1
|
Huang Z, Yang Y, Lai J, Chen Q, Wang X, Wang S, Li M, Lu S. Identification of Key Genes Related to Intramuscular Fat Content of Psoas Major Muscle in Saba Pigs by Integrating Bioinformatics and Machine Learning Based on Transcriptome Data. Animals (Basel) 2025; 15:1181. [PMID: 40282015 PMCID: PMC12024254 DOI: 10.3390/ani15081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
The psoas major muscle (PMM) is a piece of pork with good tenderness and high value. Intramuscular fat (IMF) content, serving as a pivotal indicator of pork quality, varies greatly among pigs within the same breed. However, there is a paucity of studies focusing on investigating the molecular mechanism of PMM IMF deposition in the same pig breed. The present study aimed to identify the potential genes related to the IMF content of PMM in low- and high-IMF Saba pigs based on transcriptome data analysis. The data used in this study were the RNA sequences of PMM from 12 Saba pigs (PRJNA1223630, from our laboratory) and gene expression profiles (GSE207279) acquired from the NCBI Sequence Read Archive database and the GEO database, respectively, together with data on the fatty acid and amino acid composition of the 12 Saba pigs' PMM. It was found that the high-IMF pigs exhibited significantly elevated levels of saturated fatty acids and (mono)unsaturated fatty acids, especially C14:0, C16:0, C20:0, C16:1, C18:1n9c, and C20:2, compared with those in the low-IMF pigs (p < 0.05 or p < 0.01). A total of 370 differentially expressed genes (DEGs) (221 up- and 149 down-regulated) were identified based on PRJNA1223630. Then, 20 hub genes were identified through protein-protein interaction (PPI) network analysis. Four potential fat-deposition-related genes (DGAT2, PCK1, MELK, and FASN) were further screened via the intersection of the candidate genes identified by the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and the top five genes ranked by the Random Forest (RF) method based on the 20 hub genes and were validated in the test gene set (GSE207279). The constructed mRNA (gene)-miRNA-lncRNA network, involving miRNAs (miR-103a-3p, miR-107, and miR-485-5p), lncRNAs (XIST, NEAT1, and KCNQ1OT1), and FASN, might be crucial for IMF deposition in pigs. These findings might delineate valuable regulatory molecular mechanisms coordinating IMF deposition and could serve as a beneficial foundation for the genetic improvement of pork quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Z.H.); (Y.Y.); (J.L.); (Q.C.); (X.W.); (S.W.); (M.L.)
| |
Collapse
|
2
|
Li X, Lu L, Tong X, Li R, Jin E, Ren M, Gao Y, Gu Y, Li S. Transcriptomic Profiling of Meat Quality Traits of Skeletal Muscles of the Chinese Indigenous Huai Pig and Duroc Pig. Genes (Basel) 2023; 14:1548. [PMID: 37628600 PMCID: PMC10454112 DOI: 10.3390/genes14081548] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The Huai pig is a well-known indigenous pig breed in China. The main advantages of Huai pigs over Western commercial pig breeds include a high intramuscular fat (IMF) content and good meat quality. There are significant differences in the meat quality traits of the same muscle part or different muscle parts of the same variety. To investigate the potential genetic mechanism underlying the meat quality differences in different pig breeds or muscle groups, longissimus dorsi (LD), psoas major (PM), and biceps femoris (BF) muscle tissues were collected from two pig breeds (Huai and Duroc). There were significant differences in meat quality traits and amino acid content. We assessed the muscle transcriptomic profiles using high-throughput RNA sequencing. The IMF content in the LD, PM, and BF muscles of Huai pigs was significantly higher than that in Duroc pigs (p < 0.05). Similarly, the content of flavor amino acids in the three muscle groups was significantly higher in Huai pigs than that in Duroc pigs (p < 0.05). We identified 175, 110, and 86 differentially expressed genes (DEGs) between the LD, PM, and BF muscles of the Huai and Duroc pigs, respectively. The DEGs of the different pig breeds and muscle regions were significantly enriched in the biological processes and signaling pathways related to muscle fiber type, IMF deposition, lipid metabolism, PPAR signaling, cAMP signaling, amino acid metabolism, and ECM-receptor interaction. Our findings might help improve pork yield by using the obtained DEGs for marker-assisted selection and providing a theoretical reference for evaluating and improving pork quality.
Collapse
Affiliation(s)
- Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (X.L.); (L.L.); (X.T.); (R.L.); (E.J.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
- Key Laboratory of Quality and Safety Control for Pork, Ministry of Agriculture and Rural, No. 9, Chuzhou 233100, China;
| | - Liangyue Lu
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (X.L.); (L.L.); (X.T.); (R.L.); (E.J.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
- Key Laboratory of Quality and Safety Control for Pork, Ministry of Agriculture and Rural, No. 9, Chuzhou 233100, China;
| | - Xinwei Tong
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (X.L.); (L.L.); (X.T.); (R.L.); (E.J.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
- Key Laboratory of Quality and Safety Control for Pork, Ministry of Agriculture and Rural, No. 9, Chuzhou 233100, China;
| | - Ruidong Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (X.L.); (L.L.); (X.T.); (R.L.); (E.J.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
- Key Laboratory of Quality and Safety Control for Pork, Ministry of Agriculture and Rural, No. 9, Chuzhou 233100, China;
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (X.L.); (L.L.); (X.T.); (R.L.); (E.J.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
- Key Laboratory of Quality and Safety Control for Pork, Ministry of Agriculture and Rural, No. 9, Chuzhou 233100, China;
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (X.L.); (L.L.); (X.T.); (R.L.); (E.J.); (M.R.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
- Key Laboratory of Quality and Safety Control for Pork, Ministry of Agriculture and Rural, No. 9, Chuzhou 233100, China;
| | - Yafei Gao
- Key Laboratory of Quality and Safety Control for Pork, Ministry of Agriculture and Rural, No. 9, Chuzhou 233100, China;
| | - Youfang Gu
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
- Key Laboratory of Quality and Safety Control for Pork, Ministry of Agriculture and Rural, No. 9, Chuzhou 233100, China;
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (X.L.); (L.L.); (X.T.); (R.L.); (E.J.); (M.R.)
| |
Collapse
|
3
|
Li Y, Ma Q, Shi X, Yuan W, Liu G, Wang C. Comparative Transcriptome Analysis of Slow-Twitch and Fast-Twitch Muscles in Dezhou Donkeys. Genes (Basel) 2022; 13:1610. [PMID: 36140778 PMCID: PMC9498731 DOI: 10.3390/genes13091610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The skeletal muscle fiber profile is closely related to livestock meat quality. However, the molecular mechanisms determining muscle fiber types in donkeys are not completely understood. In this study, we selected the psoas major muscle (PM; mainly composed of oxidative-type muscle fibers) and biceps femoris muscle (BF; mainly composed of glycolytic-type muscle fibers) and systematically compared their mRNA and microRNA transcriptomes via RNA-seq. We identified a total of 2881 differentially expressed genes (DEGs) and 21 known differentially expressed miRNAs (DEmiRs). Furthermore, functional enrichment analysis showed that the DEGs were mainly involved in energy metabolism and actin cytoskeleton regulation. The glycolysis/gluconeogenesis pathway (including up-regulated genes such as PKM, LDHA, PGK1 and ALDOA) was more highly enriched in BF, whereas the oxidative phosphorylation pathway and cardiac muscle contraction (including down-regulated genes such as LDHB, ATP2A2, myosin-7 (MYH7), TNNC1, TPM3 and TNNI1) was more enriched in PM. Additionally, we identified several candidate miRNA-mRNA pairs that might regulate muscle fiber types using the integrated miRNA-mRNA analysis. Combined with the results of protein-protein interaction (PPI) analysis, some interesting DEGs (including ACTN3, TNNT3, TPM2, TNNC2, PKM, TNNC1 and TNNI1) might be potential candidate target genes involved in the miRNA-mediated regulation of the myofibril composition. This study is the first to indicate that DEmiRs, especially eca-miR-193a-5p and eca-miR-370, and potential candidate target genes that are mainly involved in actin binding (e.g., ACTN3, TNNT3 and TNNC1) and the glycolysis/gluconeogenesis pathways (e.g., PKM) might coregulate the myofibril composition in donkeys. This study may provide useful information for improving meat quality traits in Dezhou donkeys.
