1
|
Paoli M, Haase A. In Vivo Two-Photon Imaging of the Olfactory System in Insects. Methods Mol Biol 2025; 2915:1-48. [PMID: 40249481 DOI: 10.1007/978-1-0716-4466-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
This chapter describes how to apply two-photon neuroimaging to study the insect olfactory system in vivo. It provides a complete protocol for insect brain functional imaging, with additional remarks on the acquisition of morphological information from the living brain. We discuss the most important choices to make when buying or building a two-photon laser scanning microscope. We illustrate different possibilities of animal preparation and brain tissue labeling for in vivo imaging. Finally, we give an overview of the main methods of image data processing and analysis, together with practical examples of pioneering applications of this imaging modality.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine - Institut de Biologie Paris-Seine, Sorbonne Université, INSERM, CNRS, Paris, France.
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France.
| | - Albrecht Haase
- Center for Mind/Brain Sciences and Department of Physics, University of Trento, Trento, Italy
| |
Collapse
|
2
|
Olfactory coding in the antennal lobe of the bumble bee Bombus terrestris. Sci Rep 2021; 11:10947. [PMID: 34040068 PMCID: PMC8154950 DOI: 10.1038/s41598-021-90400-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
Sociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule's chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.
Collapse
|
3
|
Ferguson ST, Bakis I, Zwiebel LJ. Advances in the Study of Olfaction in Eusocial Ants. INSECTS 2021; 12:252. [PMID: 33802783 PMCID: PMC8002415 DOI: 10.3390/insects12030252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022]
Abstract
Over the past decade, spurred in part by the sequencing of the first ant genomes, there have been major advances in the field of olfactory myrmecology. With the discovery of a significant expansion of the odorant receptor gene family, considerable efforts have been directed toward understanding the olfactory basis of complex social behaviors in ant colonies. Here, we review recent pivotal studies that have begun to reveal insights into the development of the olfactory system as well as how olfactory stimuli are peripherally and centrally encoded. Despite significant biological and technical impediments, substantial progress has been achieved in the application of gene editing and other molecular techniques that notably distinguish the complex olfactory system of ants from other well-studied insect model systems, such as the fruit fly. In doing so, we hope to draw attention not only to these studies but also to critical knowledge gaps that will serve as a compass for future research endeavors.
Collapse
Affiliation(s)
| | | | - Laurence J. Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; (S.T.F.); (I.B.)
| |
Collapse
|
4
|
Wycke MA, Coureaud G, Thomas-Danguin T, Sandoz JC. Configural perception of a binary olfactory mixture in honey bees, as in humans, rodents and newborn rabbits. J Exp Biol 2020; 223:jeb227611. [PMID: 33046568 DOI: 10.1242/jeb.227611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022]
Abstract
How animals perceive and learn complex stimuli, such as mixtures of odorants, is a difficult problem, for which the definition of general rules across the animal kingdom remains elusive. Recent experiments conducted in human and rodent adults as well as newborn rabbits suggested that these species process particular odor mixtures in a similar, configural manner. Thus, the binary mixture of ethyl isobutyrate (EI) and ethyl maltol (EM) induces configural processing in humans, who perceive a mixture odor quality (pineapple) that is distinct from the quality of each component (strawberry and caramel). Similarly, rabbit neonates treat the mixture differently, at least in part, from its components. In the present study, we asked whether the properties of the EI.EM mixture extend to an influential invertebrate model, the honey bee Apis mellifera. We used appetitive conditioning of the proboscis extension response to evaluate how bees perceive the EI.EM mixture. In a first experiment, we measured perceptual similarity between this mixture and its components in a generalization protocol. In a second experiment, we measured the ability of bees to differentiate between the mixture and both of its components in a negative patterning protocol. In each experimental series, the performance of bees with this mixture was compared with that obtained with four other mixtures, chosen from previous work in humans, newborn rabbits and bees. Our results suggest that when having to differentiate mixture and components, bees treat the EI.EM in a robust configural manner, similarly to mammals, suggesting the existence of common perceptual rules across the animal kindgdom.
