1
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
3
|
Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets 2016; 20:1055-73. [PMID: 26981612 DOI: 10.1517/14728222.2016.1164694] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite remarkable advances in tumor treatment, many patients still die from common tumors (breast, prostate, lung, CNS, colon, and pancreas), and thus, new approaches are needed. Many of these tumors synthesize bombesin (Bn)-related peptides and over-express their receptors (BnRs), hence functioning as autocrine-growth-factors. Recent studies support the conclusion that Bn-peptides/BnRs are well-positioned for numerous novel antitumor treatments, including interrupting autocrine-growth and the use of over-expressed receptors for imaging and targeting cytotoxic-compounds, either by direct-coupling or combined with nanoparticle-technology. AREAS COVERED The unique ability of common neoplasms to synthesize, secrete, and show a growth/proliferative/differentiating response due to BnR over-expression, is reviewed, both in general and with regard to the most frequently investigated neoplasms (breast, prostate, lung, and CNS). Particular attention is paid to advances in the recent years. Also considered are the possible therapeutic approaches to the growth/differentiation effect of Bn-peptides, as well as the therapeutic implication of the frequent BnR over-expression for tumor-imaging and/or targeted-delivery. EXPERT OPINION Given that Bn-related-peptides/BnRs are so frequently ectopically-expressed by common tumors, which are often malignant and become refractory to conventional treatments, therapeutic interventions using novel approaches to Bn-peptides and receptors are being explored. Of particular interest is the potential of reproducing with BnRs in common tumors the recent success of utilizing overexpression of somatostatin-receptors by neuroendocrine-tumors to provide the most sensitive imaging methods and targeted delivery of cytotoxic-compounds.
Collapse
Affiliation(s)
- Paola Moreno
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| | - Irene Ramos-Álvarez
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| | - Terry W Moody
- b Center for Cancer Research, Office of the Director , NCI, National Institutes of Health , Bethesda , MD , USA
| | - Robert T Jensen
- a Digestive Diseases Branch, Cell Biology Section, NIDDK , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
4
|
Ischia J, Patel O, Bolton D, Shulkes A, Baldwin GS. Expression and function of gastrin-releasing peptide (GRP) in normal and cancerous urological tissues. BJU Int 2014; 113 Suppl 2:40-7. [PMID: 24894852 DOI: 10.1111/bju.12594] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gastrin-releasing peptide (GRP) acts as an important regulatory peptide in several normal physiological processes and as a growth factor in certain cancers. In this review we provide a comprehensive overview of the current state of knowledge of GRP in urological tissues under both normal and cancerous conditions. GRP and its receptor, GRP-R, are expressed in the normal kidney and renal cancers. GRP can stimulate the growth of renal cancer cells. GRP and GRP-R are expressed in prostate cancer and GRP can stimulate the growth of prostate cancer cell lines. Importantly, GRP is a key neuroendocrine peptide, which may be involved in the progression of advanced prostate cancer and in the neuroendocrine differentiation of prostate cancer. Recent animal studies have shown that GRP and GRP-R are an integral part of male sexual function and play a crucial role in spinal control of erections and ejaculation.
Collapse
Affiliation(s)
- Joseph Ischia
- Department of Surgery, Austin Health, Melbourne, VIC, Australia; Department of Urology, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
5
|
Bandari RP, Jiang Z, Reynolds TS, Bernskoetter NE, Szczodroski AF, Bassuner KJ, Kirkpatrick DL, Rold TL, Sieckman GL, Hoffman TJ, Connors JP, Smith CJ. Synthesis and biological evaluation of copper-64 radiolabeled [DUPA-6-Ahx-(NODAGA)-5-Ava-BBN(7-14)NH2], a novel bivalent targeting vector having affinity for two distinct biomarkers (GRPr/PSMA) of prostate cancer. Nucl Med Biol 2014; 41:355-63. [PMID: 24508213 DOI: 10.1016/j.nucmedbio.2014.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 01/12/2023]
Abstract
UNLABELLED Gastrin-releasing peptide receptors (GRPr) and prostate-specific membrane antigen (PSMA) are two identifying biomarkers expressed in very high numbers on prostate cancer cells and could serve as a useful tool for molecular targeting and diagnosis of disease via positron-emission tomography (PET). The aim of this study was to produce the multipurpose, bivalent [DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] radioligand for prostate cancer imaging, where DUPA = (2-[3-(1,3-dicarboxypropyl)-ureido]pentanedioic acid), a small-molecule, PSMA-targeting probe, 6Ahx = 6-aminohexanoic acid, 5-Ava = 5-aminovaleric acid, NODAGA = [2-(4,7-biscarboxymethyl)-1,4,7-(triazonan-1-yl)pentanedioic acid] (a derivative of NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid)), and BBN(7-14)NH2 = bombesin, a GRPr-specific peptide targeting probe. METHODS The PSMA/GRPr dual targeting ligand precursor [DUPA-6-Ahx-K-5-Ava-BBN(7-14)NH2], was synthesized by solid-phase and manual peptide synthesis, after which NODAGA was added via manual conjugation to the ε-amine of lysine (K). The new bivalent GRPr/PSMA targeting vector was purified by reversed-phase high performance liquid chromatography (RP-HPLC), characterized by electrospray-ionization mass spectrometry (ESI-MS), and metallated with (64)CuCl2 and (nat)CuCl2. The receptor binding affinity was evaluated in human, prostate, PC-3 (GRPr-positive) and LNCaP (PSMA-positive) cells and the tumor-targeting efficacy determined in severe combined immunodeficient (SCID) and athymic nude mice bearing PC-3 and LNCaP tumors. Whole-body maximum intensity microPET/CT images of PC-3/LNCaP tumor-bearing mice were obtained 18 h post-injection (p.i.). RESULTS Competitive binding assays in PC-3 and LNCaP cells indicated high receptor binding affinity for the [DUPA-6-Ahx-((nat)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] conjugate. MicroPET scintigraphy in PC-3/LNCaP tumor-bearing mice indicated that xenografted tumors were visible at 18h p.i. with collateral, background radiation also being observed in non-target tissue. CONCLUSIONS DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2] targeting vector, as described herein, is the first example of a dual GRPr-/PSMA-targeting radioligand for molecular of imaging prostate tumors. Detailed in vitro studies and microPET molecular imaging investigations of [DUPA-6-Ahx-((64)Cu-NODAGA)-5-Ava-BBN(7-14)NH2 in tumor-bearing mice indicate that further studies are necessary to optimize uptake and retention of tracer in GRPr- and PSMA-positive tissues.
