1
|
Hommersom MP, Buijsen RAM, van Roon-Mom WMC, van de Warrenburg BPC, van Bokhoven H. Human Induced Pluripotent Stem Cell-Based Modelling of Spinocerebellar Ataxias. Stem Cell Rev Rep 2021; 18:441-456. [PMID: 34031815 PMCID: PMC8930896 DOI: 10.1007/s12015-021-10184-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Abstract Dominant spinocerebellar ataxias (SCAs) constitute a large group of phenotypically and genetically heterogeneous disorders that mainly present with dysfunction of the cerebellum as their main hallmark. Although animal and cell models have been highly instrumental for our current insight into the underlying disease mechanisms of these neurodegenerative disorders, they do not offer the full human genetic and physiological context. The advent of human induced pluripotent stem cells (hiPSCs) and protocols to differentiate these into essentially every cell type allows us to closely model SCAs in a human context. In this review, we systematically summarize recent findings from studies using hiPSC-based modelling of SCAs, and discuss what knowledge has been gained from these studies. We conclude that hiPSC-based models are a powerful tool for modelling SCAs as they contributed to new mechanistic insights and have the potential to serve the development of genetic therapies. However, the use of standardized methods and multiple clones of isogenic lines are essential to increase validity and reproducibility of the insights gained. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Marina P Hommersom
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands. .,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, Netherlands.
| |
Collapse
|
2
|
Systematic microsatellite repeat expansion cloning and validation. Hum Genet 2020; 139:1233-1246. [PMID: 32277284 DOI: 10.1007/s00439-020-02165-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022]
Abstract
Approximately 3% of the human genome is composed of short tandem repeat (STR) DNA sequence known as microsatellites, which can be found in both coding and non-coding regions. When associated with genic regions, expansion of microsatellite repeats beyond a critical threshold causes dozens of neurological repeat expansion disorders. To better understand the molecular pathology of repeat expansion disorders, precise cloning of microsatellite repeat sequence and expansion size is highly valuable. Unfortunately, cloning repeat expansions is often challenging and presents a significant bottleneck to practical investigation. Here, we describe a clear method for seamless and systematic cloning of practically any microsatellite repeat expansion. We use cloning and expansion of GGGGCC repeats, which are the leading genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), as an example. We employ a recursive directional ligation (RDL) technique to build multiple GGGGCC repeat-containing vectors. We describe methods to validate repeat expansion cloning, including diagnostic restriction digestion, PCR across the repeat, and next-generation long-read MinION nanopore sequencing. Validated cloning of microsatellite repeats beyond the critical expansion threshold can facilitate step-by-step characterization of disease mechanisms at the cellular and molecular level.
Collapse
|
3
|
Cobos SN, Bennett SA, Torrente MP. The impact of histone post-translational modifications in neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1982-1991. [PMID: 30352259 PMCID: PMC6475498 DOI: 10.1016/j.bbadis.2018.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
Abstract
Every year, neurodegenerative disorders take more than 5000 lives in the US alone. Cures have not yet been found for many of the multitude of neuropathies. The majority of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and Parkinson's disease (PD) cases have no known genetic basis. Thus, it is evident that contemporary genetic approaches have failed to explain the etiology or etiologies of ALS/FTD and PD. Recent investigations have explored the potential role of epigenetic mechanisms in disease development. Epigenetics comprises heritable changes in gene utilization that are not derived from changes in the genome. A main epigenetic mechanism involves the post-translational modification of histones. Increased knowledge of the epigenomic landscape of neurodegenerative diseases would not only further our understanding of the disease pathologies, but also lead to the development of treatments able to halt their progress. Here, we review recent advances on the association of histone post-translational modifications with ALS, FTD, PD and several ataxias.
Collapse
Affiliation(s)
- Samantha N Cobos
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Seth A Bennett
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Mariana P Torrente
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States; Ph.D. Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York 10016, United States.
| |
Collapse
|
4
|
Huang M, Verbeek DS. Why do so many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? Neurosci Lett 2018; 688:49-57. [PMID: 29421540 DOI: 10.1016/j.neulet.2018.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
The genetically heterozygous spinocerebellar ataxias are all characterized by cerebellar atrophy and pervasive Purkinje Cell degeneration. Up to date, more than 35 functionally diverse spinocerebellar ataxia genes have been identified. The main question that remains yet unsolved is why do some many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia? To address this question it is important to identify intrinsic pathways important for Purkinje Cell function and survival. In this review, we discuss the current consensus on shared mechanisms underlying the pervasive Purkinje Cell loss in spinocerebellar ataxia. Additionally, using recently published cell type specific expression data, we identified several Purkinje Cell-specific genes and discuss how the corresponding pathways might underlie the vulnerability of Purkinje Cells in response to the diverse genetic insults causing spinocerebellar ataxia.
