1
|
Behbehani R, Johnson C, Holmes AJ, Gratian MJ, Mulvihill DP, Buss F. The two C. elegans class VI myosins, SPE-15/HUM-3 and HUM-8, share similar motor properties, but have distinct developmental and tissue expression patterns. Front Physiol 2024; 15:1368054. [PMID: 38660538 PMCID: PMC11040104 DOI: 10.3389/fphys.2024.1368054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Myosins of class VI move toward the minus-end of actin filaments and play vital roles in cellular processes such as endocytosis, autophagy, protein secretion, and the regulation of actin filament dynamics. In contrast to the majority of metazoan organisms examined to date which contain a single MYO6 gene, C. elegans, possesses two MYO6 homologues, SPE-15/HUM-3 and HUM-8. Through a combination of in vitro biochemical/biophysical analysis and cellular assays, we confirmed that both SPE-15/HUM-3 and HUM-8 exhibit reverse directionality, velocities, and ATPase activity similar to human MYO6. Our characterization also revealed that unlike SPE-15/HUM-3, HUM-8 is expressed as two distinct splice isoforms, one with an additional unique 14 amino acid insert in the cargo-binding domain. While lipid and adaptor binding sites are conserved in SPE-15/HUM-3 and HUM-8, this conservation does not enable recruitment to endosomes in mammalian cells. Finally, we performed super-resolution confocal imaging on transgenic worms expressing either mNeonGreen SPE-15/HUM-3 or wrmScarlet HUM-8. Our results show a clear distinction in tissue distribution between SPE-15/HUM-3 and HUM-8. While SPE-15/HUM-3 exhibited specific expression in the gonads and neuronal tissue in the head, HUM-8 was exclusively localized in the intestinal epithelium. Overall, these findings align with the established tissue distributions and localizations of human MYO6.
Collapse
Affiliation(s)
- Ranya Behbehani
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Chloe Johnson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Alexander J. Holmes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Matthew J. Gratian
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Mochida S. Neurotransmitter Release Site Replenishment and Presynaptic Plasticity. Int J Mol Sci 2020; 22:ijms22010327. [PMID: 33396919 PMCID: PMC7794938 DOI: 10.3390/ijms22010327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022] Open
Abstract
An action potential (AP) triggers neurotransmitter release from synaptic vesicles (SVs) docking to a specialized release site of presynaptic plasma membrane, the active zone (AZ). The AP simultaneously controls the release site replenishment with SV for sustainable synaptic transmission in response to incoming neuronal signals. Although many studies have suggested that the replenishment time is relatively slow, recent studies exploring high speed resolution have revealed SV dynamics with milliseconds timescale after an AP. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an AP. This review summarizes how millisecond Ca2+ dynamics activate multiple protein cascades for control of the release site replenishment with release-ready SVs that underlie presynaptic short-term plasticity.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
3
|
MOCHIDA S. Millisecond Ca 2+ dynamics activate multiple protein cascades for synaptic vesicle control. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:802-820. [PMID: 29225307 PMCID: PMC5790758 DOI: 10.2183/pjab.93.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
For reliable transmission at chemical synapses, neurotransmitters must be released dynamically in response to neuronal activity in the form of action potentials. Stable synaptic transmission is dependent on the efficacy of transmitter release and the rate of resupplying synaptic vesicles to their release sites. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an action potential. Presynaptic Ca2+ concentration changes are dynamic functions in space and time, with wide fluctuations associated with different rates of neuronal activity. Thus, regulation of transmitter release includes reactions involving multiple Ca2+-dependent proteins, each operating over a specific time window. Classically, studies of presynaptic proteins function favored large invertebrate presynaptic terminals. I have established a useful mammalian synapse model based on sympathetic neurons in culture. This review summarizes the use of this model synapse to study the roles of presynaptic proteins in neuronal activity for the control of transmitter release efficacy and synaptic vesicle recycling.
