1
|
Duan Y, Li Q, Zhou J, Zhao H, Zhao Z, Wang L, Luo M, Du J, Dong Z. Studies on the molecular level changes and potential resistance mechanism of Coreius guichenoti under temperature stimulation. Front Genet 2022; 13:1015505. [PMID: 36263436 PMCID: PMC9574000 DOI: 10.3389/fgene.2022.1015505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, we used transcriptome and proteome technology to analyze molecular level changes in tissues of Coreius guichenoti cultured at high temperature (HT) and low temperature (LT). We also screened for specific anti-stress genes and proteins and evaluated the relationships between them. We identified 201,803 unigenes and 10,623 proteins. Compared with the normal temperature (NT), 408 genes and 1,204 proteins were up- or down-regulated in brain tissues, respectively, at HT, and the numbers were 8 and 149 at LT. In gill tissues, the numbers were 101 and 1,745 at HT and 27 and 511 at LT. In gill tissues at both temperatures, the degree of down-regulation (average, HT 204.67-fold, LT 443.13-fold) was much greater than that of up-regulation (average, HT 28.69-fold, LT 17.68-fold). The protein expression in brain (average, up 52.67-fold, down 13.54-fold) and gill (average, up 73.02-fold, down 12.92-fold) tissues increased more at HT than at LT. The protein expression in brain (up 3.77-fold, down 4.79-fold) tissues decreased more at LT than at HT, whereas the protein expression in gill (up 8.64-fold, down 4.35-fold) tissues was up-regulated more at LT than at HT. At HT, brain tissues were mainly enriched in pathways related to metabolism and DNA repair; at LT, they were mainly enriched in cancer-related pathways. At both temperatures, gill tissues were mainly enriched in pathways related to cell proliferation, apoptosis, immunity, and inflammation. Additionally, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed more differentially expressed proteins in gill tissues than in brain tissues at HT and LT, and temperature stimulation led to the strengthening of metabolic pathways in both tissues. Of the 96 genes we identified as potentially being highly related to temperature stress (59 from transcriptome and 38 from proteome data), we detected heat shock protein 70 in both the transcriptome and proteome. Our results improved our understanding of the differential relationship between gene expression and protein expression in C. guichenoti. Identifying important temperature stress genes will help lay a foundation for cultivating C. guichenoti, and even other fish species, that are resistant to HT or LT.
Collapse
Affiliation(s)
- Yuanliang Duan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lanmei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Mingkun Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi, China
- *Correspondence: Zaijie Dong,
| |
Collapse
|
2
|
Chiba A, Soma K, Watanabe K, Nagashima H, Sato N. Development of fin-innervating motor neurons after peripheral target removal in medaka fish. Dev Neurobiol 2020; 81:110-122. [PMID: 33277778 DOI: 10.1002/dneu.22799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/20/2020] [Accepted: 11/27/2020] [Indexed: 11/12/2022]
Abstract
Peripheral targets regulate the development and survival of the nerve centers that serve them, because the elimination of the target normally results in massive death of the developing neurons that innervate it. This widely accepted theory appears to be well supported by developing limbs and their innervation in tetrapods, but it is unclear whether this concept applies to primitive vertebrates that have paired appendages. In this study, we examined the development of spinal motor neurons following pectoral fin bud removal (FBR) in medaka fish. After FBR, motor axons initially extended to the plexus region in a morphologically normal pattern. During the period of fin innervation, motor axons in the FBR-medaka failed to form the normal brachial plexus and elongated ventrally toward the abdominal region. In the ventral horn that would normally innervate the pectoral fin, however, neurons did not undergo cell death following FBR. There were no differences in the numbers of axons in the ventral roots between the FBR and control sides. Motor neuron markers, RALDH2 and FOXP1, that are expressed in limb-innervating motor neurons in the lateral motor column in tetrapods, were also expressed in the ventral horns of both the control and FBR sides in medaka fish. These results suggest that, although both tetrapod and medaka motor neurons share the same molecular characteristics for innervating paired appendages, the fates of neurons differ following the removal of their peripheral target. Therefore, the relationship between the peripheral target and its nerve center may be altered among vertebrates.
Collapse
Affiliation(s)
- Akina Chiba
- Division of Gross Anatomy and Morphogenesis, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenichi Soma
- Division of Gross Anatomy and Morphogenesis, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Keisuke Watanabe
- Division of Gross Anatomy and Morphogenesis, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroshi Nagashima
- Division of Gross Anatomy and Morphogenesis, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Abstract
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system.