Collapse
Affiliation(s)
- Miaozhen Huang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Dineke S Verbeek
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
| |
Collapse
|
5
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
6
|
Morriss GR, Cooper TA. Protein sequestration as a normal function of long noncoding RNAs and a pathogenic mechanism of RNAs containing nucleotide repeat expansions. Hum Genet 2017; 136:1247-1263. [PMID: 28484853 DOI: 10.1007/s00439-017-1807-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022]
Abstract
An emerging class of long noncoding RNAs (lncRNAs) function as decoy molecules that bind and sequester proteins thereby inhibiting their normal functions. Titration of proteins by lncRNAs has wide-ranging effects affecting nearly all steps in gene expression. While decoy lncRNAs play a role in normal physiology, RNAs expressed from alleles containing nucleotide repeat expansions can be pathogenic due to protein sequestration resulting in disruption of normal functions. This review focuses on commonalities between decoy lncRNAs that regulate gene expression by competitive inhibition of protein function through sequestration and specific examples of nucleotide repeat expansion disorders mediated by toxic RNA that sequesters RNA-binding proteins and impedes their normal functions. Understanding how noncoding RNAs compete with various RNA and DNA molecules for binding of regulatory proteins will provide insight into how similar mechanisms contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Ginny R Morriss
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Nageshwaran S, Festenstein R. Epigenetics and Triplet-Repeat Neurological Diseases. Front Neurol 2015; 6:262. [PMID: 26733936 PMCID: PMC4685448 DOI: 10.3389/fneur.2015.00262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 11/30/2015] [Indexed: 01/15/2023] Open
Abstract
The term "junk DNA" has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterochromatinized resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide, and tetranucleotide repeats. The association between repetitive regions and disease was emphasized following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy's disease) and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review, we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases.
Collapse
Affiliation(s)
- Sathiji Nageshwaran
- Division of Brain Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus , London , UK
| | - Richard Festenstein
- Division of Brain Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus , London , UK
| |
Collapse
|
8
|
Urbanek MO, Krzyzosiak WJ. RNA FISH for detecting expanded repeats in human diseases. Methods 2015; 98:115-123. [PMID: 26615955 DOI: 10.1016/j.ymeth.2015.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/18/2015] [Accepted: 11/21/2015] [Indexed: 12/14/2022] Open
Abstract
RNA fluorescence in situ hybridization (FISH) is a widely used technique for detecting transcripts in fixed cells and tissues. Many variants of RNA FISH have been proposed to increase signal strength, resolution and target specificity. The current variants of this technique facilitate the detection of the subcellular localization of transcripts at a single molecule level. Among the applications of RNA FISH are studies on nuclear RNA foci in diseases resulting from the expansion of tri-, tetra-, penta- and hexanucleotide repeats present in different single genes. The partial or complete retention of mutant transcripts forming RNA aggregates within the nucleoplasm has been shown in multiple cellular disease models and in the tissues of patients affected with these atypical mutations. Relevant diseases include, among others, myotonic dystrophy type 1 (DM1) with CUG repeats, Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3) with CAG repeats, fragile X-associated tremor/ataxia syndrome (FXTAS) with CGG repeats, myotonic dystrophy type 2 (DM2) with CCUG repeats, amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) with GGGGCC repeats and spinocerebellar ataxia type 32 (SCA32) with GGCCUG. In this article, we summarize the results obtained with FISH to examine RNA nuclear inclusions. We provide a detailed protocol for detecting RNAs containing expanded CAG and CUG repeats in different cellular models, including fibroblasts, lymphoblasts, induced pluripotent stem cells and murine and human neuronal progenitors. We also present the results of the first single-molecule FISH application in a cellular model of polyglutamine disease.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
9
|
Chan HYE. RNA-mediated pathogenic mechanisms in polyglutamine diseases and amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:431. [PMID: 25565965 PMCID: PMC4271607 DOI: 10.3389/fncel.2014.00431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/29/2014] [Indexed: 12/12/2022] Open