Collapse
Affiliation(s)
- Marie-Anne Wycke
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| | - Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon, Equipe Codage et Mémoire Olfactive, CNRS/INSERM/UCBL1, 69500 Bron, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Knaden M. Learning and processing of navigational cues in the desert ant. Curr Opin Neurobiol 2019; 54:140-145. [DOI: 10.1016/j.conb.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/04/2018] [Indexed: 11/25/2022]
|
6
|
Wolff GH, Riffell JA. Olfaction, experience and neural mechanisms underlying mosquito host preference. ACTA ACUST UNITED AC 2018; 221:221/4/jeb157131. [PMID: 29487141 DOI: 10.1242/jeb.157131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mosquitoes are best known for their proclivity towards biting humans and transmitting bloodborne pathogens, but there are over 3500 species, including both blood-feeding and non-blood-feeding taxa. The diversity of host preference in mosquitoes is exemplified by the feeding habits of mosquitoes in the genus Malaya that feed on ant regurgitation or those from the genus Uranotaenia that favor amphibian hosts. Host preference is also by no means static, but is characterized by behavioral plasticity that allows mosquitoes to switch hosts when their preferred host is unavailable and by learning host cues associated with positive or negative experiences. Here we review the diverse range of host-preference behaviors across the family Culicidae, which includes all mosquitoes, and how adaptations in neural circuitry might affect changes in preference both within the life history of a mosquito and across evolutionary time-scales.
Collapse
Affiliation(s)
- Gabriella H Wolff
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Dublon IAN, Nilsson M, Balkenius A, Anderson P, Larsson MC. Scintillate: An open-source graphical viewer for time-series calcium imaging evaluation and pre-processing. J Neurosci Methods 2016; 273:120-127. [PMID: 27594088 DOI: 10.1016/j.jneumeth.2016.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Calcium imaging is based on the detection of minute signal changes in an image time-series encompassing pre- and post-stimuli. Depending on the function of the elicited response, change may be pronounced, as in the case of a genetically encoded calcium-reporter protein, or subtle, as is the case in a bath-applied dye system. Large datasets are thus often acquired and appraised only during post-processing where specific Regions of Interest (ROIs) are examined. NEW METHOD The scintillate software provides a platform allowing for near instantaneous viewing of time-sequenced tiffs within a discrete GUI environment. Whole sequences may be evaluated. In its simplest form scintillate provides change in florescence (ΔF) across the entire tiff image matrix. Evaluating image intensity level differences across the whole image allows the user to rapidly establish the value of the preparation, without a priori ROI-selection. Additionally, an implementation of Independent Component Analysis (ICA) provides additional rapid insights into areas of signal change. RESULTS We imaged transgenic flies expressing Calcium-sensitive reporter proteins within projection neurons and moth mushroom bodies stained with a Ca2+ sensitive bath-applied dye. Instantaneous pre-stimulation background subtraction allowed us to appraise strong genetically encoded neuronal Ca2+ responses in flies and weaker, less apparent, responses within moth mushroom bodies. COMPARISON WITH EXISTING METHODS At the time of acquisition, whole matrix ΔF analysis alongside ICA is ordinarily not performed. We found it invaluable, minimising time spent with unresponsive samples, and assisting in optimisation of subsequent acquisitions. CONCLUSIONS We provide a multi-platform open-source system to evaluate time-series images.
Collapse
Affiliation(s)
- I A N Dublon
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, SE-230 53, Alnarp, Sweden.
| | - M Nilsson
- Lund University Bioimaging Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - A Balkenius
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, SE-230 53, Alnarp, Sweden
| | - P Anderson
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, SE-230 53, Alnarp, Sweden
| | - M C Larsson
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, SE-230 53, Alnarp, Sweden
| |
Collapse
|
8
|
Perez M, Nowotny T, d'Ettorre P, Giurfa M. Olfactory experience shapes the evaluation of odour similarity in ants: a behavioural and computational analysis. Proc Biol Sci 2016; 283:20160551. [PMID: 27581883 PMCID: PMC5013785 DOI: 10.1098/rspb.2016.0551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/12/2016] [Indexed: 11/26/2022] Open
Abstract
Perceptual similarity between stimuli is often assessed via generalization, the response to stimuli that are similar to the one which was previously conditioned. Although conditioning procedures are variable, studies on how this variation may affect perceptual similarity remain scarce. Here, we use a combination of behavioural and computational analyses to investigate the influence of olfactory conditioning procedures on odour generalization in ants. Insects were trained following either absolute conditioning, in which a single odour (an aldehyde) was rewarded with sucrose, or differential conditioning, in which one odour (the same aldehyde) was similarly rewarded and another odour (an aldehyde differing in carbon-chain length) was punished with quinine. The response to the trained odours and generalization to other aldehydes were assessed. We show that olfactory similarity, rather than being immutable, varies with the conditioning procedure. Compared with absolute conditioning, differential conditioning enhances olfactory discrimination. This improvement is best described by a multiplicative interaction between two independent processes, the excitatory and inhibitory generalization gradients induced by the rewarded and the punished odour, respectively. We show that olfactory similarity is dramatically shaped by an individual's perceptual experience and suggest a new hypothesis for the nature of stimulus interactions underlying experience-dependent changes in perceptual similarity.