Collapse
Affiliation(s)
- Yan Li
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China
| | - Qingshan Ma
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China
| | - Xiaoyuan Shi
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China
| | - Wenmin Yuan
- Marine Biomedical Research Institute of Qingdao, Qingdao 266000, China
| | - Guiqin Liu
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
4
|
Sun X, Zhang T, Li L, Tu K, Yu T, Wu B, Zhou L, Tian J, Liu Z. MicroRNA expression signature in the striated and smooth adductor muscles of Yesso scallop Patinopecten yessoensis. Genomics 2022; 114:110409. [PMID: 35714827 DOI: 10.1016/j.ygeno.2022.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Increasing evidences point to the potential role of microRNAs (miRNAs) in muscle growth and development in animals. However, knowledge on the identity of miRNAs and their targets in molluscs remains largely unknown. Scallops have one large adductor muscle, composed of fast (striated) and slow (smooth) muscle types, which display great differences in muscle fibers, meat quality, cell types and molecular components. In the present study, we performed a comprehensive investigation of miRNA transcriptomes in fast and slow adductor muscles of Yesso scallop Patinopecten yessoensis. As a result, 47 differentially expressed miRNAs representing ten miRNA families were identified between the striated and smooth adductor muscles. The KEGG enrichment analysis of their target genes were mainly associated with amino acid metabolism, energy metabolism and glycan biosynthesis. The target genes of miR-133 and miR-71 were validated by the dual-luciferase reporter assays and miRNA antagomir treatment in vivo. The identification and functional validation of these different miRNAs in scallops will greatly help our understanding of miRNA regulatory mechanism that achieves the unique muscle phenotypes in scallops. The present findings provide the direct evidences for muscle-specific miRNAs involved in muscle growth and differentiation in molluscs.
Collapse
Affiliation(s)
- Xiujun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Tianshi Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Li Li
- National Oceanographic Center, Qingdao 266104, China
| | - Kang Tu
- Putian Institute of Aquaculture Science of Fujian Province, Putian 351100, China
| | - Tao Yu
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Biao Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Liqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Jiteng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China
| | - Zhihong Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Qingdao 266071, China.
| |
Collapse
|
5
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
6
|
Belli R, Ferraro E, Molfino A, Carletti R, Tambaro F, Costelli P, Muscaritoli M. Liquid Biopsy for Cancer Cachexia: Focus on Muscle-Derived microRNAs. Int J Mol Sci 2021; 22:ijms22169007. [PMID: 34445710 PMCID: PMC8396502 DOI: 10.3390/ijms22169007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia displays a complex nature in which systemic inflammation, impaired energy metabolism, loss of muscle and adipose tissues result in unintentional body weight loss. Cachectic patients have a poor prognosis and the presence of cachexia reduces the tolerability of chemo/radio-therapy treatments and it is frequently the primary cause of death in advanced cancer patients. Early detection of this condition could make treatments more effective. However, early diagnostic biomarkers of cachexia are currently lacking. In recent years, although solid biopsy still remains the "gold standard" for diagnosis of cancer, liquid biopsy is gaining increasing interest as a source of easily accessible potential biomarkers. Moreover, the growing interest in circulating microRNAs (miRNAs), has made these molecules attractive for the diagnosis of several diseases, including cancer. Some muscle-derived circulating miRNA might play a pivotal role in the onset/progression of cancer cachexia. This topic is of great interest since circulating miRNAs might be easily detectable by means of liquid biopsies and might allow an early diagnosis of this syndrome. We here summarize the current knowledge on circulating muscular miRNAs involved in muscle atrophy, since they might represent easily accessible and promising biomarkers of cachexia.
Collapse
Affiliation(s)
- Roberta Belli
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
- Correspondence: (R.B.); (M.M.); Tel./Fax: +390-649-972-020 (M.M.)
| | - Elisabetta Ferraro
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Alessio Molfino
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Raffaella Carletti
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Federica Tambaro
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy; (A.M.); (R.C.); (F.T.)
- Correspondence: (R.B.); (M.M.); Tel./Fax: +390-649-972-020 (M.M.)
| |
Collapse
|
7
|
Ducret V, Richards AJ, Videlier M, Scalvenzi T, Moore KA, Paszkiewicz K, Bonneaud C, Pollet N, Herrel A. Transcriptomic analysis of the trade-off between endurance and burst-performance in the frog Xenopus allofraseri. BMC Genomics 2021; 22:204. [PMID: 33757428 PMCID: PMC7986297 DOI: 10.1186/s12864-021-07517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation in locomotor capacity among animals often reflects adaptations to different environments. Despite evidence that physical performance is heritable, the molecular basis of locomotor performance and performance trade-offs remains poorly understood. In this study we identify the genes, signaling pathways, and regulatory processes possibly responsible for the trade-off between burst performance and endurance observed in Xenopus allofraseri, using a transcriptomic approach. RESULTS We obtained a total of about 121 million paired-end reads from Illumina RNA sequencing and analyzed 218,541 transcripts obtained from a de novo assembly. We identified 109 transcripts with a significant differential expression between endurant and burst performant individuals (FDR ≤ 0.05 and logFC ≥2), and blast searches resulted in 103 protein-coding genes. We found major differences between endurant and burst-performant individuals in the expression of genes involved in the polymerization and ATPase activity of actin filaments, cellular trafficking, proteoglycans and extracellular proteins secreted, lipid metabolism, mitochondrial activity and regulators of signaling cascades. Remarkably, we revealed transcript isoforms of key genes with functions in metabolism, apoptosis, nuclear export and as a transcriptional corepressor, expressed in either burst-performant or endurant individuals. Lastly, we find two up-regulated transcripts in burst-performant individuals that correspond to the expression of myosin-binding protein C fast-type (mybpc2). This suggests the presence of mybpc2 homoeologs and may have been favored by selection to permit fast and powerful locomotion. CONCLUSION These results suggest that the differential expression of genes belonging to the pathways of calcium signaling, endoplasmic reticulum stress responses and striated muscle contraction, in addition to the use of alternative splicing and effectors of cellular activity underlie locomotor performance trade-offs. Ultimately, our transcriptomic analysis offers new perspectives for future analyses of the role of single nucleotide variants, homoeology and alternative splicing in the evolution of locomotor performance trade-offs.
Collapse
Affiliation(s)
- Valérie Ducret
- UMR 7179 MECADEV, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, 55 Rue Buffon, 75005, Paris, France.
| | - Adam J Richards
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
| | - Mathieu Videlier
- Functional Ecology Lab, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Thibault Scalvenzi
- Evolution, Génomes, Comportement & Ecologie, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Karen A Moore
- Exeter Sequencing Service, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Konrad Paszkiewicz
- Exeter Sequencing Service, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Camille Bonneaud
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Nicolas Pollet
- Evolution, Génomes, Comportement & Ecologie, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Anthony Herrel
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
- Evolutionary Morphology of Vertebrates, Ghent University, B-9000, Ghent, Belgium
| |
Collapse
|
8
|
Iqbal A, Ping J, Ali S, Zhen G, Juan L, Kang JZ, Ziyi P, Huixian L, Zhihui Z. Role of microRNAs in myogenesis and their effects on meat quality in pig - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1873-1884. [PMID: 32819078 PMCID: PMC7649413 DOI: 10.5713/ajas.20.0324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 08/16/2020] [Indexed: 02/02/2023]
Abstract
The demand for food is increasing day by day because of the increasing global population. Therefore, meat, the easiest and largely available source of protein, needs to be produced in large amounts with good quality. The pork industry is a significant shareholder in fulfilling the global meat demands. Notably, myogenesis- development of muscles during embryogenesis- is a complex mechanism which culminates in meat production. But the molecular mechanisms which govern the myogenesis are less known. The involvement of miRNAs in myogenesis and meat quality, which depends on factors such as myofiber composition and intramuscular fat contents which determine the meat color, flavor, juiciness, and water holding capacity, are being extrapolated to increase both the quantity and quality of pork. Various kinds of microRNAs (miRNAs), miR-1, miR-21, miR22, miR-27, miR-34, miR-127, miR-133, miR-143, miR-155, miR-199, miR-206, miR-208, miR-378, and miR-432 play important roles in pig skeletal muscle development. Further, the quality of meat also depends upon myofiber which is developed through the expression of different kinds of miRNAs at different stages. This review will focus on the mechanism of myogenesis, the role of miRNAs in myogenesis, and meat quality with a focus on the pig.