Collapse
Affiliation(s)
- Sumiko MOCHIDA
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Meunier FA, Gutiérrez LM. Captivating New Roles of F-Actin Cortex in Exocytosis and Bulk Endocytosis in Neurosecretory Cells. Trends Neurosci 2016; 39:605-613. [DOI: 10.1016/j.tins.2016.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/01/2022]
|
5
|
Neural activity selects myosin IIB and VI with a specific time window in distinct dynamin isoform-mediated synaptic vesicle reuse pathways. J Neurosci 2015; 35:8901-13. [PMID: 26063922 DOI: 10.1523/jneurosci.5028-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Presynaptic nerve terminals must maintain stable neurotransmissions via synaptic vesicle (SV) resupply despite encountering wide fluctuations in the number and frequency of incoming action potentials (APs). However, the molecular mechanism linking variation in neural activity to SV resupply is unknown. Myosins II and VI are actin-based cytoskeletal motors that drive dendritic actin dynamics and membrane transport, respectively, at brain synapses. Here we combined genetic knockdown or molecular dysfunction and direct physiological measurement of fast synaptic transmission from paired rat superior cervical ganglion neurons in culture to show that myosins IIB and VI work individually in SV reuse pathways, having distinct dependency and time constants with physiological AP frequency. Myosin VI resupplied the readily releasable pool (RRP) with slow kinetics independently of firing rates but acted quickly within 50 ms after AP. Under high-frequency AP firing, myosin IIB resupplied the RRP with fast kinetics in a slower time window of 200 ms. Knockdown of both myosin and dynamin isoforms by mixed siRNA microinjection revealed that myosin IIB-mediated SV resupply follows amphiphysin/dynamin-1-mediated endocytosis, while myosin VI-mediated SV resupply follows dynamin-3-mediated endocytosis. Collectively, our findings show how distinct myosin isoforms work as vesicle motors in appropriate SV reuse pathways associated with specific firing patterns.
Collapse
|
6
|
Karolczak J, Weis S, Ehler E, Kierdaszuk B, Berdyński M, Zekanowski C, Kamińska AM, Rędowicz MJ. Myosin VI localization and expression in striated muscle pathology. Anat Rec (Hoboken) 2015; 297:1706-13. [PMID: 25125183 DOI: 10.1002/ar.22967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/04/2014] [Indexed: 12/11/2022]
Abstract
Myosin VI (MVI) is a unique unconventional myosin translocating, unlike other myosins, towards the minus end of actin filaments. It is involved in numerous cellular processes such as endocytosis, intracellular trafficking, cell migration, and transcription. In mammalian skeletal muscles it localizes mainly to sarcoplasmic reticulum and is also present within the muscle nuclei and at the neuromuscular junction (Karolczak et al. Histochem Cell Biol 2013; 23:219-228). We have also shown that in denervated rat hindlimb muscle the MVI expression level is significantly increased and its localization is changed, indicating an important role of MVI in striated muscle pathology. Here, we addressed this problem by examining the distribution and expression levels of myosin VI in biopsies of skeletal muscles from patients with different myopathies. We found that, particularly in myopathies associated with fiber atrophy, the amount of MVI was enhanced and its localization in affected fibers was changed. Also, since a mutation within the human MVI gene was shown to be associated with cardiomyopathy, we assessed MVI localization and expression level in cardiac muscle using wild type and MLP(-/-) mice, a dilated cardiomyopathy model. No significant difference in MVI expression level was observed for both types of animals. MVI was found at intercalated discs and also at the sarcoplasmic reticulum. In the knockout mice, it was also present in ring-like structures surrounding the nuclei. The data indicate that in striated muscle MVI could be engaged in sarcoplasmic reticulum maintenance and/or functioning, vesicular transport, signal transmission and possibly in gene transcription.
