1
|
Ju J, Li Y, Ling P, Luo J, Wei W, Yuan W, Wang C, Su J. H3K36 methyltransferase GhKMT3;1a and GhKMT3;2a promote flowering in upland cotton. BMC PLANT BIOLOGY 2024; 24:739. [PMID: 39095699 PMCID: PMC11295449 DOI: 10.1186/s12870-024-05457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The SET domain group (SDG) genes encode histone lysine methyltransferases, which regulate gene transcription by altering chromatin structure and play pivotal roles in plant flowering determination. However, few studies have investigated their role in the regulation of flowering in upland cotton. RESULTS A total of 86 SDG genes were identified through genome-wide analysis in upland cotton (Gossypium hirsutum). These genes were unevenly distributed across 25 chromosomes. Cluster analysis revealed that the 86 GhSDGs were divided into seven main branches. RNA-seq data and qRT‒PCR analysis revealed that lysine methyltransferase 3 (KMT3) genes were expressed at high levels in stamens, pistils and other floral organs. Using virus-induced gene silencing (VIGS), functional characterization of GhKMT3;1a and GhKMT3;2a revealed that, compared with those of the controls, the GhKMT3;1a- and GhKMT3;2a-silenced plants exhibited later budding and flowering and lower plant heightwere shorter. In addition, the expression of flowering-related genes (GhAP1, GhSOC1 and GhFT) significantly decreased and the expression level of GhSVP significantly increased in the GhKMT3;1a- and GhKMT3;2a-silenced plants compared with the control plants. CONCLUSION A total of 86 SDG genes were identified in upland cotton, among which GhKMT3;1a and GhKMT3;2a might regulate flowering by affecting the expression of GhAP1, GhSOC1, GhFT and GhSVP. These findings will provide genetic resources for advanced molecular breeding in the future.
Collapse
Affiliation(s)
- Jisheng Ju
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pingjie Ling
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jin Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenmin Yuan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Poza-Viejo L, Payá-Milans M, Wilkinson MD, Piñeiro M, Jarillo JA, Crevillén P. Brassica rapa CURLY LEAF is a major H3K27 methyltransferase regulating flowering time. PLANTA 2024; 260:27. [PMID: 38865018 PMCID: PMC11169032 DOI: 10.1007/s00425-024-04454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
MAIN CONCLUSION In Brassica rapa, the epigenetic modifier BraA.CLF orchestrates flowering by modulating H3K27me3 levels at the floral integrator genes FT, SOC1, and SEP3, thereby influencing their expression. CURLY LEAF (CLF) is the catalytic subunit of the plant Polycomb Repressive Complex 2 that mediates the trimethylation of histone H3 lysine 27 (H3K27me3), an epigenetic modification that leads to gene silencing. While the function of CURLY LEAF (CLF) has been extensively studied in Arabidopsis thaliana, its role in Brassica crops is barely known. In this study, we focused on the Brassica rapa homolog of CLF and found that the loss-of-function mutant braA.clf-1 exhibits an accelerated flowering together with pleiotropic phenotypic alterations compared to wild-type plants. In addition, we carried out transcriptomic and H3K27me3 genome-wide analyses to identify the genes regulated by BraA.CLF. Interestingly, we observed that several floral regulatory genes, including the B. rapa homologs of FT, SOC1 and SEP3, show reduced H3K27me3 levels and increased transcript levels compared to wild-type plants, suggesting that they are direct targets of BraA.CLF and key players in regulating flowering time in this crop. In addition, the results obtained will enhance our understanding of the epigenetic mechanisms regulating key developmental traits and will aid to increase crop yield by engineering new Brassica varieties with different flowering time requirements.