Abstract
Gene transcription produces a wide variety of ribonucleic acid (RNA) species in eukaryotes. Individual types of RNA, such as messenger, structural and regulatory RNA, are known to play distinct roles in the cell. Recently, researchers have identified a large number of RNA-mediated toxicity pathways that play significant pathogenic roles in numerous human disorders. In this article, we describe various common RNA toxicity pathways, namely epigenetic gene silencing, nucleolar stress, nucleocytoplasmic transport, bi-directional gene transcription, repeat-associated non-ATG translation, RNA foci formation and cellular protein sequestration. We emphasize RNA toxicity mechanisms that involve nucleotide repeat expansion, such as those related to polyglutamine (polyQ) disorders and frontotemporal lobar degeneration-amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong Hong Kong, China ; Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
10
|
Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, Pulst SM, Riess O, Rubinsztein DC, Schmidt J, Schmidt T, Scoles DR, Stevanin G, Taroni F, Underwood BR, Sánchez I. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. CEREBELLUM (LONDON, ENGLAND) 2014; 13:269-302. [PMID: 24307138 PMCID: PMC3943639 DOI: 10.1007/s12311-013-0539-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.
Collapse
Affiliation(s)
- A Matilla-Dueñas
- Health Sciences Research Institute Germans Trias i Pujol (IGTP), Ctra. de Can Ruti, Camí de les Escoles s/n, Badalona, Barcelona, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gendron TF, Belzil VV, Zhang YJ, Petrucelli L. Mechanisms of toxicity in C9FTLD/ALS. Acta Neuropathol 2014; 127:359-76. [PMID: 24394885 DOI: 10.1007/s00401-013-1237-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
A hexanucleotide repeat expansion within a non-coding region of the C9ORF72 gene is the most common mutation causative of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Elucidating how this bidirectionally transcribed G4C2·C4G2 expanded repeat causes "C9FTLD/ALS" has since become an important goal of the field. Likely pathogenic mechanisms include toxicity induced by repeat-containing RNAs, and loss of C9orf72 function due to epigenetic changes resulting in decreased C9ORF72 mRNA expression. With regards to the former, sense and antisense transcripts of the expanded repeat aberrantly interact with various RNA-binding proteins and form discrete nuclear structures, termed RNA foci. These foci have the capacity to sequester select RNA-binding proteins, thereby impairing their function. (G4C2)exp and (C4G2)exp transcripts also succumb to an alternative fate: repeat-associated non-ATG (RAN) translation. This unconventional mode of translation, which occurs in the absence of an initiating codon, results in the abnormal production of poly(GA), poly(GP), poly(GR), poly(PR) and poly(PA) peptides, collectively referred to as C9RAN proteins. C9RAN proteins form neuronal inclusions throughout the central nervous system of C9FTLD/ALS patients and may contribute to disease pathogenesis. This review aims to summarize the important findings from studies examining mechanisms of disease in C9FTLD/ALS, and will also highlight some of the many questions in need of further investigation.
Collapse
|
12
|
Goodwin M, Swanson MS. RNA-binding protein misregulation in microsatellite expansion disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:353-88. [PMID: 25201111 PMCID: PMC4483269 DOI: 10.1007/978-1-4939-1221-6_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins (RBPs) play pivotal roles in multiple cellular pathways from transcription to RNA turnover by interacting with RNA sequence and/or structural elements to form distinct RNA-protein complexes. Since these complexes are required for the normal regulation of gene expression, mutations that alter RBP functions may result in a cascade of deleterious events that lead to severe disease. Here, we focus on a group of hereditary disorders, the microsatellite expansion diseases, which alter RBP activities and result in abnormal neurological and neuromuscular phenotypes. While many of these diseases are classified as adult-onset disorders, mounting evidence indicates that disruption of normal RNA-protein interaction networks during embryogenesis modifies developmental pathways, which ultimately leads to disease manifestations later in life. Efforts to understand the molecular basis of these disorders has already uncovered novel pathogenic mechanisms, including RNA toxicity and repeat-associated non-ATG (RAN) translation, and current studies suggest that additional surprising insights into cellular regulatory pathways will emerge in the future.