Collapse
Affiliation(s)
- Justyna Karolczak
- Department of Biochemistry, Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Involvement of unconventional myosin VI in myoblast function and myotube formation. Histochem Cell Biol 2015; 144:21-38. [PMID: 25896210 PMCID: PMC4469105 DOI: 10.1007/s00418-015-1322-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2015] [Indexed: 01/01/2023]
Abstract
The important role of unconventional myosin VI (MVI) in skeletal and cardiac muscle has been recently postulated (Karolczak et al. in Histochem Cell Biol 139:873-885, 2013). Here, we addressed for the first time a role for this unique myosin motor in myogenic cells as well as during their differentiation into myotubes. During myoblast differentiation, the isoform expression pattern of MVI and its subcellular localization underwent changes. In undifferentiated myoblasts, MVI-stained puncti were seen throughout the cytoplasm and were in close proximity to actin filaments, Golgi apparatus, vinculin-, and talin-rich focal adhesion as well as endoplasmic reticulum. Colocalization of MVI with endoplasmic reticulum was enhanced during myotube formation, and differentiation-dependent association was also seen in sarcoplasmic reticulum of neonatal rat cardiomyocytes (NRCs). Moreover, we observed enrichment of MVI in myotube regions containing acetylcholine receptor-rich clusters, suggesting its involvement in the organization of the muscle postsynaptic machinery. Overexpression of the H246R MVI mutant (associated with hypertrophic cardiomyopathy) in myoblasts and NRCs caused the formation of abnormally large intracellular vesicles. MVI knockdown caused changes in myoblast morphology and inhibition of their migration. On the subcellular level, MVI-depleted myoblasts exhibited aberrations in the organization of actin cytoskeleton and adhesive structures as well as in integrity of Golgi apparatus and endoplasmic reticulum. Also, MVI depletion or overexpression of H246R mutant caused the formation of significantly wider or aberrant myotubes, respectively, indicative of involvement of MVI in myoblast differentiation. The presented results suggest an important role for MVI in myogenic cells and possibly in myoblast differentiation.
Collapse
|
8
|
Hadžić T, Park D, Abruzzi KC, Yang L, Trigg JS, Rohs R, Rosbash M, Taghert PH. Genome-wide features of neuroendocrine regulation in Drosophila by the basic helix-loop-helix transcription factor DIMMED. Nucleic Acids Res 2015; 43:2199-215. [PMID: 25634895 PMCID: PMC4344488 DOI: 10.1093/nar/gku1377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuroendocrine (NE) cells use large dense core vesicles (LDCVs) to traffic, process, store and secrete neuropeptide hormones through the regulated secretory pathway. The dimmed (DIMM) basic helix-loop-helix transcription factor of Drosophila controls the level of regulated secretory activity in NE cells. To pursue its mechanisms, we have performed two independent genome-wide analyses of DIMM's activities: (i) in vivo chromatin immunoprecipitation (ChIP) to define genomic sites of DIMM occupancy and (ii) deep sequencing of purified DIMM neurons to characterize their transcriptional profile. By this combined approach, we showed that DIMM binds to conserved E-boxes in enhancers of 212 genes whose expression is enriched in DIMM-expressing NE cells. DIMM binds preferentially to certain E-boxes within first introns of specific gene isoforms. Statistical machine learning revealed that flanking regions of putative DIMM binding sites contribute to its DNA binding specificity. DIMM's transcriptional repertoire features at least 20 LDCV constituents. In addition, DIMM notably targets the pro-secretory transcription factor, creb-A, but significantly, DIMM does not target any neuropeptide genes. DIMM therefore prescribes the scale of secretory activity in NE neurons, by a systematic control of both proximal and distal points in the regulated secretory pathway.