Collapse
Affiliation(s)
- Laura Poza-Viejo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Miriam Payá-Milans
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, Seville, Spain
| | - Mark D Wilkinson
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Madrid, Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
3
|
Qiao Y, Li YG, Wei TL, Liu HN, Pei MS, Zhu XJ, Zhu ZH, Guo DL. Identification of watermelon H3K4 and H3K27 genes and their expression profiles during watermelon fruit development. Mol Biol Rep 2023; 50:8259-8270. [PMID: 37572210 DOI: 10.1007/s11033-023-08727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND The ClaH3K4s and ClaH3K27s gene families are subfamilies of the SET family, each with a highly conserved SET structure domain and a PHD structural domain. Both participate in histone protein methylation, which affects the chromosome structure and gene expression, and is essential for fruit growth and development. METHODS AND RESULTS In order to demonstrate the structure and expression characteristics of ClaH3K4s and ClaH3K27s in watermelon, members of the watermelon H3K4 and H3K27 gene families were identified, and their chromosomal localization, gene structure, and protein structural domains were analyzed. The phylogeny and covariance of the gene families with other species were subsequently determined, and the expression profiles were obtained by performing RNA-Seq and qRT-PCR. The watermelon genome had five H3K4 genes with 3207-8043 bp nucleotide sequence lengths and four H3K27 genes with a 1107-5499 bp nucleotide sequence. Synteny analysis revealed the close relationship between watermelon and cucumber, with the majority of members displaying a one-to-one covariance. Approximately half of the 'Hua-Jing 13 watermelon' ClaH3K4s and ClaH3K27s genes were expressed more in the late fruit development stages, while the changes were minimal for the remaining half. H3K4-2 expression was observed to be slightly greater on day 21 compared to other periods. Moreover, ClaH3K27-1 and ClaH3K27-2 were hardly expressed throughout the developing period, and ClaH3K27-4 exhibited the highest expression. CONCLUSION These results serve as a basis for further functional characterization of the H3K4 and H3K27 genes in the fruit development of watermelon.
Collapse
Affiliation(s)
- Yang Qiao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Yan-Ge Li
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, 471100, Henan Province, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China
| | - Xue-Jie Zhu
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, 471100, Henan Province, China
| | - Zhong-Hou Zhu
- Luoyang Nongfa Agricultural Biotechnology Co. Ltd, Luoyang, 471100, Henan Province, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
4
|
Seni S, Singh RK, Prasad M. Dynamics of epigenetic control in plants via SET domain containing proteins: Structural and functional insights. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194966. [PMID: 37532097 DOI: 10.1016/j.bbagrm.2023.194966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Plants control expression of their genes in a way that involves manipulating the chromatin structural dynamics in order to adapt to environmental changes and carry out developmental processes. Histone modifications like histone methylation are significant epigenetic marks which profoundly and globally modify chromatin, potentially affecting the expression of several genes. Methylation of histones is catalyzed by histone lysine methyltransferases (HKMTs), that features an evolutionary conserved domain known as SET [Su(var)3-9, E(Z), Trithorax]. This methylation is directed at particular lysine (K) residues on H3 or H4 histone. Plant SET domain group (SDG) proteins are categorized into different classes that have been conserved through evolution, and each class have specificity that influences how the chromatin structure operates. The domains discovered in plant SET domain proteins have typically been linked to protein-protein interactions, suggesting that majority of the SDGs function in complexes. Additionally, SDG-mediated histone mark deposition also affects alternative splicing events. In present review, we discussed the diversity of SDGs in plants including their structural properties. Additionally, we have provided comprehensive summary of the functions of the SDG-domain containing proteins in plant developmental processes and response to environmental stimuli have also been highlighted.