Collapse
Affiliation(s)
- Ambreen Iqbal
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jiang Ping
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shaokat Ali
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Gao Zhen
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Liu Juan
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jin Zi Kang
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Pan Ziyi
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Lu Huixian
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Zhao Zhihui
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
9
|
Wang J, Chen MY, Chen JF, Ren QL, Zhang JQ, Cao H, Xing BS, Pan CY. LncRNA IMFlnc1 promotes porcine intramuscular adipocyte adipogenesis by sponging miR-199a-5p to up-regulate CAV-1. BMC Mol Cell Biol 2020; 21:77. [PMID: 33148167 PMCID: PMC7640402 DOI: 10.1186/s12860-020-00324-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023] Open
Abstract
Background Local Chinese local pig breeds have thinner muscle fiber and higher intramuscular-fat (IMF) content. But its regulation mechanism has not been discussed in-depth. Studies indicated that long non coding RNAs (lncRNAs) play important role in muscle and fat development. Results The lncRNAs expressional differences in the longissimus dorsi (LD) muscle were identified between Huainan pigs (local Chinese pigs, fat-type, HN) and Large White pigs (lean-type, LW) at 38, 58, and 78 days post conception (dpc). In total, 2131 novel lncRNAs were identified in 18 samples, and 291, 305, and 683 differentially expressed lncRNAs (DELs) were found between these two breeds at three stages, respectively. The mRNAs that co-expressed with these DELs were used for GO and KEGG analysis, and the results showed that muscle development and energy metabolism were more active at 58 dpc in HN, but at 78 dpc in LW pigs. Muscle cell differentiation and myofibril assembly might associated with earlier myogenesis and primary-muscle-fiber assembly in HN, and cell proliferation, insulin, and the MAPK pathway might be contribute to longer proliferation and elevated energy metabolism in LW pigs at 78 dpc. The PI3K/Akt and cAMP pathways were associated with higher IMF deposition in HN. Intramuscular fat deposition-associated long noncoding RNA 1 (IMFlnc1) was selected for functional verification, and results indicated that it regulated the expressional level of caveolin-1 (CAV-1) by acting as competing endogenous RNA (ceRNA) to sponge miR-199a-5p. Conclusions Our data contributed to understanding the role of lncRNAs in porcine-muscle development and IMF deposition, and provided valuable information for improving pig-meat quality. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-020-00324-8.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Number 116, Hua Yuan Road, Jinshui District, Zhengzhou, 450002, China
| | - Ming-Yue Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, College of Animal Science and Technology, Northwest A&F University, Ministry of Agriculture, Number 22, Xi Nong Road, Yangling, 712100, Shaanxi, China
| | - Jun-Feng Chen
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Number 116, Hua Yuan Road, Jinshui District, Zhengzhou, 450002, China
| | - Qiao-Ling Ren
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Number 116, Hua Yuan Road, Jinshui District, Zhengzhou, 450002, China
| | - Jia-Qing Zhang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Number 116, Hua Yuan Road, Jinshui District, Zhengzhou, 450002, China
| | - Hai Cao
- Henan Xing Rui Agriculture and Animal Husbandry Technology Co., LTD, Number 59, Jie Fang Road, Xinxian, Xinyang, 465550, China
| | - Bao-Song Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Number 116, Hua Yuan Road, Jinshui District, Zhengzhou, 450002, China.
| | - Chuan-Ying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, College of Animal Science and Technology, Northwest A&F University, Ministry of Agriculture, Number 22, Xi Nong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
miRNA-mRNA network regulation in the skeletal muscle fiber phenotype of chickens revealed by integrated analysis of miRNAome and transcriptome. Sci Rep 2020; 10:10619. [PMID: 32606372 PMCID: PMC7326969 DOI: 10.1038/s41598-020-67482-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscle fibers are primarily categorized into oxidative and glycolytic fibers, and the ratios of different myofiber types are important factors in determining livestock meat quality. However, the molecular mechanism for determining muscle fiber types in chickens was hardly understood. In this study, we used RNA sequencing to systematically compare mRNA and microRNA transcriptomes of the oxidative muscle sartorius (SART) and glycolytic muscle pectoralis major (PMM) of Chinese Qingyuan partridge chickens. Among the 44,705 identified mRNAs in the two types of muscles, 3,457 exhibited significantly different expression patterns, including 2,364 up-regulated and 1,093 down-regulated mRNAs in the SART. A total of 698 chicken miRNAs were identified, including 189 novel miRNAs, among which 67 differentially expressed miRNAs containing 42 up-regulated and 25 down-regulated miRNAs in the SART were identified. Furthermore, function enrichment showed that the differentially expressed mRNAs and miRNAs were involved in energy metabolism, muscle contraction, and calcium, peroxisome proliferator-activated receptor (PPAR), insulin and adipocytokine signaling. Using miRNA-mRNA integrated analysis, we identified several candidate miRNA-gene pairs that might affect muscle fiber performance, viz, gga-miR-499-5p/SOX6 and gga-miR-196-5p/CALM1, which were supported by target validation using the dual-luciferase reporter system. This study revealed a mass of candidate genes and miRNAs involved in muscle fiber type determination, which might help understand the molecular mechanism underlying meat quality traits in chickens.
Collapse
|
11
|
Yang C, Xiong X, Jiang X, Du H, Li Q, Liu H, Gan W, Yu C, Peng H, Xia B, Chen J, Song X, Yang L, Hu C, Qiu M, Zhang Z. Novel miRNA identification and comparative profiling of miRNA regulations revealed important pathways in Jinding duck ovaries by small RNA sequencing. 3 Biotech 2020; 10:38. [PMID: 31988832 DOI: 10.1007/s13205-019-2015-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022] Open
Abstract
Functional studies have revealed miRNAs play pivotal roles in ovulation and ovary development in mammalians, whereas little is known about the miRNA function in ducks. In this study, miRNA deep sequencing in the ovary tissues was carried out to obtain the miRNA profile from ovaries before oviposition (BO) and after oviposition (AO) in Jinding duck. Overall, an average of 23,128,075 and 26,020,523 reads were identified in the BO and AO samples, respectively, and 6739 miRNAs were identified from them through further mapping and analysis. Besides, 1570 miRNAs were identified as differentially expressed miRNAs compared with BO, including 493 miRNAs up-regulated and 1077 down-regulated in AO. Moreover, 2291 target genes were predicted from 443 significantly differentially expressed miRNAs. In addition, GO and KEGG pathway analysis indicated that target genes were enriched in some basic cell metabolism pathways as well as the productive pathways such as MAPK signaling pathway, gonadotropin-releasing hormone signaling pathway, TGF-beta signaling pathway which had been significantly changed. Our results helped to replenish the duck miRNA database and illustrate the potential mechanism of miRNA function in duck ovary development and reproduction process.
Collapse
Affiliation(s)
- Chaowu Yang
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, 610066 Sichuan China
| | - Xia Xiong
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Xiaosong Jiang
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, 610066 Sichuan China
| | - Huarui Du
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Qingyun Li
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Hehe Liu
- 3Sichuan Agricultural University, Sichuan, 611130 China
| | - Wu Gan
- Shanghai Ying Biotechnology Company, Shanghai, China
| | - Chunlin Yu
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Han Peng
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Bo Xia
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Jialei Chen
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Xiaoyan Song
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Li Yang
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Chenming Hu
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Mohan Qiu
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
| | - Zengrong Zhang
- 1Sichuan Animal Science Academy, 7# Niusha Road, Chengdu, 610066 Sichuan China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, 610066 Sichuan China
| |
Collapse
|
12
|
Comprehensive Analysis of lncRNAs and circRNAs Reveals the Metabolic Specialization in Oxidative and Glycolytic Skeletal Muscles. Int J Mol Sci 2019; 20:ijms20122855. [PMID: 31212733 PMCID: PMC6627206 DOI: 10.3390/ijms20122855] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 12/18/2022] Open
Abstract
The biochemical and functional differences between oxidative and glycolytic muscles could affect human muscle health and animal meat quality. However, present understanding of the epigenetic regulation with respect to lncRNAs and circRNAs is rudimentary. Here, porcine oxidative and glycolytic skeletal muscles, which were at the growth curve inflection point, were sampled to survey variant global expression of lncRNAs and circRNAs using RNA-seq. A total of 4046 lncRNAs were identified, including 911 differentially expressed lncRNAs (p < 0.05). The cis-regulatory analysis identified target genes that were enriched for specific GO terms and pathways (p < 0.05), including the oxidation-reduction process, glycolytic process, and fatty acid metabolic. All these were closely related to different phenotypes between oxidative and glycolytic muscles. Additionally, 810 circRNAs were identified, of which 137 were differentially expressed (p < 0.05). Interestingly, some circRNA-miRNA-mRNA networks were found, which were closely linked to muscle fiber-type switching and mitochondria biogenesis in muscles. Furthermore, 44.69%, 39.19%, and 54.01% of differentially expressed mRNAs, lncRNAs, and circRNAs respectively were significantly enriched in pig quantitative trait loci (QTL) regions for growth and meat quality traits. This study reveals a mass of candidate lncRNAs and circRNAs involved in muscle physiological functions, which may improve understanding of muscle metabolism and development from an epigenetic perspective.