Collapse
Affiliation(s)
- Tarik Hadžić
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Dongkook Park
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Katharine C Abruzzi
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Lin Yang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer S Trigg
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Remo Rohs
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Paul H Taghert
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Knodel MM, Geiger R, Ge L, Bucher D, Grillo A, Wittum G, Schuster CM, Queisser G. Synaptic bouton properties are tuned to best fit the prevailing firing pattern. Front Comput Neurosci 2014; 8:101. [PMID: 25249970 PMCID: PMC4158995 DOI: 10.3389/fncom.2014.00101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 08/07/2014] [Indexed: 11/25/2022] Open
Abstract
The morphology of presynaptic specializations can vary greatly ranging from classical single-release-site boutons in the central nervous system to boutons of various sizes harboring multiple vesicle release sites. Multi-release-site boutons can be found in several neural contexts, for example at the neuromuscular junction (NMJ) of body wall muscles of Drosophila larvae. These NMJs are built by two motor neurons forming two types of glutamatergic multi-release-site boutons with two typical diameters. However, it is unknown why these distinct nerve terminal configurations are used on the same postsynaptic muscle fiber. To systematically dissect the biophysical properties of these boutons we developed a full three-dimensional model of such boutons, their release sites and transmitter-harboring vesicles and analyzed the local vesicle dynamics of various configurations during stimulation. Here we show that the rate of transmission of a bouton is primarily limited by diffusion-based vesicle movements and that the probability of vesicle release and the size of a bouton affect bouton-performance in distinct temporal domains allowing for an optimal transmission of the neural signals at different time scales. A comparison of our in silico simulations with in vivo recordings of the natural motor pattern of both neurons revealed that the bouton properties resemble a well-tuned cooperation of the parameters release probability and bouton size, enabling a reliable transmission of the prevailing firing-pattern at diffusion-limited boutons. Our findings indicate that the prevailing firing-pattern of a neuron may determine the physiological and morphological parameters required for its synaptic terminals.
Collapse
Affiliation(s)
- Markus M Knodel
- Bernstein Group Detailed Modeling of Signal Processing in Neurons, University of Heidelberg and University of Frankfurt Heidelberg/Frankfurt, Germany ; Department of Simulation and Modeling, Goethe Center for Scientific Computing, University of Frankfurt Frankfurt, Germany
| | - Romina Geiger
- Bernstein Center for Computational Neuroscience Heidelberg-Mannheim Heidelberg/Mannheim, Germany ; Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg Heidelberg, Germany
| | - Lihao Ge
- Bernstein Center for Computational Neuroscience Heidelberg-Mannheim Heidelberg/Mannheim, Germany ; Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg Heidelberg, Germany
| | - Daniel Bucher
- Bernstein Group Detailed Modeling of Signal Processing in Neurons, University of Heidelberg and University of Frankfurt Heidelberg/Frankfurt, Germany ; Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg Heidelberg, Germany ; Development Unit, European Molecular Biology Laboratory Heidelberg, Germany
| | - Alfio Grillo
- Department of Simulation and Modeling, Goethe Center for Scientific Computing, University of Frankfurt Frankfurt, Germany ; Department of Mathematical Sciences, Polythecnic of Turin Turin, Italy
| | - Gabriel Wittum
- Bernstein Group Detailed Modeling of Signal Processing in Neurons, University of Heidelberg and University of Frankfurt Heidelberg/Frankfurt, Germany ; Department of Simulation and Modeling, Goethe Center for Scientific Computing, University of Frankfurt Frankfurt, Germany
| | - Christoph M Schuster
- Bernstein Group Detailed Modeling of Signal Processing in Neurons, University of Heidelberg and University of Frankfurt Heidelberg/Frankfurt, Germany ; Bernstein Center for Computational Neuroscience Heidelberg-Mannheim Heidelberg/Mannheim, Germany ; Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg Heidelberg, Germany
| | - Gillian Queisser
- Bernstein Group Detailed Modeling of Signal Processing in Neurons, University of Heidelberg and University of Frankfurt Heidelberg/Frankfurt, Germany ; Bernstein Center for Computational Neuroscience Heidelberg-Mannheim Heidelberg/Mannheim, Germany ; Department of Computational Neuroscience, Goethe Center for Scientific Computing, University of Frankfurt Frankfurt, Germany
| |
Collapse
|
10
|
Kisiel M, McKenzie K, Stewart B. Localization and mobility of synaptic vesicles in Myosin VI mutants of Drosophila. PLoS One 2014; 9:e102988. [PMID: 25062032 PMCID: PMC4111356 DOI: 10.1371/journal.pone.0102988] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/26/2014] [Indexed: 11/25/2022] Open
Abstract
Background At the Drosophila neuromuscular junction (NMJ), synaptic vesicles are mobile; however, the mechanisms that regulate vesicle traffic at the nerve terminal are not fully understood. Myosin VI has been shown to be important for proper synaptic physiology and morphology at the NMJ, likely by functioning as a vesicle tether. Here we investigate vesicle dynamics in Myosin VI mutants of Drosophila. Results In Drosophila, Myosin VI is encoded by the gene, jaguar (jar). To visualize active vesicle cycling we used FM dye loading and compared loss of function alleles of jar with controls. These studies revealed a differential distribution of vesicles at the jar mutant nerve terminal, with the newly endocytosed vesicles observed throughout the mutant boutons in contrast to the peripheral localization visualized at control NMJs. This finding is consistent with a role for Myosin VI in restraining vesicle mobility at the synapse to ensure proper localization. To further investigate regulation of vesicle dynamics by Myosin VI, FRAP analysis was used to analyze movement of GFP-labeled synaptic vesicles within individual boutons. FRAP revealed that synaptic vesicles are moving more freely in the jar mutant boutons, indicated by changes in initial bleach depth and rapid recovery of fluorescence following photobleaching. Conclusion This data provides insights into the role for Myosin VI in mediating synaptic vesicle dynamics at the nerve terminal. We observed mislocalization of actively cycling vesicles and an apparent increase in vesicle mobility when Myosin VI levels are reduced. These observations support the notion that a major function of Myosin VI in the nerve terminal is tethering synaptic vesicles to proper sub-cellular location within the bouton.