Collapse
Affiliation(s)
- Sushmita Seni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India.
| |
Collapse
|
5
|
Zhang X, Qin L, Lu J, Xia Y, Tang X, Lu X, Xia S. Genome-Wide Identification of GYF-Domain Encoding Genes in Three Brassica Species and Their Expression Responding to Sclerotinia sclerotiorum in Brassica napus. Genes (Basel) 2023; 14:224. [PMID: 36672966 PMCID: PMC9858701 DOI: 10.3390/genes14010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
GYF (glycine-tyrosine-phenylalanine)-domain-containing proteins, which were reported to participate in many aspects of biological processes in yeast and animals, are highly conserved adaptor proteins existing in almost all eukaryotes. Our previous study revealed that GYF protein MUSE11/EXA1 is involved in nucleotide-binding leucine-rich repeat (NLR) receptor-mediated defense in Arabidopsis thaliana. However, the GYF-domain encoding homologous genes are still not clear in other plants. Here, we performed genome-wide identification of GYF-domain encoding genes (GYFs) from Brassica napus and its parental species, Brassica rapa and Brassica oleracea. As a result, 26 GYFs of B. napus (BnaGYFs), 11 GYFs of B. rapa (BraGYFs), and 14 GYFs of B. oleracea (BolGYFs) together with 10 A. thaliana (AtGYFs) were identified, respectively. We, then, conducted gene structure, motif, cis-acting elements, duplication, chromosome localization, and phylogenetic analysis of these genes. Gene structure analysis indicated the diversity of the exon numbers of these genes. We found that the defense and stress responsiveness element existed in 23 genes and also identified 10 motifs in these GYF proteins. Chromosome localization exhibited a similar distribution of BnaGYFs with BraGYFs or BolGYFs in their respective genomes. The phylogenetic and gene collinearity analysis showed the evolutionary conservation of GYFs among B. napus and its parental species as well as Arabidopsis. These 61 identified GYF domain proteins can be classified into seven groups according to their sequence similarity. Expression of BnaGYFs induced by Sclerotinia sclerotiorum provided five highly upregulated genes and five highly downregulated genes, which might be candidates for further research of plant-fungal interaction in B. napus.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lei Qin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Junxing Lu
- College of Life Science, Chongqing Normal University, Chongqing 400047, China
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xun Lu
- Agricultural Science Academy of Xiangxi Tujia and Miao Autonomous Prefecture, Xiangxi 416000, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Hu M, Li M, Wang J. Comprehensive Analysis of the SUV Gene Family in Allopolyploid Brassica napus and Its Diploid Ancestors. Genes (Basel) 2021; 12:genes12121848. [PMID: 34946800 PMCID: PMC8701781 DOI: 10.3390/genes12121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
SUV (the Suppressor of variegation [Su(var)] homologs and related) gene family is a subgroup of the SET gene family. According to the SRA domain and WIYLD domain distributions, it can be divided into two categories, namely SUVH (the Suppressor of variegation [Su(var)] homologs) and SUVR (the Suppressor of variegation [Su(var)] related). In this study, 139 SUV genes were identified in allopolyploid Brassica napus and its diploid ancestors, and their evolutionary relationships, protein properties, gene structures, motif distributions, transposable elements, cis-acting elements and gene expression patterns were analyzed. Our results showed that the SUV gene family of B. napus was amplified during allopolyploidization, in which the segmental duplication and TRD played critical roles. After the separation of Brassica and Arabidopsis lineages, orthologous gene analysis showed that many SUV genes were lost during the evolutionary process in B. rapa, B. oleracea and B. napus. The analysis of the gene and protein structures and expression patterns of 30 orthologous gene pairs which may have evolutionary relationships showed that most of them were conserved in gene structures and protein motifs, but only four gene pairs had the same expression patterns.
Collapse
Affiliation(s)
- Meimei Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.H.); (M.L.)
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.H.); (M.L.)
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (M.H.); (M.L.)