Collapse
Affiliation(s)
- Rajendra Prasad Bandari
- Research Service, Truman VA, Columbia, MO 65201, USA; Department of Radiology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Zongrun Jiang
- Research Service, Truman VA, Columbia, MO 65201, USA; Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Tamila Stott Reynolds
- Research Service, Truman VA, Columbia, MO 65201, USA; Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, MO 65211, USA
| | - Nicole E Bernskoetter
- Research Service, Truman VA, Columbia, MO 65201, USA; Department of Radiology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | - Kurt J Bassuner
- Department of Radiology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Daniel L Kirkpatrick
- Department of Radiology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Tammy L Rold
- Research Service, Truman VA, Columbia, MO 65201, USA; Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | - Timothy J Hoffman
- Research Service, Truman VA, Columbia, MO 65201, USA; Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO 65211, USA; Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - James P Connors
- Department of Radiology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Charles J Smith
- Research Service, Truman VA, Columbia, MO 65201, USA; Department of Radiology, University of Missouri School of Medicine, Columbia, MO 65211, USA; University of Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
6
|
Gastrin acting on the cholecystokinin2 receptor induces cyclooxygenase-2 expression through JAK2/STAT3/PI3K/Akt pathway in human gastric cancer cells. Cancer Lett 2013; 332:11-8. [PMID: 23376640 DOI: 10.1016/j.canlet.2012.12.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/29/2012] [Accepted: 12/02/2012] [Indexed: 12/16/2022]
Abstract
Gastrin, cholecystokinin2 receptor (CCK2R), and cyclooxygenase-2 (COX-2) have been implicated in the carcinogenesis and progression of gastric cancer. Our study demonstrated that antagonist or siRNA against CCK2R blocked amidated gastrin (G17)-induced activation of STAT3 and Akt in gastric cancer cell lines. G17-increased COX-2 expression and cell proliferation were effectively blocked by CCK2R antagonist and inhibitors of JAK2 and PI3K. In addition, knockdown of STAT3 expression significantly attenuated G17-induced PI3K/Akt activation, COX-2 expression, and cell proliferation. These results suggest that CCK2R-mediated COX-2 up-regulation via JAK2/STAT3/PI3K/Akt pathway is involved in the proliferative effect of G17 on human gastric cancer cells.
Collapse
|
7
|
Haddad A, Flint-Ashtamker G, Minzel W, Sood R, Rimon G, Barki-Harrington L. Prostaglandin EP1 receptor down-regulates expression of cyclooxygenase-2 by facilitating its proteasomal degradation. J Biol Chem 2012; 287:17214-17223. [PMID: 22474323 DOI: 10.1074/jbc.m111.304220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The enzyme cyclooxygenase-2 (COX-2) is rapidly and transiently up-regulated by a large variety of signals and implicated in pathologies such as inflammation and tumorigenesis. Although many signals cause COX-2 up-regulation, much less is known about mechanisms that actively down-regulate its expression. Here we show that the G protein-coupled receptor prostaglandin E(1) (EP(1)) reduces the expression of COX-2 in a concentration-dependent manner through a mechanism that does not require receptor activation. The reduction in COX-2 protein is not due to decreased protein synthesis and occurs because of enhancement of substrate-independent COX-2 proteolysis. Although EP(1) does not interfere with the entry of COX-2 into the endoplasmic reticulum-associated degradation cascade, it facilitates COX-2 ubiquitination through complex formation. Blockade of proteasomal activity results in degradation of the receptor and concomitant recovery in the expression of COX-2, suggesting that EP(1) may scaffold an unknown E3 ligase that ubiquitinates COX-2. These findings propose a new role for the EP(1) receptor in resolving inflammation through down-regulation of COX-2.
Collapse
Affiliation(s)
- Ariz Haddad
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa 31905, Israel
| | - Galit Flint-Ashtamker
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa 31905, Israel
| | - Waleed Minzel
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa 31905, Israel
| | - Rapita Sood
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa 31905, Israel
| | - Gilad Rimon
- Department of Clinical Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Liza Barki-Harrington
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa 31905, Israel.
| |
Collapse
|