Collapse
Affiliation(s)
- Marta Kisiel
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Kristopher McKenzie
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Bryan Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
11
|
DeMill CM, Qiu X, Kisiel M, Bolotta A, Stewart BA. Investigation of the juxtamembrane region of neuronal-Synaptobrevin in synaptic transmission at the Drosophila neuromuscular junction. J Neurophysiol 2014; 112:1356-66. [PMID: 24944220 DOI: 10.1152/jn.00474.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In this study, the juxtamembrane region of the Drosophila SNARE protein neuronal-Synaptobrevin (n-Syb) was tested for its role in synaptic transmission. A transgenic approach was used to express n-Syb mutant genes. The transgenes carried engineered point mutations that alter the amino acid sequence of the conserved tryptophan residues in the juxtamembrane sequence. Such transgenes were expressed in an n-syb hypomorphic background, which produces little endogenous protein. On their own, hypomorphic flies displayed severe motor inhibition, limited life span, reduced evoked junctional potentials (EJPs), decreased synchronicity in EJP time to peak, and potentiation of EJPs with 10-Hz stimulation. All of these deficits were restored to wild-type levels with the expression of wild-type transgenic n-syb, regulated by the endogenous promoter (n-syb(WT)). We created transgenic mutants with one additional tryptophan (n-syb(WW)) or one less tryptophan (n-syb(AA)) than the wild-type sequence. While n-syb(WW) resembled n-syb(WT) in all variables listed, n-syb(AA) exhibited decreased EJP amplitude, synchronicity, and quantal content. To determine whether the n-syb juxtamembrane region is important for transduction of force arising from SNARE complex assembly during membrane fusion, we introduced short 6-amino acid (n-syb(L6)) or long 24-amino acid (n-syb(L24)) flexible linkers into the n-syb transgene. We observed a reduced EJP amplitude in n-syb(L6) but not n-syb(L24), while both linker mutants showed a decreased quantal content and an effect on the readily releasable and recycling vesicle pools. In conclusion, mutation of the juxtamembrane region of n-syb deleteriously affected synaptic transmission at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Colin M DeMill
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada; and Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Xinping Qiu
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada; and
| | - Marta Kisiel
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada; and
| | - Alanna Bolotta
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada; and
| | - Bryan A Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada; and Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
unfulfilled interacting genes display branch-specific roles in the development of mushroom body axons in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2014; 4:693-706. [PMID: 24558265 PMCID: PMC4577660 DOI: 10.1534/g3.113.009829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mushroom body (MB) of Drosophila melanogaster is an organized collection of interneurons that is required for learning and memory. Each of the three subtypes of MB neurons, γ, α´/β´, and α/β, branch at some point during their development, providing an excellent model in which to study the genetic regulation of axon branching. Given the sequential birth order and the unique patterning of MB neurons, it is likely that specific gene cascades are required for the different guidance events that form the characteristic lobes of the MB. The nuclear receptor UNFULFILLED (UNF), a transcription factor, is required for the differentiation of all MB neurons. We have developed and used a classical genetic suppressor screen that takes advantage of the fact that ectopic expression of unf causes lethality to identify candidate genes that act downstream of UNF. We hypothesized that reducing the copy number of unf-interacting genes will suppress the unf-induced lethality. We have identified 19 candidate genes that when mutated suppress the unf-induced lethality. To test whether candidate genes impact MB development, we performed a secondary phenotypic screen in which the morphologies of the MBs in animals heterozygous for unf and a specific candidate gene were analyzed. Medial MB lobes were thin, missing, or misguided dorsally in five double heterozygote combinations (;unf/+;axin/+, unf/+;Fps85D/+, ;unf/+;Tsc1/+, ;unf/+;Rheb/+, ;unf/+;msn/+). Dorsal MB lobes were missing in ;unf/+;DopR2/+ or misprojecting beyond the termination point in ;unf/+;Sytβ double heterozygotes. These data suggest that unf and unf-interacting genes play specific roles in axon development in a branch-specific manner.