Collapse
Affiliation(s)
- Margot Perez
- Laboratory of Experimental and Comparative Ethology (LEEC), University Paris 13, Sorbonne Paris Cité, Villetaneuse, France Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France Research Centre on Animal Cognition (UMR5169), University Paul-Sabatier, Toulouse, France
| | - Thomas Nowotny
- Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), University Paris 13, Sorbonne Paris Cité, Villetaneuse, France Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France Research Centre on Animal Cognition (UMR5169), University Paul-Sabatier, Toulouse, France
| | - Martin Giurfa
- Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France Research Centre on Animal Cognition (UMR5169), University Paul-Sabatier, Toulouse, France
| |
Collapse
|
9
|
Sharma KR, Enzmann BL, Schmidt Y, Moore D, Jones GR, Parker J, Berger SL, Reinberg D, Zwiebel LJ, Breit B, Liebig J, Ray A. Cuticular Hydrocarbon Pheromones for Social Behavior and Their Coding in the Ant Antenna. Cell Rep 2015; 12:1261-71. [PMID: 26279569 DOI: 10.1016/j.celrep.2015.07.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 01/08/2023] Open
Abstract
The sophisticated organization of eusocial insect societies is largely based on the regulation of complex behaviors by hydrocarbon pheromones present on the cuticle. We used electrophysiology to investigate the detection of cuticular hydrocarbons (CHCs) by female-specific olfactory sensilla basiconica on the antenna of Camponotus floridanus ants through the utilization of one of the largest family of odorant receptors characterized so far in insects. These sensilla, each of which contains multiple olfactory receptor neurons, are differentially sensitive to CHCs and allow them to be classified into three broad groups that collectively detect every hydrocarbon tested, including queen and worker-enriched CHCs. This broad-spectrum sensitivity is conserved in a related species, Camponotus laevigatus, allowing these ants to detect CHCs from both nestmates and non-nestmates. Behavioral assays demonstrate that these ants are excellent at discriminating CHCs detected by the antenna, including enantiomers of a candidate queen pheromone that regulates the reproductive division of labor.
Collapse
Affiliation(s)
- Kavita R Sharma
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | | - Yvonne Schmidt
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Dani Moore
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Graeme R Jones
- Chemical Ecology Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratory, Keele University, Staffordshire ST5 5GB, UK
| | - Jane Parker
- Chemical Ecology Group, School of Physical and Geographical Sciences, Lennard-Jones Laboratory, Keele University, Staffordshire ST5 5GB, UK
| | - Shelley L Berger
- Departments of Cell and Developmental Biology, Genetics, and Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danny Reinberg
- Department of Molecular Pharmacology and Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Anandasankar Ray
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
10
|
Differential combinatorial coding of pheromones in two olfactory subsystems of the honey bee brain. J Neurosci 2015; 35:4157-67. [PMID: 25762663 DOI: 10.1523/jneurosci.0734-14.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural coding of pheromones has been intensively studied in insects with a particular focus on sex pheromones. These studies favored the view that pheromone compounds are processed within specific antennal lobe glomeruli following a specialized labeled-line system. However, pheromones play crucial roles in an insect's life beyond sexual attraction, and some species use many different pheromones making such a labeled-line organization unrealistic. A combinatorial coding scheme, in which each component activates a set of broadly tuned units, appears more adapted in this case. However, this idea has not been tested thoroughly. We focused here on the honey bee Apis mellifera, a social insect that relies on a wide range of pheromones to ensure colony cohesion. Interestingly, the honey bee olfactory system harbors two central parallel pathways, whose functions remain largely unknown. Using optophysiological recordings of projection neurons, we compared the responses of these two pathways to 27 known honey bee pheromonal compounds emitted by the brood, the workers, and the queen. We show that while queen mandibular pheromone is processed by l-ALT (lateral antennal lobe tract) neurons and brood pheromone is mainly processed by m-ALT (median antennal lobe tract) neurons, worker pheromones induce redundant activity in both pathways. Moreover, all tested pheromonal compounds induce combinatorial activity from several AL glomeruli. These findings support the combinatorial coding scheme and suggest that higher-order brain centers reading out these combinatorial activity patterns may eventually classify olfactory signals according to their biological meaning.