Collapse
Affiliation(s)
- Marianne Goodwin
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL, 32610-3610, USA
| | | |
Collapse
|
13
|
Evans-Galea MV, Hannan AJ, Carrodus N, Delatycki MB, Saffery R. Epigenetic modifications in trinucleotide repeat diseases. Trends Mol Med 2013; 19:655-63. [DOI: 10.1016/j.molmed.2013.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 12/18/2022]
|
14
|
Internal ribosome entry segment activity of ATXN8 opposite strand RNA. PLoS One 2013; 8:e73885. [PMID: 24040107 PMCID: PMC3770663 DOI: 10.1371/journal.pone.0073885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
Spinocerebellar ataxia type 8 (SCA8) involves the expansion of CTG/CAG repeats from the overlapping ataxin 8 opposite strand (ATXN8OS) and ataxin 8 (ATXN8) genes located on chromosome 13q21. Although being transcribed, spliced and polyadenylated in the CTG orientation, ATXN8OS does not itself appear to be protein coding, as only small open reading frames (ORFs) were noted. In the present study we investigated the translation of a novel 102 amino acids containing-ORF in the ATXN8OS RNA. Expression of chimeric construct with an in-frame ORF-EGFP gene demonstrated that ATXN8OS RNA is translatable. Using antiserum raised against ORF, ATXN8OS ORF expression was detected in various human cells including lymphoblastoid, embryonic kidney 293, neuroblastoma IMR-32, SK-N-SH, SH-SY5Y cells and human muscle tissue. The biological role of the ATXN8OS ORF and its connection to SCA8 remains to be determined.
Collapse
|
15
|
Belzil VV, Gendron TF, Petrucelli L. RNA-mediated toxicity in neurodegenerative disease. Mol Cell Neurosci 2012; 56:406-19. [PMID: 23280309 DOI: 10.1016/j.mcn.2012.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 12/12/2022] Open
Abstract
Cellular viability depends upon the well-orchestrated functions carried out by numerous protein-coding and non-coding RNAs, as well as RNA-binding proteins. During the last decade, it has become increasingly evident that abnormalities in RNA processing represent a common feature among many neurodegenerative diseases. In "RNAopathies", which include diseases caused by non-coding repeat expansions, RNAs exert toxicity via diverse mechanisms: RNA foci formation, bidirectional transcription, and the production of toxic RNAs and proteins by repeat associated non-ATG translation. The mechanisms of toxicity in "RNA-binding proteinopathies", diseases in which RNA-binding proteins like TDP-43 and FUS play a prominent role, have yet to be fully elucidated. Nonetheless, both loss of function of the RNA binding protein, and a toxic gain of function resulting from its aggregation, are thought to be involved in disease pathogenesis. As part of the special issue on RNA and Splicing Regulation in Neurodegeneration, this review intends to explore the diverse RNA-related mechanisms contributing to neurodegeneration, with a special emphasis on findings emerging from animal models.
Collapse
Affiliation(s)
- Veronique V Belzil
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
16
|
Singh S, Singh PK, Bhadauriya P, Ganesh S. Lafora disease E3 ubiquitin ligase malin is recruited to the processing bodies and regulates the microRNA-mediated gene silencing process via the decapping enzyme Dcp1a. RNA Biol 2012; 9:1440-9. [PMID: 23131811 DOI: 10.4161/rna.22708] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Intracellular transport, processing and stability of mRNA play critical roles in the functional physiology of the cell and defects in these processes are thought to underlie the pathogenesis in a number of neurodegenerative disorders. One of the cellular sites that regulate the mRNA half-life is the processing bodies, the dynamic cytoplasmic structures that represent the non-translating mRNA and the ribonucleoprotein complex that also control the decapping and translation of mRNA. In the present study we explored the possible role of malin E3 ubiquitin ligase in the mRNA decay pathway via the processing bodies. Defects in malin are associated with Lafora disease (LD)-a neurodegenerative disorder characterized by myoclonus seizures. We show here that malin is recruited to the processing bodies and that malin regulates the recruitment of mRNA decapping enzyme Dcp1a by promoting its degradation via the ubiquitin proteasome system. Depletion of malin results in elevated levels of Dcp1a and an altered microRNA-mediated gene silencing activity. Our study suggests that malin is one of the critical regulators of processing bodies and that defects in the mRNA processing might underlie some of the disease symptoms in LD.