Collapse
|
13
|
Wong FK, Nath AR, Chen RHC, Gardezi SR, Li Q, Stanley EF. Synaptic vesicle tethering and the CaV2.2 distal C-terminal. Front Cell Neurosci 2014; 8:71. [PMID: 24639630 PMCID: PMC3945931 DOI: 10.3389/fncel.2014.00071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/18/2014] [Indexed: 01/18/2023] Open
Abstract
Evidence that synaptic vesicles (SVs) can be gated by a single voltage sensitive calcium channel (CaV2.2) predict a molecular linking mechanism or "tether" (Stanley, 1993). Recent studies have proposed that the SV binds to the distal C-terminal on the CaV2.2 calcium channel (Kaeser et al., 2011; Wong et al., 2013) while genetic analysis proposed a double tether mechanism via RIM: directly to the C terminus PDZ ligand domain or indirectly via a more proximal proline rich site (Kaeser et al., 2011). Using a novel in vitro SV pull down binding assay, we reported that SVs bind to a fusion protein comprising the C-terminal distal third (C3, aa 2137-2357; Wong et al., 2013). Here we limit the binding site further to the last 58 aa, beyond the proline rich site, by the absence of SV capture by a truncated C3 fusion protein (aa 2137-2299). To test PDZ-dependent binding we generated two C terminus-mutant C3 fusion proteins and a mimetic blocking peptide (H-WC, aa 2349-2357) and validated these by elimination of MINT-1 or RIM binding. Persistence of SV capture with all three fusion proteins or with the full length C3 protein but in the presence of blocking peptide, demonstrated that SVs can bind to the distal C-terminal via a PDZ-independent mechanism. These results were supported in situ by normal SV turnover in H-WC-loaded synaptosomes, as assayed by a novel peptide cryoloading method. Thus, SVs tether to the CaV2.2 C-terminal within a 49 aa region immediately prior to the terminus PDZ ligand domain. Long tethers that could reflect extended C termini were imaged by electron microscopy of synaptosome ghosts. To fully account for SV tethering we propose a model where SVs are initially captured, or "grabbed," from the cytoplasm by a binding site on the distal region of the channel C-terminal and are then retracted to be "locked" close to the channel by a second attachment mechanism in preparation for single channel domain gating.