Collapse
|
11
|
Perez M, Giurfa M, d'Ettorre P. The scent of mixtures: rules of odour processing in ants. Sci Rep 2015; 5:8659. [PMID: 25726692 PMCID: PMC4345350 DOI: 10.1038/srep08659] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/29/2015] [Indexed: 11/08/2022] Open
Abstract
Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects.
Collapse
Affiliation(s)
- Margot Perez
- Research Center on Animal Cognition; University of Toulouse; UPS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- Research Center on Animal Cognition; CNRS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- Laboratory of Experimental and Comparative Ethology, University Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| | - Martin Giurfa
- Research Center on Animal Cognition; University of Toulouse; UPS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- Research Center on Animal Cognition; CNRS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, University Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| |
Collapse
|
12
|
Auffarth B. Understanding smell—The olfactory stimulus problem. Neurosci Biobehav Rev 2013; 37:1667-79. [DOI: 10.1016/j.neubiorev.2013.06.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 05/09/2013] [Accepted: 06/13/2013] [Indexed: 01/30/2023]
|
13
|
Giurfa M. Cognition with few neurons: higher-order learning in insects. Trends Neurosci 2013; 36:285-94. [PMID: 23375772 DOI: 10.1016/j.tins.2012.12.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/10/2012] [Accepted: 12/28/2012] [Indexed: 11/25/2022]
Abstract
Insects possess miniature brains but exhibit a sophisticated behavioral repertoire. Recent studies have reported the existence of unsuspected cognitive capabilities in various insect species that go beyond the traditionally studied framework of simple associative learning. Here, I focus on capabilities such as attentional modulation and concept learning and discuss their mechanistic bases. I analyze whether these behaviors, which appear particularly complex, can be explained on the basis of elemental associative learning and specific neural circuitries or, by contrast, require an explanatory level that goes beyond simple associative links. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering the basic neural architectures underlying cognitive processing.
Collapse
Affiliation(s)
- Martin Giurfa
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, 31062 Toulouse cedex 9, France.
| |
Collapse
|
14
|
Nishikawa M, Watanabe H, Yokohari F. Higher brain centers for social tasks in worker ants, Camponotus japonicus. J Comp Neurol 2012; 520:1584-98. [PMID: 22102363 DOI: 10.1002/cne.23001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ants, eusocial insects, have highly elaborate chemical communication systems using a wide variety of pheromones. In the carpenter ant, Camponotus japonicus, workers and queens have the female-specific basiconic sensilla on antennae. The antennal lobe, the primary processing center, in female carpenter ants contains about 480 glomeruli, which are divided into seven groups (T1–T7 glomeruli) based on sensory afferent tracts. The axons of sensory neurons in basiconic sensilla are thought to project to female-specific T6 glomeruli. Therefore, these sensilla and glomeruli are thought to relate to female-specific social tasks in the ants. By using dye filling into local neurons (LNs) and projection neurons (PNs) in the antennal lobe, we neuroanatomically revealed the existence of an isolated processing system for signals probably relating to social tasks in the worker ant. In the antennal lobe, two categories of glomeruli, T6 glomeruli and non-T6 glomeruli, are clearly segregated by LNs. Furthermore, axon terminals of uniglomerular PNs from the respective categories of glomeruli (T6 uni-PNs and non-T6 uni-PNs) are also segregated in the secondary olfactory centers, the calyces of the mushroom body and the lateral horn: T6 uni-PNs terminate in the outer layers of the basal ring and lip of mushroom body calyces and in the posterior region of the lateral horn, whereas non-T6 uni-PNs terminate in the middle and inner layers of the basal ring and lip and in the anterior region of the lateral horn. These findings suggest that information probably relating to social tasks might be isolated from other olfactory information and processed in a separate subsystem.