- Correspondence:
| |
Collapse
|
7
|
He X, Wang Q, Pan J, Liu B, Ruan Y, Huang Y. Systematic analysis of JmjC gene family and stress--response expression of KDM5 subfamily genes in Brassica napus. PeerJ 2021; 9:e11137. [PMID: 33850662 PMCID: PMC8019318 DOI: 10.7717/peerj.11137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Background Jumonji C (JmjC) proteins exert critical roles in plant development and stress response through the removal of lysine methylation from histones. Brassica napus, which originated from spontaneous hybridization by Brassica rapa and Brassica oleracea, is the most important oilseed crop after soybean. In JmjC proteins of Brassica species, the structure and function and its relationship with the parents and model plant Arabidopsis thaliana remain uncharacterized. Systematic identification and analysis for JmjC family in Brassica crops can facilitate the future functional characterization and oilseed crops improvement. Methods Basing on the conserved JmjC domain, JmjC homologs from the three Brassica species, B. rapa (AA), B. oleracea (CC) and B. napus, were identified from the Brassica database. Some methods, such as phylogenic analysis, chromosomal mapping, HMMER searching, gene structure display and Logos analysis, were used to characterize relationships of the JmjC homologs. Synonymous and nonsynonymous nucleotide substitutions were used to infer the information of gene duplication among homologs. Then, the expression levels of BnKDM5 subfamily genes were checked under abiotic stress by qRT-PCR. Results Sixty-five JmjC genes were identified from B. napus genome, 29 from B. rapa, and 23 from B. oleracea. These genes were grouped into seven clades based on the phylogenetic analysis, and their catalytic activities of demethylation were predicted. The average retention rate of B. napus JmjC genes (B. napus JmjC gene from B. rapa (93.1%) and B. oleracea (82.6%)) exceeded whole genome level. JmjC sequences demonstrated high conservation in domain origination, chromosomal location, intron/exon number and catalytic sites. The gene duplication events were confirmed among the homologs. Many of the BrKDM5 subfamily genes showed higher expression under drought and NaCl treatments, but only a few genes were involved in high temperature stress. Conclusions This study provides the first genome-wide characterization of JmjC genes in Brassica species. The BnJmjC exhibits higher conservation during the formation process of allotetraploid than the average retention rates of the whole B. napus genome. Furthermore, expression profiles of many genes indicated that BnKDM5 subfamily genes are involved in stress response to salt, drought and high temperature.
Collapse
Affiliation(s)
- Xinghui He
- Key Laboratory of Crop Epigenetic Regulation and Development, Hunan Province, Changsha, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department, Changsha, Hunan Province, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Qianwen Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Jiao Pan
- Key Laboratory of Crop Epigenetic Regulation and Development, Hunan Province, Changsha, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department, Changsha, Hunan Province, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Boyu Liu
- Key Laboratory of Crop Epigenetic Regulation and Development, Hunan Province, Changsha, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department, Changsha, Hunan Province, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Ying Ruan
- Key Laboratory of Crop Epigenetic Regulation and Development, Hunan Province, Changsha, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department, Changsha, Hunan Province, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Yong Huang
- Key Laboratory of Crop Epigenetic Regulation and Development, Hunan Province, Changsha, China.,Key Laboratory of Plant Genetics and Molecular Biology of Education Department, Changsha, Hunan Province, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, China
| |
Collapse
|
8
|
Fu W, Huang S, Gao Y, Zhang M, Qu G, Wang N, Liu Z, Feng H. Role of BrSDG8 on bolting in Chinese cabbage (Brassica rapa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2937-2948. [PMID: 32656681 DOI: 10.1007/s00122-020-03647-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/01/2020] [Indexed: 05/28/2023]
Abstract
Mapping and resequencing of two allelic early bolting mutants ebm5-1 and ebm5-2 revealed that the BrSDG8 gene is related to bolting in Chinese cabbage (Brassica rapa ssp. pekinensis). Bolting influences the leafy head formation and seed yield of Chinese cabbage therefore being an important agronomic trait. Herein, two allelic early bolting mutants, ebm5-1 and ebm5-2, stably inherited in Chinese cabbage were obtained from wild-type 'FT' seeds by ethyl methane sulfonate mutagenesis. Both mutants flowered significantly earlier than 'FT,' and genetic analysis revealed that the early bolting of the two mutants was controlled by one recessive nuclear gene. With BSR-seq, the mutations originating lines ebm5-1 and ebm5-2 were located to the same region in chromosome A07. Using the 1741 F2 individuals with the ebm5-1 phenotype as the mapping population, this region was narrowed to 56.24 kb between markers InDel18 and InDel45. A single-nucleotide polymorphism (SNP) was aligned to the BraA07g040740.3C (BrSDG8) region by whole-genome resequencing of ebm5-1 mutant and 'FT.' BrSDG8 is a homolog of Arabidopsis thaliana SDG8 encoding a histone methyltransferase affecting H3K4 trimethylation in FLOWERING LOCUS C chromatin. Comparative sequencing established that the SNP occurred on BrSDG8 17th exon in ebm5-1. Genotype analysis showed full co-segregation of the early bolting phenotype with this SNP. Cloning of allelic mutant ebm5-2 indicated that it harbors a deletion mutation on the 12th exon of BrSDG8. Quantitative real-time PCR analysis indicated that BrSDG8 expression level was observably lower in mutant ebm5-1 than in 'FT.' Overall, the present results provide strong evidence that BrSDG8 mutation leads to early bolting in Chinese cabbage, thereby providing a basis to understand the molecular mechanisms underlying this phenotype.