Collapse
Affiliation(s)
- Fiona K Wong
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Arup R Nath
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Robert H C Chen
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Sabiha R Gardezi
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Qi Li
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| | - Elise F Stanley
- Laboratory of Synaptic Transmission, Toronto Western Research Institute Toronto, ON, Canada
| |
Collapse
|
14
|
Hung RJ, Spaeth CS, Yesilyurt HG, Terman JR. SelR reverses Mical-mediated oxidation of actin to regulate F-actin dynamics. Nat Cell Biol 2013; 15:1445-54. [PMID: 24212093 PMCID: PMC4254815 DOI: 10.1038/ncb2871] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/03/2013] [Indexed: 02/06/2023]
Abstract
Actin's polymerization properties are markedly altered by oxidation of its conserved Met 44 residue. Mediating this effect is a specific oxidation-reduction (redox) enzyme, Mical, that works with Semaphorin repulsive guidance cues and selectively oxidizes Met 44. We now find that this actin-regulatory process is reversible. Employing a genetic approach, we identified a specific methionine sulfoxide reductase (MsrB) enzyme SelR that opposes Mical redox activity and Semaphorin-Plexin repulsion to direct multiple actin-dependent cellular behaviours in vivo. SelR specifically catalyses the reduction of the R isomer of methionine sulfoxide (methionine-R-sulfoxide) to methionine, and we found that SelR directly reduced Mical-oxidized actin, restoring its normal polymerization properties. These results indicate that Mical oxidizes actin stereospecifically to generate actin Met-44-R-sulfoxide (actin(Met(R)O-44)), and also implicate the interconversion of specific Met/Met(R)O residues as a precise means to modulate protein function. Our results therefore uncover a specific reversible redox actin regulatory system that controls cell and developmental biology.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program The University of Texas Southwestern Medical Center Dallas, TX 75390 USA
| | - Christopher S. Spaeth
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program The University of Texas Southwestern Medical Center Dallas, TX 75390 USA
| | - Hunkar Gizem Yesilyurt
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program The University of Texas Southwestern Medical Center Dallas, TX 75390 USA
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program The University of Texas Southwestern Medical Center Dallas, TX 75390 USA
| |
Collapse
|
15
|
Papadopulos A, Tomatis VM, Kasula R, Meunier FA. The cortical acto-Myosin network: from diffusion barrier to functional gateway in the transport of neurosecretory vesicles to the plasma membrane. Front Endocrinol (Lausanne) 2013; 4:153. [PMID: 24155741 PMCID: PMC3800816 DOI: 10.3389/fendo.2013.00153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/05/2013] [Indexed: 01/14/2023] Open
Abstract
Dysregulation of regulated exocytosis is linked to an array of pathological conditions, including neurodegenerative disorders, asthma, and diabetes. Understanding the molecular mechanisms underpinning neuroexocytosis including the processes that allow neurosecretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion, is therefore critical to the design of future therapeutic drugs that will efficiently tackle these diseases. Despite considerable efforts to determine the principles of vesicular fusion, the mechanisms controlling the approach of vesicles to the plasma membrane in order to undergo tethering, docking, priming, and fusion remain poorly understood. All these steps involve the cortical actin network, a dense mesh of actin filaments localized beneath the plasma membrane. Recent work overturned the long-held belief that the cortical actin network only plays a passive constraining role in neuroexocytosis functioning as a physical barrier that partly breaks down upon entry of Ca(2+) to allow secretory vesicles to reach the plasma membrane. A multitude of new roles for the cortical actin network in regulated exocytosis have now emerged and point to highly dynamic novel functions of key myosin molecular motors. Myosins are not only believed to help bring about dynamic changes in the actin cytoskeleton, tethering and guiding vesicles to their fusion sites, but they also regulate the size and duration of the fusion pore, thereby directly contributing to the release of neurotransmitters and hormones. Here we discuss the functions of the cortical actin network, myosins, and their effectors in controlling the processes that lead to tethering, directed transport, docking, and fusion of exocytotic vesicles in regulated exocytosis.