Collapse
|
5
|
Jones EA, Brewer MH, Srinivasan R, Krueger C, Sun G, Charney KN, Keles S, Antonellis A, Svaren J. Distal enhancers upstream of the Charcot-Marie-Tooth type 1A disease gene PMP22. Hum Mol Genet 2012; 21:1581-91. [PMID: 22180461 PMCID: PMC3298281 DOI: 10.1093/hmg/ddr595] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/12/2011] [Indexed: 11/14/2022] Open
Abstract
Myelin insulates axons in the peripheral nervous system to allow rapid propagation of action potentials, and proper myelination requires the precise regulation of genes encoding myelin proteins, including PMP22. The correct gene dosage of PMP22 is critical; a duplication of PMP22 is the most common cause of the peripheral neuropathy Charcot-Marie-Tooth Disease (CMT) (classified as type 1A), while a deletion of PMP22 leads to another peripheral neuropathy, hereditary neuropathy with liability to pressure palsies. Recently, duplications upstream of PMP22, but not containing the gene itself, were reported in patients with CMT1A like symptoms, suggesting that this region contains regulators of PMP22. Using chromatin immunoprecipitation analysis of two transcription factors known to upregulate PMP22-EGR2 and SOX10-we found several enhancers in this upstream region that contain open chromatin and direct reporter gene expression in tissue culture and in vivo in zebrafish. These studies provide a novel means to identify critical regulatory elements in genes that are required for myelination, and elucidate the functional significance of non-coding genomic rearrangements.
Collapse
Affiliation(s)
- Erin A. Jones
- Program in Cellular and Molecular Biology
- Waisman Center
| | | | | | | | - Guannan Sun
- Department of Statistics
- Department of Biostatistics and Medical Informatics and
| | | | - Sunduz Keles
- Department of Statistics
- Department of Biostatistics and Medical Informatics and
| | - Anthony Antonellis
- Department of Human Genetics
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Svaren
- Waisman Center
- Department of Comparative Biosciences, Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
6
|
Matsunaga W, Watanabe E. Habituation of medaka (Oryzias latipes) demonstrated by open-field testing. Behav Processes 2010; 85:142-50. [PMID: 20615458 DOI: 10.1016/j.beproc.2010.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/16/2010] [Accepted: 06/29/2010] [Indexed: 01/11/2023]
Abstract
Habituation to novel environments is frequently studied to analyze cognitive phenotypes in animals, and an open-field test is generally conducted to investigate the changes that occur in animals during habituation. The test has not been used in behavioral studies of medaka (Oryzias latipes), which is recently being used in behavioral research. Therefore, we examined the open-field behavior of medaka on the basis of temporal changes in 2 conventional indexes of locomotion and position. The findings of our study clearly showed that medaka changed its behavior through multiple temporal phases as it became more familiar with new surroundings; this finding is consistent with those of other ethological studies in animals. During repeated open-field testing on 2 consecutive days, we observed that horizontal locomotion on the second day was less than that on the first day, which suggested that habituation is retained in fish for days. This temporal habituation was critically affected by water factors or visual cues of the tank, thereby suggesting that fish have spatial memory of their surroundings. Thus, the data from this study will afford useful fundamental information for behavioral phenotyping of medaka and for elucidating cognitive phenotypes in animals.
Collapse
Affiliation(s)
- Wataru Matsunaga
- Laboratory of Neurophysiology, National Institute for Basic Biology, Higashiyama 5-1, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | | |
Collapse
|
7
|
Davidson S, Starkey A, MacKenzie A. Evidence of uneven selective pressure on different subsets of the conserved human genome; implications for the significance of intronic and intergenic DNA. BMC Genomics 2009; 10:614. [PMID: 20015390 PMCID: PMC2807880 DOI: 10.1186/1471-2164-10-614] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/16/2009] [Indexed: 01/13/2023] Open
Abstract
Background Human genetic variation produces the wide range of phenotypic differences that make us individual. However, little is known about the distribution of variation in the most conserved functional regions of the human genome. We examined whether different subsets of the conserved human genome have been subjected to similar levels of selective constraint within the human population. We used set theory and high performance computing to carry out an analysis of the density of Single Nucleotide Polymorphisms (SNPs) within the evolutionary conserved human genome, at three different selective stringencies, intersected with exonic, intronic and intergenic coordinates. Results We demonstrate that SNP density across the genome is significantly reduced in conserved human sequences. Unexpectedly, we further demonstrate that, despite being conserved to the same degree, SNP density differs significantly between conserved subsets. Thus, both the conserved exonic and intronic genomes contain a significantly reduced density of SNPs compared to the conserved intergenic component. Furthermore the intronic and exonic subsets contain almost identical densities of SNPs indicating that they have been constrained to the same degree. Conclusion Our findings suggest the presence of a selective linkage between the exonic and intronic subsets and ascribes increased significance to the role of introns in human health. In addition, the identification of increased plasticity within the conserved intergenic subset suggests an important role for this subset in the adaptation and diversification of the human population.
Collapse
Affiliation(s)
- Scott Davidson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
| | | | | |
Collapse
|