Collapse
|
13
|
Leucine promotes porcine myofibre type transformation from fast-twitch to slow-twitch through the protein kinase B (Akt)/forkhead box 1 signalling pathway and microRNA-27a. Br J Nutr 2018; 121:1-8. [DOI: 10.1017/s000711451800301x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractMuscle fibre types can transform from slow-twitch (slow myosin heavy chain (MyHC)) to fast-twitch (fast MyHC) or vice versa. Leucine plays a vital effect in the development of skeletal muscle. However, the role of leucine in porcine myofibre type transformation and its mechanism are still unclear. In this study, effects of leucine and microRNA-27a (miR-27a) on the transformation of porcine myofibre type were investigatedin vitro. We found that leucine increased slow MyHC protein level and decreased fast MyHC protein level, increased the levels of phospho-protein kinase B (Akt)/Akt and phospho-forkhead box 1 (FoxO1)/FoxO1 and decreased the FoxO1 protein level. However, blocking the Akt/FoxO1 signalling pathway by wortmannin attenuated the role of leucine in porcine myofibre type transformation. Over-expression of miR-27a decreased slow MyHC protein level and increased fast MyHC protein level, whereas inhibition of miR-27a had an opposite effect. We also found that expression of miR-27a was down-regulated following leucine treatment. Moreover, over-expression of miR-27a repressed transformation from fast MyHC to slow MyHC caused by leucine, suggesting that miR-27a is interdicted by leucine and then contributes to porcine muscle fibre type transformation. Our finding provided the first evidence that leucine promotes porcine myofibre type transformation from fast MyHC to slow MyHC via the Akt/FoxO1 signalling pathway and miR-27a.
Collapse
|
14
|
Tan Y, Gan M, Fan Y, Li L, Zhong Z, Li X, Bai L, Zhao Y, Niu L, Shang Y, Zhang S, Zhu L. miR-10b-5p regulates 3T3-L1 cells differentiation by targeting Apol6. Gene 2018; 687:39-46. [PMID: 30423386 DOI: 10.1016/j.gene.2018.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/04/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that have been proposed to control or fine-tune complex genetic pathways by post-transcriptional regulation of target genes. It was proved that numerous miRNAs have influence on the biology of adipocytes as well as on the function of adipose tissues. This study shows that miR-10b-5p expression was decreased in mice, rats, and human under obesity. In addition, the obtained results indicated that the expression level of miR-10b-5p was increased in 3T3-L1 pre-adipocytes without manifesting a significant role in 3T3-L1 cells proliferation. On the other hand, the downregulation of miR-10b-5p by the inhibitor played a role in 3T3-L1 cells differentiation and adipogenesis. Our results strongly suggest that Apol6 was the target gene of miR-10b-5p. The inhibition of miR-10b-5p promoted the differentiation of 3T3-L1 cells and adipogenesis by upregulating the Apol6 expression. Then, the upregulated Apol6 acted as an oncogene in certain obesity-related cancers. These results indicate that miR-10b-5p may have a therapeutic significance for obesity and obesity-related cancers.
Collapse
Affiliation(s)
- Ya Tan
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Science, Guiyang 550005, Guizhou, China
| | - Mailin Gan
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yuan Fan
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Liang Li
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Science, Guiyang 550005, Guizhou, China
| | - Zhijun Zhong
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan, Animal Science Academy, Chengdu 610066, China
| | - Xuewei Li
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lin Bai
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ye Zhao
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lili Niu
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yishun Shang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Science, Guiyang 550005, Guizhou, China
| | - Shunhua Zhang
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Li Zhu
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
15
|
Expression and Regulation Profile of Mature MicroRNA in the Pig: Relevance to Xenotransplantation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2983908. [PMID: 29750148 PMCID: PMC5884403 DOI: 10.1155/2018/2983908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022]
Abstract
The pig is an important source of meat production and provides a valuable model for certain human diseases. MicroRNA (miRNA), which is noncoding RNA and regulates gene expression at the posttranscriptional level, plays a critical role in various biological processes. Studies on identification and function of mature miRNAs in multiple pig tissues are increasing, yet the literature is limited. Therefore, we reviewed current research to determine the miRNAs expressed in specific pig tissues that are involved in carcass values (including muscle and adipocytes), reproduction (including pituitary, testis, and ovary), and development of some solid organs (e.g., brain, lung, kidney, and liver). We also discuss the possible regulating mechanisms of miRNA. Finally, as pig organs are suitable candidates for xenotransplantation, biomarkers of their miRNA in xenotransplantation were evaluated.
Collapse
|
16
|
Abstract
Skeletal muscle satellite cells are quiescent adult resident stem cells that activate, proliferate and differentiate to generate myofibres following injury. They harbour a robust proliferation potential and self-renewing capacity enabling lifelong muscle regeneration. Although several classes of microRNAs were shown to regulate adult myogenesis, systematic examination of stage-specific microRNAs during lineage progression from the quiescent state is lacking. Here we provide a genome-wide assessment of the expression of small RNAs during the quiescence/activation transition and differentiation by RNA-sequencing. We show that the majority of small RNAs present in quiescent, activated and differentiated muscle cells belong to the microRNA class. Furthermore, by comparing expression in distinct cell states, we report a massive and dynamic regulation of microRNAs, both in numbers and amplitude, highlighting their pivotal role in regulation of quiescence, activation and differentiation. We also identify a number of microRNAs with reliable and specific expression in quiescence including several maternally-expressed miRNAs generated at the imprinted Dlk1-Dio3 locus. Unexpectedly, the majority of class-switching miRNAs are associated with the quiescence/activation transition suggesting a poised program that is actively repressed. These data constitute a key resource for functional analyses of miRNAs in skeletal myogenesis, and more broadly, in the regulation of stem cell self-renewal and tissue homeostasis.
Collapse
|
17
|
Chen X, Luo Y, Huang Z, Liu G, Zhao H. Akirin2 promotes slow myosin heavy chain expression by CaN/NFATc1 signaling in porcine skeletal muscle satellite cells. Oncotarget 2018; 8:25158-25166. [PMID: 28223540 PMCID: PMC5421918 DOI: 10.18632/oncotarget.15374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
The objective of this study was to evaluate the effect of Akirin2 on slow myosin heavy chain (slow MyHC, MyHC I) gene expression and its molecular mechanisms. In this study, we showed that the protein expression of Akirin2 in pig slow oxidative Psoas major muscle is higher than that in fast glycolytic tibialis anterior muscle, suggesting that Akirin2 may play a role in myofiber typing. Knockdown of Akirin2 decreased the MyHC I expression and the calcineurin (CaN) activity, and also decreased the expressions of NFATc1 and MCIP1.4. Conversely, overexpression of Akirin2 got the opposite results. Furthermore, inhibition of CaN or knockdown of NFATc1 attenuated Akirin2 overexpression-induced upregulation of MyHC I. Together, these results demonstrate that Akirin2 promotes MyHC I expression via CaN/NFATc1 signaling pathway in porcine skeletal muscle satellite cells.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Yanliu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| |
Collapse
|
18
|
Wei W, Li B, Liu K, Jiang A, Dong C, Jia C, Chen J, Liu H, Wu W. Identification of key microRNAs affecting drip loss in porcine longissimus dorsi by RNA-Seq. Gene 2018; 647:276-282. [DOI: 10.1016/j.gene.2018.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/28/2017] [Accepted: 01/02/2018] [Indexed: 12/27/2022]
|
19
|
Siracusa J, Koulmann N, Banzet S. Circulating myomiRs: a new class of biomarkers to monitor skeletal muscle in physiology and medicine. J Cachexia Sarcopenia Muscle 2018; 9:20-27. [PMID: 29193905 PMCID: PMC5803618 DOI: 10.1002/jcsm.12227] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/13/2017] [Accepted: 07/05/2017] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that target mRNAs and are consequently involved in the post-transcriptional regulation of gene expression. Some miRNAs are ubiquitously expressed in tissue, while others are tissue-specific or tissue-enriched. miRNAs can be released by cells and are found in various biofluids, including serum and plasma. Thus, measuring miRNAs in the circulation may provide information on the originating tissue or cells. MyomiRs are described as striated muscle-specific or muscle-enriched miRNAs. Their circulating levels can be measured and have been proposed to be new biomarkers of physiological and pathological muscle processes. The aims of this review are to summarize the current knowledge of circulating myomiRs, to identify the types of information they can provide about skeletal muscle, and to determine how to apply that information in the fields of research and medicine.