Collapse
Affiliation(s)
- Michiko Nishikawa
- Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan.
| | | | | |
Collapse
|
15
|
Watanabe H, Haupt SS, Nishino H, Nishikawa M, Yokohari F. Sensillum-specific, topographic projection patterns of olfactory receptor neurons in the antennal lobe of the cockroach Periplaneta americana. J Comp Neurol 2012; 520:1687-701. [PMID: 22121009 DOI: 10.1002/cne.23007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In vertebrates and many invertebrates, olfactory signals detected by peripheral olfactory receptor neurons (ORNs) are conveyed to a primary olfactory center with glomerular organization in which odor-specific activity patterns are generated. In the cockroach, Periplaneta americana, ORNs in antennal olfactory sensilla project to 205 unambiguously identifiable antennal lobe (AL) glomeruli that are classified into 10 glomerular clusters (T1-T10 glomeruli) innervated by distinct sensory tracts. In this study we employed single sensillum staining techniques and investigated the topographic projection patterns of individual ORNs to elucidate the relationship between sensillum types and glomerular organization in the AL. Axons of almost all ORNs projected to individual glomeruli. Axons of ORNs in perforated basiconic sensilla selectively innervated the anterodorsal T1-T4 glomeruli, whereas those in trichoid and grooved basiconic sensilla innervated the posteroventral T5-T9 glomeruli. About 90% of stained ORNs in trichoid sensilla sent axons to the T5 glomeruli and more than 90% of ORNs in grooved basiconic sensilla innervated the T6, T8, and T9 glomeruli. The T5 and T9 glomeruli exclusively receive sensory inputs from the trichoid and grooved basiconic sensilla, respectively. All investigated glomeruli received convergent input from a single type of sensillum except F11 glomerulus in the T6 glomeruli, which was innervated from both trichoid and grooved basiconic sensilla. These results suggest that ORNs in distinct sensillum types project to glomeruli in distinct glomerular clusters. Since ORNs in distinct sensillum types are each tuned to distinct subsets of odorant molecules, the AL is functionally compartmentalized into groups of glomeruli.
Collapse
Affiliation(s)
- Hidehiro Watanabe
- Division of Biology, Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan.
| | | | | | | | | |
Collapse
|
16
|
Carcaud J, Hill T, Giurfa M, Sandoz JC. Differential coding by two olfactory subsystems in the honeybee brain. J Neurophysiol 2012; 108:1106-21. [PMID: 22572948 DOI: 10.1152/jn.01034.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory systems use parallel processing to extract and process different features of environmental stimuli. Parallel processing has been studied in the auditory, visual, and somatosensory systems, but equivalent research in the olfactory modality is scarce. The honeybee Apis mellifera is an interesting model for such research as its relatively simple brain contains a dual olfactory system, with a clear neural dichotomy from the periphery to higher-order centers, based on two main neuronal tracts [medial (m) and lateral (l) antenno-protocerebral tract (APT)]. The function of this dual system is as yet unknown, and attributes like odor quality and odor quantity might be separately encoded in these subsystems. We have thus studied olfactory coding at the input of both subsystems, using in vivo calcium imaging. As one of the subsystems (m-APT) has never been imaged before, a novel imaging preparation was developed to this end, and responses to a panel of aliphatic odorants at different concentrations were compared in both subsystems. Our data show a global redundancy of olfactory coding at the input of both subsystems but unravel some specificities for encoding chemical group and carbon chain length of odor molecules.
Collapse
Affiliation(s)
- Julie Carcaud
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, Toulouse Cedex, France
| | | | | | | |
Collapse
|
17
|
Bisch-Knaden S, Carlsson MA, Sugimoto Y, Schubert M, Mißbach C, Sachse S, Hansson BS. Olfactory coding in five moth species from two families. J Exp Biol 2012; 215:1542-51. [DOI: 10.1242/jeb.068064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The aim of the present study was to determine what impact phylogeny and life history might have on the coding of odours in the brain. Using three species of hawk moths (Sphingidae) and two species of owlet moths (Noctuidae), we visualized neural activity patterns in the antennal lobe, the first olfactory neuropil in insects, evoked by a set of ecologically relevant plant volatiles. Our results suggest that even between the two phylogenetically distant moth families, basic olfactory coding features are similar. But we also found different coding strategies in the moths’ antennal lobe; namely, more specific patterns for chemically similar odorants in the two noctuid species than in the three sphingid species tested. This difference demonstrates the impact of the phylogenetic distance between species from different families despite some parallel life history traits found in both families. Furthermore, pronounced differences in larval and adult diet among the sphingids did not translate into differences in the olfactory code; instead, the three species had almost identical coding patterns.