Collapse
Affiliation(s)
- Sweta Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | | | | | |
Collapse
|
17
|
Echeverria GV, Cooper TA. RNA-binding proteins in microsatellite expansion disorders: mediators of RNA toxicity. Brain Res 2012; 1462:100-11. [PMID: 22405728 PMCID: PMC3372679 DOI: 10.1016/j.brainres.2012.02.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 12/22/2022]
Abstract
Although protein-mediated toxicity in neurological disease has been extensively characterized, RNA-mediated toxicity is an emerging mechanism of pathogenesis. In microsatellite expansion disorders, expansion of repeated sequences in noncoding regions gives rise to RNA that produces a toxic gain of function, while expansions in coding regions can disrupt protein function as well as produce toxic RNA. The toxic RNA typically aggregates into nuclear foci and contributes to disease pathogenesis. In many cases, toxicity of the RNA is caused by the disrupted functions of RNA-binding proteins. We will discuss evidence for RNA-mediated toxicity in microsatellite expansion disorders. Different microsatellite expansion disorders are linked with alterations in the same as well as disease-specific RNA-binding proteins. Recent studies have shown that microsatellite expansions can encode multiple repeat-containing toxic RNAs through bidirectional transcription and protein species through repeat-associated non-ATG translation. We will discuss approaches that have characterized the toxic contributions of these various factors.
Collapse
Affiliation(s)
- Gloria V. Echeverria
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Thomas A. Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| |
Collapse
|
18
|
Pastori C, Wahlestedt C. Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA Biol 2012; 9:860-70. [PMID: 22699553 PMCID: PMC3495748 DOI: 10.4161/rna.20482] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DNA sequences associated with protein-coding genes have been the primary focus of most genetic analyses of complex human diseases. Although we are rapidly gaining a comprehensive view of the etiology of certain central nervous system disorders, major gaps in our understanding persist. Recent studies have uncovered that many human genomic sequences are transcribed but not translated, generating an astounding diversity of noncoding RNAs (ncRNAs). This awareness should be taken into account when studying human diseases and may have profound implications on the development of novel biomarkers as well as therapies.
Collapse
Affiliation(s)
- Chiara Pastori
- Department of Psychiatry and Behavioral Sciences and Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | | |
Collapse
|
19
|
Wojciechowska M, Krzyzosiak WJ. Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum Mol Genet 2011; 20:3811-21. [PMID: 21729883 PMCID: PMC3168290 DOI: 10.1093/hmg/ddr299] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Discrete and punctate nuclear RNA foci are characteristic molecular hallmarks of pathogenesis in myotonic dystrophy type 1 and type 2. Intranuclear RNA inclusions of distinct morphology have also been found in fragile X-associated tremor ataxia syndrome, Huntington's disease-like 2, spinocerebellar ataxias type 8, type 10 and type 31. These neurological diseases are associated with the presence of abnormally long simple repeat expansions in their respective genes whose expression leads to the formation of flawed transcripts with altered metabolisms. Expanded CUG, CCUG, CGG, CAG, AUUCU and UGGAA repeats are associated with the diseases and accumulate in nuclear foci, as demonstrated in variety of cells and tissues of human and model organisms. These repeat RNA foci differ in size, shape, cellular abundance and protein composition and their formation has a negative impact on cellular functions. This review summarizes the efforts of many laboratories over the past 15 years to characterize nuclear RNA foci that are recognized as important triggers in the mutant repeat RNA toxic gain-of-function mechanisms of pathogenesis in neurological disorders.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
20
|
Latonen L. Nucleolar aggresomes as counterparts of cytoplasmic aggresomes in proteotoxic stress. Bioessays 2011; 33:386-95. [DOI: 10.1002/bies.201100008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Dickson AM, Wilusz CJ. Repeat expansion diseases: when a good RNA turns bad. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:173-92. [PMID: 21956913 DOI: 10.1002/wrna.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An increasing number of dominantly inherited diseases have now been linked with expansion of short repeats within specific genes. Although some of these expansions affect protein function or result in haploinsufficiency, a significant portion cause pathogenesis through production of toxic RNA molecules that alter cellular metabolism. In this review, we examine the criteria that influence toxicity of these mutant RNAs and discuss new developments in therapeutic approaches.
Collapse
Affiliation(s)
- Alexa M Dickson
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|