Collapse
Affiliation(s)
- Julien Siracusa
- Institut de Recherche Biomédicale des Armées, 1 place Valérie André, BP73, 91220, Brétigny sur Orge, France
| | - Nathalie Koulmann
- Institut de Recherche Biomédicale des Armées, 1 place Valérie André, BP73, 91220, Brétigny sur Orge, France.,Ecole du Val de Grâce, 1 place Alphonse Laveran, 75005, Paris, France
| | - Sébastien Banzet
- Ecole du Val de Grâce, 1 place Alphonse Laveran, 75005, Paris, France.,Institut de Recherche Biomédicale des Armées, 1 Rue Lieutenant Raoul Batany, 92140, Clamart, France.,INSERM UMRS1197, 1 Rue Lieutenant Raoul Batany, 92140, Clamart, France
| |
Collapse
|
20
|
Zhang X, Hamblin MH, Yin KJ. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol 2017; 14:1705-1714. [PMID: 28837398 DOI: 10.1080/15476286.2017.1358347] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent studies suggest that in humans, DNA sequences responsible for protein coding regions comprise only 2% of the total genome. The rest of the transcripts result in RNA transcripts without protein-coding ability, including long noncoding RNAs (lncRNAs). Different from most members in the lncRNA family, the metastasis-associated lung adenocarcinoma transcript 1 (Malat1) is abundantly expressed and evolutionarily conserved throughout various mammalian species. Malat1 is one of the first identified lncRNAs associated with human disease, and cumulative studies have indicated that Malat1 plays critical roles in the development and progression of various cancers. Malat1 is also actively involved in various physiologic processes, including alternative splicing, epigenetic modification of gene expression, synapse formation, and myogenesis. Furthermore, extensive evidences show that Malat1 plays pivotal roles in multiple pathological conditions as well. In this review, we will summarize latest findings related to the physiologic and pathophysiological processes of Malat1 and discuss its therapeutic potentials.
Collapse
Affiliation(s)
- Xuejing Zhang
- a Pittsburgh Institute of Brain Disorders & Recovery , Department of Neurology , University of Pittsburgh School of Medicine , Pittsburgh , PA USA
| | - Milton H Hamblin
- b Department of Pharmacology , Tulane University School of Medicine , New Orleans , LA , USA
| | - Ke-Jie Yin
- a Pittsburgh Institute of Brain Disorders & Recovery , Department of Neurology , University of Pittsburgh School of Medicine , Pittsburgh , PA USA
| |
Collapse
|
21
|
Muroya S, Shibata M, Hayashi M, Oe M, Ojima K. Differences in Circulating microRNAs between Grazing and Grain-Fed Wagyu Cattle Are Associated with Altered Expression of Intramuscular microRNA, the Potential Target PTEN, and Lipogenic Genes. PLoS One 2016; 11:e0162496. [PMID: 27611783 PMCID: PMC5017714 DOI: 10.1371/journal.pone.0162496] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023] Open
Abstract
We aimed to understand the roles of miRNAs in the muscle tissue maturation and those of circulating microRNAs (c-miRNAs) in beef production of Japanese Black (JB) cattle (Wagyu), a breed with genetically background of superior intermuscular fat depot, by comparing different feeding conditions (indoor grain-feeding vs. grazing on pasture). The cattle at 18 months old were assigned to pasture feeding or conventional indoor grain feeding conditions for 5 months. Microarray analysis of c-miRNAs from the plasma extracellular vesicles led to the detection of a total of 202 bovine miRNAs in the plasma, including 15 miRNAs that differed between the feeding conditions. Validation of the microarray results by qPCR showed that the circulating miR-10b level in the grazing cattle was upregulated compared to that of the grain-fed cattle. In contrast, the levels of miR-17-5p, miR-19b, miR-29b, miR-30b-5p, miR-98, miR-142-5p, miR-301a, miR-374b, miR-425-5p, and miR-652 were lower in the grazing cattle than in the grain-fed cattle. Bioinformatic analysis indicated that the predicted target genes of those c-miRNAs were enriched in gene ontology terms associated with blood vessel morphogenesis, plasma membrane, focal adhesion, endocytosis, collagen, ECM-receptor interaction, and phosphorylation. In the grazing cattle, the elevation of miR-10b expression in the plasma was coincident with its elevation in the longissimus lumborum (LL) muscle. Expression of bovine-specific miR-2478, the most plasma-enriched miRNA, tended to be also upregulated in the muscle but not in the plasma. Furthermore, grazing caused the downregulated mRNA expression of predicted miR-10b and/or miR-2478 target genes, such as DNAJB2, PTEN, and SCD1. Thus, the feeding system used for JB cattle affected the c-miRNAs that could be indicators of grain feeding. Among these, miR-10b expression was especially associated with feeding-induced changes and with the expression of the potential target genes responsible for glucose homeostasis and intramuscular fat depot in the LL muscle of JB cattle.
Collapse
Affiliation(s)
- Susumu Muroya
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Masahiro Shibata
- Livestock Production and Wildlife Management Research Division, NARO Western Region Agricultural Center, Ohda, Shimane, Japan
| | - Masayuki Hayashi
- Animal Physiology and Nutrition Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | - Mika Oe
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | - Koichi Ojima
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA transcriptomes in oxidative and glycolytic skeletal muscles. Sci Rep 2016; 6:32186. [PMID: 27561200 PMCID: PMC4999948 DOI: 10.1038/srep32186] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
The physiological, biochemical and functional differences between oxidative and glycolytic muscles play important roles in human metabolic health and in animal meat quality. To explore these differences, we determined the genome-wide landscape of DNA methylomes and their relationship with the mRNA and miRNA transcriptomes of the oxidative muscle psoas major (PMM) and the glycolytic muscle longissimus dorsi (LDM). We observed the hypo-methylation of sub-telomeric regions. A high mitochondrial content contributed to fast replicative senescence in PMM. The differentially methylated regions (DMRs) in promoters (478) and gene bodies (5,718) were mainly enriched in GTPase regulator activity and signaling cascade-mediated pathways. Integration analysis revealed that the methylation status within gene promoters (or gene bodies) and miRNA promoters was negatively correlated with mRNA and miRNA expression, respectively. Numerous genes were closely related to distinct phenotypic traits between LDM and PMM. For example, the hyper-methylation and down-regulation of HK-2 and PFKFB4 were related to decrease glycolytic potential in PMM. In addition, promoter hypo-methylation and the up-regulation of miR-378 silenced the expression of the target genes and promoted capillary biosynthesis in PMM. Together, these results improve understanding of muscle metabolism and development from genomic and epigenetic perspectives.
Collapse
|
23
|
Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:518-34. [PMID: 27199166 DOI: 10.1002/wdev.230] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified into fiber types, in particular, slow twitch versus fast twitch. Muscle fiber types are generally defined by the particular myosin heavy chain isoforms that they express, but many other components contribute to a fiber's physiological characteristics. Skeletal muscle fiber type can have a profound impact on muscle diseases, including certain muscular dystrophies and sarcopenia, the aging-induced loss of muscle mass and strength. These findings suggest that some muscle diseases may be treated by shifting fiber type characteristics either from slow to fast, or fast to slow phenotypes, depending on the disease. Recent studies have begun to address which components of muscle fiber types mediate their susceptibility or resistance to muscle disease. However, for many diseases it remains largely unclear why certain fiber types are affected. A substantial body of work has revealed molecular pathways that regulate muscle fiber type plasticity and early developmental muscle fiber identity. For instance, recent studies have revealed many factors that regulate muscle fiber type through modulating the activity of the muscle regulatory transcription factor MYOD1. Future studies of muscle fiber type development in animal models will continue to enhance our understanding of factors and pathways that may provide therapeutic targets to treat muscle diseases. WIREs Dev Biol 2016, 5:518-534. doi: 10.1002/wdev.230 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jared Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Siracusa J, Koulmann N, Bourdon S, Goriot ME, Banzet S. Circulating miRNAs as Biomarkers of Acute Muscle Damage in Rats. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1313-27. [PMID: 26952641 DOI: 10.1016/j.ajpath.2016.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 01/15/2023]
Abstract
Skeletal muscle damage is an often-occurring event. Diagnosis using the classic blood marker creatine kinase sometimes yields unsatisfactory results due to great interindividual variability. Therefore, the identification of reliable biomarkers is important. Our aim was to detect and characterize circulating miRNAs in plasma in response to acute notexin-induced muscle damage in rats. Real-time quantitative RT-PCR profiling led to the identification of miRNAs that were highly increased in plasma in response to notexin injection into several muscles, namely miR-1-3p, -133a-3p, -133b-3p, -206-3p, -208b-3p, and -499-5p, as well as miR-378a-3p and miR-434-3p. Peak values of miRNAs appeared 12 hours after injury, and were contained both in the vesicular and nonvesicular fractions of plasma. Receiver operating characteristic curve analysis showed that circulating miRNAs could accurately discriminate between damaged and nondamaged tissues. Furthermore, we tested the robustness of expression profiles in slow- and fast-type fibers. Upon inducing damage in slow- or fast-type muscle, we found that the damaged-muscle phenotype had a very limited impact on the miRNA response. Similarly, the circulating miRNAs selected were not affected by hemolysis or platelets, two pre-analytical factors known to affect plasma miRNA profiles. Taken together, our results show that circulating muscle-specific miRNAs, miR-378a-3p and miR-434-3p, are robust and promising biomarkers of acute muscle damage in rats.