Collapse
Affiliation(s)
- Andreas Papadopulos
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Vanesa M. Tomatis
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Ravikiran Kasula
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
| | - Frederic A. Meunier
- Queensland Brain Institute, The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia
- *Correspondence: Frederic A. Meunier, Queensland Brain Institute, The University of Queensland, St Lucia Campus, QBI Building #79, St Lucia, QLD 4072, Australia e-mail:
| |
Collapse
|
16
|
Tumbarello DA, Kendrick-Jones J, Buss F. Myosin VI and its cargo adaptors - linking endocytosis and autophagy. J Cell Sci 2013; 126:2561-70. [PMID: 23781020 DOI: 10.1242/jcs.095554] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The coordinated trafficking and tethering of membrane cargo within cells relies on the function of distinct cytoskeletal motors that are targeted to specific subcellular compartments through interactions with protein adaptors and phospholipids. The unique actin motor myosin VI functions at distinct steps during clathrin-mediated endocytosis and the early endocytic pathway - both of which are involved in cargo trafficking and sorting - through interactions with Dab2, GIPC, Tom1 and LMTK2. This multifunctional ability of myosin VI can be attributed to its cargo-binding tail region that contains two protein-protein interaction interfaces, a ubiquitin-binding motif and a phospholipid binding domain. In addition, myosin VI has been shown to be a regulator of the autophagy pathway, because of its ability to link the endocytic and autophagic pathways through interactions with the ESCRT-0 protein Tom1 and the autophagy adaptor proteins T6BP, NDP52 and optineurin. This function has been attributed to facilitating autophagosome maturation and subsequent fusion with the lysosome. Therefore, in this Commentary, we discuss the relationship between myosin VI and the different myosin VI adaptor proteins, particularly with regards to the spatial and temporal regulation that is required for the sorting of cargo at the early endosome, and their impact on autophagy.
Collapse
Affiliation(s)
- David A Tumbarello
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
17
|
Tomatis VM, Papadopulos A, Malintan NT, Martin S, Wallis T, Gormal RS, Kendrick-Jones J, Buss F, Meunier FA. Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin. ACTA ACUST UNITED AC 2013; 200:301-20. [PMID: 23382463 PMCID: PMC3563687 DOI: 10.1083/jcb.201204092] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Before undergoing neuroexocytosis, secretory granules (SGs) are mobilized and tethered to the cortical actin network by an unknown mechanism. Using an SG pull-down assay and mass spectrometry, we found that myosin VI was recruited to SGs in a Ca(2+)-dependent manner. Interfering with myosin VI function in PC12 cells reduced the density of SGs near the plasma membrane without affecting their biogenesis. Myosin VI knockdown selectively impaired a late phase of exocytosis, consistent with a replenishment defect. This exocytic defect was selectively rescued by expression of the myosin VI small insert (SI) isoform, which efficiently tethered SGs to the cortical actin network. These myosin VI SI-specific effects were prevented by deletion of a c-Src kinase phosphorylation DYD motif, identified in silico. Myosin VI SI thus recruits SGs to the cortical actin network, potentially via c-Src phosphorylation, thereby maintaining an active pool of SGs near the plasma membrane.
Collapse
Affiliation(s)
- Vanesa M Tomatis
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics. Nat Rev Neurosci 2013; 14:233-47. [DOI: 10.1038/nrn3445] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Myosin VI in skeletal muscle: its localization in the sarcoplasmic reticulum, neuromuscular junction and muscle nuclei. Histochem Cell Biol 2012; 139:873-85. [PMID: 23275125 PMCID: PMC3656228 DOI: 10.1007/s00418-012-1070-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 01/19/2023]
Abstract
Myosin VI (MVI) is a unique unconventional motor moving backwards on actin filaments. In non-muscle cells, it is involved in cell migration, endocytosis and intracellular trafficking, actin cytoskeleton dynamics, and possibly in gene transcription. An important role for MVI in striated muscle functioning was suggested in a report showing that a point mutation (H236R) within the MVI gene was associated with cardiomyopathy (Mohiddin et al., J Med Genet 41:309–314, 2004). Here, we have addressed MVI function in striated muscle by examining its expression and distribution in rat hindlimb skeletal muscle. We found that MVI was present predominantly at the muscle fiber periphery, and it was also localized within muscle nuclei. Analysis of both the hindlimb and cardiac muscle longitudinal sections revealed ~3 μm striation pattern, corresponding to the sarcoplasmic reticulum. Moreover, MVI was detected in the sarcoplasmic reticulum fractions isolated from skeletal and cardiac muscle. The protein also localized to the postsynaptic region of the neuromuscular junction. In denervated muscle, the defined MVI distribution pattern was abolished and accompanied by significant increase in its amount in the muscle fibers. In addition, we have identified several novel potential MVI-binding partners, which seem to aid our observations that in striated muscle MVI could be involved in postsynaptic trafficking as well as in maintenance of and/or transport within the sarcoplasmic reticulum and non-sarcomeric cytoskeleton.
Collapse
|