein, which targets MinCD to division sites and retains them at the cell poles. We inspected cell division when the E. coli Min system was introduced into B. subtilis cells. Expression of these heterologous Min proteins resulted in cell elongation. We demonstrate here that E. coli MinD can partially substitute for the function of its B. subtilis protein counterpart. Moreover, E. coli MinD was observed to have similar helical localization as B. subtilis MinD.
Collapse
Affiliation(s)
- Nad'a Pavlendová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Science, Bratislava, Slovakia
| | | | | |
Collapse
|
10
|
Zhang M, Hu Y, Jia J, Li D, Zhang R, Gao H, He Y. CDP1, a novel component of chloroplast division site positioning system in Arabidopsis. Cell Res 2009; 19:877-86. [DOI: 10.1038/cr.2009.78] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|