Collapse
Affiliation(s)
- Julien Siracusa
- Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Nathalie Koulmann
- Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France; Ecole du Val-de-Grâce, Paris, France
| | - Stéphanie Bourdon
- Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Marie-Emmanuelle Goriot
- Armed Forces Biomedical Research Institute/Armed Forces Blood Transfusion Center Jean Julliard, Clamart, France; INSERM U 1197, Clamart, France
| | - Sébastien Banzet
- Armed Forces Biomedical Research Institute/Armed Forces Blood Transfusion Center Jean Julliard, Clamart, France; INSERM U 1197, Clamart, France.
| |
Collapse
|
25
|
MicroRNA-27b Regulates Mitochondria Biogenesis in Myocytes. PLoS One 2016; 11:e0148532. [PMID: 26849429 PMCID: PMC4746119 DOI: 10.1371/journal.pone.0148532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/19/2016] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that affect the post-transcriptional regulation of various biological pathways. To date, it is not fully understood how miRNAs regulate mitochondrial biogenesis. This study aimed at the identification of the role of miRNA-27b in mitochondria biogenesis. The mitochondria content in C2C12 cells was significantly increased during myogenic differentiation and accompanied by a marked decrease of miRNA-27b expression. Furthermore, the expression of the predicted target gene of miRNA-27b, forkhead box j3 (Foxj3), was also increased during myogenic differentiation. Luciferase activity assays confirmed that miRNA-27b directly targets the 3’-untranslated region (3’-UTR) of Foxj3. Overexpression of miRNA-27b provoked a decrease of mitochondria content and diminished expression of related mitochondrial genes and Foxj3 both at mRNA and protein levels. The expression levels of downstream genes of Foxj3, such as Mef2c, PGC1α, NRF1 and mtTFA, were also decreased in C2C12 cells upon overexpression of miRNA-27b. These results suggested that miRNA-27b may affect mitochondria biogenesis by down-regulation of Foxj3 during myocyte differentiation.
Collapse
|
26
|
Hou X, Yang Y, Zhu S, Hua C, Zhou R, Mu Y, Tang Z, Li K. Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds. Mol Genet Genomics 2015; 291:559-73. [PMID: 26458558 DOI: 10.1007/s00438-015-1126-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022]
Abstract
The pig is an important source of animal protein, and is also an ideal model for human disease. There are significant differences in growth rate, muscle mass, and meat quality between different breeds. To understand the molecular mechanisms underlying porcine skeletal muscle phenotypes, we performed mRNA and miRNA profiling of muscle from three different breeds of pig, Landrace (lean-type), Tongcheng (obese-type), and Wuzhishan (mini-type) by Solexa sequencing. Forty-three genes and 106 miRNAs were differentially expressed between Landrace and Tongcheng pigs, 92 genes and 151 miRNAs were differentially expressed between Tongcheng and Wuzhishan pigs, and 145 genes and 156 miRNAs were differential expressed between Landrace and Wuzhishan pigs. Gene ontology analysis suggested that genes differentially expressed between Landrace and Tongcheng pigs were mainly involved in the biological processes of oxidative stress and muscle organ development. Meanwhile, for Tongcheng vs Wuzhishan and Landrace vs Wuzhishan pigs, the differentially expressed genes were involved in fatty acid metabolism, oxidative stress, muscle contraction, and muscle organ development, processes that are closely related to meat quality. To investigate the molecular mechanisms underlying meat quality diversity based on differentially expressed genes and miRNAs, interaction networks were constructed, according to target prediction results and integration analysis of up-regulated genes with down-regulated miRNAs or down-regulated genes with up-regulated miRNAs. Our findings identify candidate genes and miRNAs associated with muscle development and indicate their potential roles in muscle phenotype variance between different pig breeds. These results serve as a foundation for further studies on muscle development and molecular breeding.
Collapse
Affiliation(s)
- Xinhua Hou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yalan Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China
| | - Shiyun Zhu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Chaoju Hua
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Rong Zhou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yulian Mu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Zhonglin Tang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China.
| | - Kui Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| |
Collapse
|
27
|
Zhang R, Große-Brinkhaus C, Heidt H, Uddin MJ, Cinar MU, Tesfaye D, Tholen E, Looft C, Schellander K, Neuhoff C. Polymorphisms and expression analysis of SOX-6 in relation to porcine growth, carcass, and meat quality traits. Meat Sci 2015; 107:26-32. [PMID: 25935846 DOI: 10.1016/j.meatsci.2015.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/16/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022]
Abstract
The aim of the study was to investigate single nucleotide polymorphisms (SNPs) and expression of SOX-6 to support its candidacy for growth, carcass, and meat quality traits in pigs. The first SNP, rs81358375, was associated with pH 45 min post mortem in loin (pH1L), the thickness of backfat and side fat, and carcass length in Pietrain (Pi) population, and related with backfat thickness and daily gain in Duroc × Pietrain F2 (DuPi) population. The other SNP, rs321666676, was associated with meat colour in Pi population. In DuPi population, the protein, not mRNA, level of SOX-6 in high pH1L pigs was significantly less abundant compared with low pH1L pigs, where microRNAs targeting SOX-6 were also differently regulated. This paper shows that SOX-6 could be a potential candidate gene for porcine growth, carcass, and meat quality traits based on genetic association and gene expression.
Collapse
Affiliation(s)
- Rui Zhang
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Christine Große-Brinkhaus
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Hanna Heidt
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Muhammad Jasim Uddin
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany; Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Mehmet Ulas Cinar
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany; Faculty of Agriculture, Department of Animal Science, Erciyes University, 38039 Kayseri, Turkey.
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Ernst Tholen
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Christian Looft
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| | - Christiane Neuhoff
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
28
|
Ma J, Wang H, Liu R, Jin L, Tang Q, Wang X, Jiang A, Hu Y, Li Z, Zhu L, Li R, Li M, Li X. The miRNA Transcriptome Directly Reflects the Physiological and Biochemical Differences between Red, White, and Intermediate Muscle Fiber Types. Int J Mol Sci 2015; 16:9635-53. [PMID: 25938964 PMCID: PMC4463610 DOI: 10.3390/ijms16059635] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/24/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL), intermediate: psoas major muscle (PMM), white: longissimus dorsi muscle (LDM)), have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles.
Collapse
Affiliation(s)
- Jideng Ma
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Hongmei Wang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Rui Liu
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Long Jin
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Qianzi Tang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Xun Wang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Anan Jiang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Yaodong Hu
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Zongwen Li
- Novogene Bioinformatics Institute, Beijing 100083, China.
| | - Li Zhu
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing 100083, China.
| | - Mingzhou Li
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| | - Xuewei Li
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
29
|
microRNA profiling in three main stages during porcine spermatogenesis. J Assist Reprod Genet 2015; 32:451-60. [PMID: 25563581 DOI: 10.1007/s10815-014-0406-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/11/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Spermatogenesis is an intricate biological event wherein an undifferentiated spermatogonium develops into mature sperms. MicroRNAs are a type of single strand small non-coding RNA molecule and are implicated in the regulation of many crucial pathways during cell proliferation, apoptosis, and differentiation. METHOD Here, we present a comprehensive comparison of miRNA expression profiling in three main stages during porcine spermatogenesis using high-throughput sequencing. RESULTS We built three small RNA libraries for the testis, the epididymis and the ejaculated sperm from a Landrace boar, and in total obtained 3821 precursor hairpins encoding for 4761 mature miRNAs, of which 23 are miRNA*. Notably, 940 precursor miRNAs produced both the 5'- and 3'- strands as sister pairs, indicating the distinctive expression patterns of germ cell miRNAs. Additionally, 418 out of 710 co-expressed miRNAs were identified as being differentially expressed between libraries (P < 0.001). Apart from the sexual specific X chromosome, many miRNAs were found to be located on chromosome 12, which may play potential roles in spermatogenesis according to the result of synteny analysis with human and mouse. The Gene Ontology and KEGG pathway analysis revealed that the target genes of co-expressed miRNAs were highly involved in the cell cycle process, metal ion binding, modification of plasma membrane, and the p53 signal pathway.
Collapse
|
30
|
Kirby TJ, Chaillou T, McCarthy JJ. The role of microRNAs in skeletal muscle health and disease. Front Biosci (Landmark Ed) 2015; 20:37-77. [PMID: 25553440 DOI: 10.2741/4298] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last decade non-coding RNAs have emerged as importance regulators of gene expression. In particular, microRNAs are a class of small RNAs of ∼ 22 nucleotides that repress gene expression through a post-transcriptional mechanism. MicroRNAs have been shown to be involved in a broader range of biological processes, both physiological and pathological, including myogenesis, adaptation to exercise and various myopathies. The purpose of this review is to provide a comprehensive summary of what is currently known about the role of microRNAs in skeletal muscle health and disease.