Collapse
Affiliation(s)
- Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Mikael A. Carlsson
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Yuki Sugimoto
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Marco Schubert
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Christine Mißbach
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| |
Collapse
|
18
|
Raizada RDS, Connolly AC. What makes different people's representations alike: neural similarity space solves the problem of across-subject fMRI decoding. J Cogn Neurosci 2012; 24:868-77. [PMID: 22220728 DOI: 10.1162/jocn_a_00189] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A central goal in neuroscience is to interpret neural activation and, moreover, to do so in a way that captures universal principles by generalizing across individuals. Recent research in multivoxel pattern-based fMRI analysis has led to considerable success at decoding within individual subjects. However, the goal of being able to decode across subjects is still challenging: It has remained unclear what population-level regularities of neural representation there might be. Here, we present a novel and highly accurate solution to this problem, which decodes across subjects between eight different stimulus conditions. The key to finding this solution was questioning the seemingly obvious idea that neural decoding should work directly on neural activation patterns. On the contrary, to decode across subjects, it is beneficial to abstract away from subject-specific patterns of neural activity and, instead, to operate on the similarity relations between those patterns: Our new approach performs decoding purely within similarity space. These results demonstrate a hitherto unknown population-level regularity in neural representation and also reveal a striking convergence between our empirical findings in fMRI and discussions in the philosophy of mind addressing the problem of conceptual similarity across neural diversity.
Collapse
Affiliation(s)
- Rajeev D S Raizada
- Department of Human Development, Cornell University, Martha Van Rensselaer Hall, Ithaca, NY 14853, USA.
| | | |
Collapse
|
19
|
Olfactory perception as a compass for olfactory neural maps. Trends Cogn Sci 2011; 15:537-45. [PMID: 22001868 DOI: 10.1016/j.tics.2011.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 11/21/2022]
Abstract
The mammalian brain commonly uses structural proximity to reflect proximity in stimulus and perceptual space. Objects or object features that are near each other in physical structure or perception are also near each other in the brain. This generates sensory maps. The topography of olfactory connectivity implies a rudimentary map in the olfactory epithelium, a more intricate map in the olfactory bulb, but no ordered topography is evident in piriform cortex. Currently, we are largely unable to link the ordered topography in epithelium and bulb to meaningful olfactory axes within a strong predictive framework. We argue that the path to uncovering such a predictive framework depends on systematically characterizing olfactory perception, and we describe initial efforts in this direction.
Collapse
|
20
|
Carlsson MA, Bisch-Knaden S, Schäpers A, Mozuraitis R, Hansson BS, Janz N. Odour maps in the brain of butterflies with divergent host-plant preferences. PLoS One 2011; 6:e24025. [PMID: 21901154 PMCID: PMC3162027 DOI: 10.1371/journal.pone.0024025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca2+ activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants.
Collapse
|
21
|
Brandstaetter AS, Kleineidam CJ. Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. J Neurophysiol 2011; 106:2437-49. [PMID: 21849606 DOI: 10.1152/jn.01106.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In colonies of eusocial Hymenoptera cooperation is organized through social odors, and particularly ants rely on a sophisticated odor communication system. Neuronal information about odors is represented in spatial activity patterns in the primary olfactory neuropile of the insect brain, the antennal lobe (AL), which is analog to the vertebrate olfactory bulb. The olfactory system is characterized by neuroanatomical compartmentalization, yet the functional significance of this organization is unclear. Using two-photon calcium imaging, we investigated the neuronal representation of multicomponent colony odors, which the ants assess to discriminate friends (nestmates) from foes (nonnestmates). In the carpenter ant Camponotus floridanus, colony odors elicited spatial activity patterns distributed across different AL compartments. Activity patterns in response to nestmate and nonnestmate colony odors were overlapping. This was expected since both consist of the same components at differing ratios. Colony odors change over time and the nervous system has to constantly adjust for this (template reformation). Measured activity patterns were variable, and variability was higher in response to repeated nestmate than to repeated nonnestmate colony odor stimulation. Variable activity patterns may indicate neuronal plasticity within the olfactory system, which is necessary for template reformation. Our results indicate that information about colony odors is processed in parallel in different neuroanatomical compartments, using the computational power of the whole AL network. Parallel processing might be advantageous, allowing reliable discrimination of highly complex social odors.
Collapse
Affiliation(s)
- Andreas Simon Brandstaetter
- Department of Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany.
| | | |
Collapse
|
22
|
Friends and foes from an ant brain's point of view--neuronal correlates of colony odors in a social insect. PLoS One 2011; 6:e21383. [PMID: 21731724 PMCID: PMC3121771 DOI: 10.1371/journal.pone.0021383] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 06/01/2011] [Indexed: 12/02/2022] Open
Abstract
Background Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like “friend” and “foe” are attributed to colony odors. Methodology/Principal Findings Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors. Conclusions Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors.
Collapse
|