Collapse
Affiliation(s)
- Tyler J Kirby
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Thomas Chaillou
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
31
|
Guo Y, Jin L, Wang F, He M, Liu R, Li M, Shuai S. Dynamic changes in genes related to glucose uptake and utilization during pig skeletal and cardiac muscle development. Biosci Biotechnol Biochem 2014; 78:1159-66. [PMID: 25229851 DOI: 10.1080/09168451.2014.915725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Skeletal and cardiac muscle have important roles in glucose uptake and utilization. However, changes in expression of protein coding genes and miRNAs that participate in glucose metabolism during development are not fully understood. In this study, we investigated the expression of genes related to glucose metabolism during muscle development. We found an age-dependent increase in gene expression in cardiac muscle, with enrichment in heart development- and energy-related metabolic processes. A subset of genes that were up-regulated until 30 or 180 days postnatally, and then down-regulated in psoas major muscle was significantly enriched in mitochondrial oxidative-related processes, while genes that up-regulated in longissimus doris muscle was significantly enriched in glycolysis-related processes. Meanwhile, expression of energy-related microRNAs decreased with increasing age. In addition, we investigated the correlation between microRNAs and mRNAs in three muscle types across different stages of development and found many potential microRNA-mRNA pairs involved in regulating glucose metabolism.
Collapse
Affiliation(s)
- Yanqin Guo
- a Institute of Animal Genetics and Breeding, College of Animal Science and Technology , Sichuan Agricultural University , Ya'an , P.R. China
| | | | | | | | | | | | | |
Collapse
|
32
|
Anthon C, Tafer H, Havgaard JH, Thomsen B, Hedegaard J, Seemann SE, Pundhir S, Kehr S, Bartschat S, Nielsen M, Nielsen RO, Fredholm M, Stadler PF, Gorodkin J. Structured RNAs and synteny regions in the pig genome. BMC Genomics 2014; 15:459. [PMID: 24917120 PMCID: PMC4124155 DOI: 10.1186/1471-2164-15-459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/02/2014] [Indexed: 11/25/2022] Open
Abstract
Background Annotating mammalian genomes for noncoding RNAs (ncRNAs) is nontrivial since far from all ncRNAs are known and the computational models are resource demanding. Currently, the human genome holds the best mammalian ncRNA annotation, a result of numerous efforts by several groups. However, a more direct strategy is desired for the increasing number of sequenced mammalian genomes of which some, such as the pig, are relevant as disease models and production animals. Results We present a comprehensive annotation of structured RNAs in the pig genome. Combining sequence and structure similarity search as well as class specific methods, we obtained a conservative set with a total of 3,391 structured RNA loci of which 1,011 and 2,314, respectively, hold strong sequence and structure similarity to structured RNAs in existing databases. The RNA loci cover 139 cis-regulatory element loci, 58 lncRNA loci, 11 conflicts of annotation, and 3,183 ncRNA genes. The ncRNA genes comprise 359 miRNAs, 8 ribozymes, 185 rRNAs, 638 snoRNAs, 1,030 snRNAs, 810 tRNAs and 153 ncRNA genes not belonging to the here fore mentioned classes. When running the pipeline on a local shuffled version of the genome, we obtained no matches at the highest confidence level. Additional analysis of RNA-seq data from a pooled library from 10 different pig tissues added another 165 miRNA loci, yielding an overall annotation of 3,556 structured RNA loci. This annotation represents our best effort at making an automated annotation. To further enhance the reliability, 571 of the 3,556 structured RNAs were manually curated by methods depending on the RNA class while 1,581 were declared as pseudogenes. We further created a multiple alignment of pig against 20 representative vertebrates, from which RNAz predicted 83,859 de novo RNA loci with conserved RNA structures. 528 of the RNAz predictions overlapped with the homology based annotation or novel miRNAs. We further present a substantial synteny analysis which includes 1,004 lineage specific de novo RNA loci and 4 ncRNA loci in the known annotation specific for Laurasiatheria (pig, cow, dolphin, horse, cat, dog, hedgehog). Conclusions We have obtained one of the most comprehensive annotations for structured ncRNAs of a mammalian genome, which is likely to play central roles in both health modelling and production. The core annotation is available in Ensembl 70 and the complete annotation is available at
http://rth.dk/resources/rnannotator/susscr102/version1.02. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-459) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, University of Copenhagen, DK-1870 Frederiksberg, Denmark.
| |
Collapse
|
33
|
Martini P, Sales G, Brugiolo M, Gandaglia A, Naso F, De Pittà C, Spina M, Gerosa G, Chemello F, Romualdi C, Cagnin S, Lanfranchi G. Tissue-specific expression and regulatory networks of pig microRNAome. PLoS One 2014; 9:e89755. [PMID: 24699212 PMCID: PMC3974652 DOI: 10.1371/journal.pone.0089755] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/23/2014] [Indexed: 12/19/2022] Open
Abstract
Background Despite the economic and medical importance of the pig, knowledge about its genome organization, gene expression regulation, and molecular mechanisms involved in physiological processes is far from that achieved for mouse and rat, the two most used model organisms in biomedical research. MicroRNAs (miRNAs) are a wide class of molecules that exert a recognized role in gene expression modulation, but only 280 miRNAs in pig have been characterized to date. Results We applied a novel computational approach to predict species-specific and conserved miRNAs in the pig genome, which were then subjected to experimental validation. We experimentally identified candidate miRNAs sequences grouped in high-confidence (424) and medium-confidence (353) miRNAs according to RNA-seq results. A group of miRNAs was also validated by PCR experiments. We established the subtle variability in expression of isomiRs and miRNA-miRNA star couples supporting a biological function for these molecules. Finally, miRNA and mRNA expression profiles produced from the same sample of 20 different tissue of the animal were combined, using a correlation threshold to filter miRNA-target predictions, to identify tissue-specific regulatory networks. Conclusions Our data represent a significant progress in the current understanding of miRNAome in pig. The identification of miRNAs, their target mRNAs, and the construction of regulatory circuits will provide new insights into the complex biological networks in several tissues of this important animal model.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Biology, University of Padova, Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy
| | - Mattia Brugiolo
- Department of Biology, University of Padova, Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Alessandro Gandaglia
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Filippo Naso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | - Michele Spina
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | | | - Stefano Cagnin
- Department of Biology, University of Padova, Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Padova, Italy; CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Pena RN, Quintanilla R, Manunza A, Gallardo D, Casellas J, Amills M. Application of the microarray technology to the transcriptional analysis of muscle phenotypes in pigs. Anim Genet 2014; 45:311-21. [DOI: 10.1111/age.12146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2014] [Indexed: 01/09/2023]
Affiliation(s)
- R. N. Pena
- Department of Animal Production; University of Lleida-Agrotecnio Center; 25198 Lleida Spain
| | | | - A. Manunza
- Department of Animal Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Universitat Autònoma de Barcelona; 08193 Bellaterra Spain
| | - D. Gallardo
- Departament de Ciència Animal i dels Aliments; Facultat de Veterinària; Universitat Autònoma de Barcelona; 08193 Bellaterra Spain
| | - J. Casellas
- Departament de Ciència Animal i dels Aliments; Facultat de Veterinària; Universitat Autònoma de Barcelona; 08193 Bellaterra Spain
| | - M. Amills
- Department of Animal Genetics; Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB); Universitat Autònoma de Barcelona; 08193 Bellaterra Spain
- Departament de Ciència Animal i dels Aliments; Facultat de Veterinària; Universitat Autònoma de Barcelona; 08193 Bellaterra Spain
| |
Collapse
|
35
|
Identification and differential expression of microRNAs in ovaries of laying and Broody geese (Anser cygnoides) by Solexa sequencing. PLoS One 2014; 9:e87920. [PMID: 24505332 PMCID: PMC3913702 DOI: 10.1371/journal.pone.0087920] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
Background Recent functional studies have demonstrated that the microRNAs (miRNAs) play critical roles in ovarian gonadal development, steroidogenesis, apoptosis, and ovulation in mammals. However, little is known about the involvement of miRNAs in the ovarian function of fowl. The goose (Anas cygnoides) is a commercially important food that is cultivated widely in China but the goose industry has been hampered by high broodiness and poor egg laying performance, which are influenced by ovarian function. Methodology/Principal Findings In this study, the miRNA transcriptomes of ovaries from laying and broody geese were profiled using Solexa deep sequencing and bioinformatics was used to determine differential expression of the miRNAs. As a result, 11,350,396 and 9,890,887 clean reads were obtained in laying and broodiness goose, respectively, and 1,328 conserved known miRNAs and 22 novel potential miRNA candidates were identified. A total of 353 conserved microRNAs were significantly differentially expressed between laying and broody ovaries. Compared with miRNA expression in the laying ovary, 127 miRNAs were up-regulated and 126 miRNAs were down-regulated in the ovary of broody birds. A subset of the differentially expressed miRNAs (G-miR-320, G-miR-202, G-miR-146, and G-miR-143*) were validated using real-time quantitative PCR. In addition, 130,458 annotated mRNA transcripts were identified as putative target genes. Gene ontology annotation and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis suggested that the differentially expressed miRNAs are involved in ovarian function, including hormone secretion, reproduction processes and so on. Conclusions The present study provides the first global miRNA transcriptome data in A. cygnoides and identifies novel and known miRNAs that are differentially expressed between the ovaries of laying and broody geese. These findings contribute to our understanding of the functional involvement of miRNAs in the broody period of goose.
Collapse
|
36
|
Chen M, Storey KB. Large-scale identification and comparative analysis of miRNA expression profile in the respiratory tree of the sea cucumber Apostichopus japonicus during aestivation. Mar Genomics 2014; 13:39-44. [PMID: 24444870 DOI: 10.1016/j.margen.2014.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/25/2022]
Abstract
The sea cucumber Apostichopus japonicus withstands high water temperatures in the summer by suppressing its metabolic rate and entering a state of aestivation. We hypothesized that changes in the expression of miRNAs could provide important post-transcriptional regulation of gene expression during hypometabolism via control over mRNA translation. The present study analyzed profiles of miRNA expression in the sea cucumber respiratory tree using Solexa deep sequencing technology. We identified 279 sea cucumber miRNAs, including 15 novel miRNAs specific to sea cucumber. Animals sampled during deep aestivation (DA; after at least 15 days of continuous torpor) were compared with animals from a non-aestivation (NA) state (animals that had passed through aestivation and returned to an active state). We identified 30 differentially expressed miRNAs ([RPM (reads per million) >10, |FC| (|fold change|)≥1, FDR (false discovery rate)<0.01]) during aestivation, which were validated by two other miRNA profiling methods: miRNA microarray and real-time PCR. Among the most prominent miRNA species, miR-124, miR-124-3p, miR-79, miR-9 and miR-2010 were significantly over-expressed during deep aestivation compared with non-aestivation animals, suggesting that these miRNAs may play important roles in metabolic rate suppression during aestivation. High-throughput sequencing data and microarray data have been submitted to the GEO database with accession number: 16902695.
Collapse
Affiliation(s)
- Muyan Chen
- Fisheries College, Ocean University of China, Qingdao, PR China.
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
37
|
Fang W, Zhou N, Li D, Chen Z, Jiang P, Zhang D. An integrative bioinformatics pipeline for the genomewide identification of novel porcine microRNA genes. J Genet 2013; 92:587-93. [PMID: 24371181 DOI: 10.1007/s12041-013-0294-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Fang
- Center for Bioinformation, College of Life Science, Northwest A and F University, Yangling 712100, Shaanxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
38
|
Martini P, Sales G, Calura E, Brugiolo M, Lanfranchi G, Romualdi C, Cagnin S. Systems biology approach to the dissection of the complexity of regulatory networks in the S. scrofa cardiocirculatory system. Int J Mol Sci 2013; 14:23160-87. [PMID: 24284405 PMCID: PMC3856112 DOI: 10.3390/ijms141123160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/23/2013] [Accepted: 11/02/2013] [Indexed: 12/23/2022] Open
Abstract
Genome-wide experiments are routinely used to increase the understanding of the biological processes involved in the development and maintenance of a variety of pathologies. Although the technical feasibility of this type of experiment has improved in recent years, data analysis remains challenging. In this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. Here, we review strategies used in the gene set approach, and using datasets for the pig cardiocirculatory system as a case study, we demonstrate how the use of a combination of these strategies can enhance the interpretation of results. Gene set analyses are able to distinguish vessels from the heart and arteries from veins in a manner that is consistent with the different cellular composition of smooth muscle cells. By integrating microRNA elements in the regulatory circuits identified, we find that vessel specificity is maintained through specific miRNAs, such as miR-133a and miR-143, which show anti-correlated expression with their mRNA targets.
Collapse
Affiliation(s)
- Paolo Martini
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
| | - Gabriele Sales
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
| | - Enrica Calura
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
| | - Mattia Brugiolo
- C.R.I.B.I. Biotechnology Centre, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy; E-Mail:
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
- C.R.I.B.I. Biotechnology Centre, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy; E-Mail:
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
- Authors to whom correspondence should be addressed; E-Mails: (C.R.); (S.C.); Tel.: +39-049-827-7401 (C.R.); +39-049-827-6162 (S.C.); Fax: +39-049-827-6159 (C.R. & S.C.)
| | - Stefano Cagnin
- Department of Biology, University of Padova, Via G. Colombo 3, Padova 35121, Italy; E-Mails: (P.M.); (G.S.); (E.C.); (G.L.)
- C.R.I.B.I. Biotechnology Centre, University of Padova, Via U. Bassi 58/B, Padova 35121, Italy; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.R.); (S.C.); Tel.: +39-049-827-7401 (C.R.); +39-049-827-6162 (S.C.); Fax: +39-049-827-6159 (C.R. & S.C.)
| |
Collapse
|
39
|
Zhang L, Cai Z, Wei S, Zhou H, Zhou H, Jiang X, Xu N. MicroRNA expression profiling of the porcine developing hypothalamus and pituitary tissue. Int J Mol Sci 2013; 14:20326-39. [PMID: 24129171 PMCID: PMC3821617 DOI: 10.3390/ijms141020326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/17/2013] [Accepted: 09/23/2013] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding RNA molecules, play important roles in gene expressions at transcriptional and post-transcriptional stages in mammalian brain. So far, a growing number of porcine miRNAs and their function have been identified, but little is known regarding the porcine developing hypothalamus and pituitary. In the present study, Solexa sequencing analysis showed 14,129,397 yielded reads, 6,680,678 of which were related to 674 unique miRNAs. After a microarray assay, we detected 175 unique miRNAs in the hypothalamus, including 136 previously known miRNAs and 39 novel candidates, while a total of 140 miRNAs, including 104 known and 36 new candidate miRNAs, were discovered in pituitary. More importantly, 37 and 30 differentially expressed miRNAs from several developmental stages of hypothalamus and pituitary were revealed, respectively. The 37 differentially expressed miRNAs in hypothalamus represented 6 different expression patterns, while the 30 differentially expressed miRNAs in pituitary represented 7 different expression patterns. To clarify potential target genes and specific functions of these differentially expressed miRNAs in hypothalamus and pituitary, TargetScan and Gorilla prediction tools were then applied. The current functional analysis showed that the differentially expressed miRNAs in hypothalamus and pituitary shared many biological processes, with the main differences being found in tissue-specific processes including: CDP-diacylglycerol biosynthetic/metabolic process; phosphatidic acid biosynthetic/metabolic process; energy reserve metabolic process for hypothalamus; adult behavior; sterol transport/homeostasis; and cholesterol/reverse cholesterol transport for pituitary. Overall, this study identified miRNA profiles and differentially expressed miRNAs among various developmental stages in hypothalamus and pituitary and indicated miRNA profiles change with age and brain location, enhancing our knowledge about spatial and temporal expressions of miRNAs in the porcine developing brain.
Collapse
Affiliation(s)
- Lifan Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (L.Z.); (H.Z.); (H.Z.); (X.J.)
| | - Zhaowei Cai
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China; E-Mail:
| | - Shengjuan Wei
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA; E-Mail:
| | - Huiyun Zhou
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (L.Z.); (H.Z.); (H.Z.); (X.J.)
| | - Hongmei Zhou
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (L.Z.); (H.Z.); (H.Z.); (X.J.)
| | - Xiaoling Jiang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (L.Z.); (H.Z.); (H.Z.); (X.J.)
| | - Ningying Xu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; E-Mails: (L.Z.); (H.Z.); (H.Z.); (X.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-571-8898-2089
| |
Collapse
|
40
|
Kirby TJ, McCarthy JJ. MicroRNAs in skeletal muscle biology and exercise adaptation. Free Radic Biol Med 2013; 64:95-105. [PMID: 23872025 PMCID: PMC4867469 DOI: 10.1016/j.freeradbiomed.2013.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important players in the regulation of gene expression, being involved in most biological processes examined to date. The proposal that miRNAs are primarily involved in the stress response of the cell makes miRNAs ideally suited to mediate the response of skeletal muscle to changes in contractile activity. Although the field is still in its infancy, the studies presented in this review highlight the promise that miRNAs will have an important role in mediating the response and adaptation of skeletal muscle to various modes of exercise. The roles of miRNAs in satellite cell biology, muscle regeneration, and various myopathies are also discussed.
Collapse
Affiliation(s)
- Tyler J. Kirby
- Department of Physiology, University of Kentucky Lexington, KY 40516-0298
| | - John J. McCarthy
- Department of Physiology, University of Kentucky Lexington, KY 40516-0298
- Center for Muscle Biology, University of Kentucky Lexington, KY 40516-0298
| |
Collapse
|