Collapse
Affiliation(s)
- Wei Fu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Shengnan Huang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Yue Gao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Meidi Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Gaoyang Qu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Nan Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China
| | - Zhiyong Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China.
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, People's Republic of China.
| |
Collapse
|
9
|
Batra R, Gautam T, Pal S, Chaturvedi D, Rakhi, Jan I, Balyan HS, Gupta PK. Identification and characterization of SET domain family genes in bread wheat (Triticum aestivum L.). Sci Rep 2020; 10:14624. [PMID: 32884064 PMCID: PMC7471321 DOI: 10.1038/s41598-020-71526-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/18/2020] [Indexed: 01/21/2023] Open
Abstract
SET domain genes (SDGs) that are involved in histone methylation have been examined in many plant species, but have never been examined in bread wheat; the histone methylation caused due to SDGs is associated with regulation of gene expression at the transcription level. We identified a total of 166 bread wheat TaSDGs, which carry some interesting features including the occurrence of tandem/interspersed duplications, SSRs (simple sequence repeats), transposable elements, lncRNAs and targets for miRNAs along their lengths and transcription factor binding sites (TFBS) in the promoter regions. Only 130 TaSDGs encoded proteins with complete SET domain, the remaining 36 proteins had truncated SET domain. The TaSDG encoded proteins were classified into six classes (I–V and VII). In silico expression analysis indicated relatively higher expression (FPKM > 20) of eight of the 130 TaSDGs in different tissues, and downregulation of 30 TaSDGs under heat and drought at the seedling stage. qRT-PCR was also conducted to validate the expression of seven genes at the seedling stage in pairs of contrasting genotypes in response to abiotic stresses (water and heat) and biotic stress (leaf rust). These genes were generally downregulated in response to the three stresses examined.
Collapse
Affiliation(s)
- Ritu Batra
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Sunita Pal
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Deepti Chaturvedi
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Rakhi
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, CCS University, Meerut, Uttar Pradesh, 250004, India.
| |
Collapse
|
10
|
Genome-Wide Identification of Epigenetic Regulators in Quercus suber L. Int J Mol Sci 2020; 21:ijms21113783. [PMID: 32471127 PMCID: PMC7313042 DOI: 10.3390/ijms21113783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Modifications of DNA and histones, including methylation and acetylation, are critical for the epigenetic regulation of gene expression during plant development, particularly during environmental adaptation processes. However, information on the enzymes catalyzing all these modifications in trees, such as Quercus suber L., is still not available. In this study, eight DNA methyltransferases (DNA Mtases) and three DNA demethylases (DDMEs) were identified in Q. suber. Histone modifiers involved in methylation (35), demethylation (26), acetylation (8), and deacetylation (22) were also identified in Q. suber. In silico analysis showed that some Q. suber DNA Mtases, DDMEs and histone modifiers have the typical domains found in the plant model Arabidopsis, which might suggest a conserved functional role. Additional phylogenetic analyses of the DNA and histone modifier proteins were performed using several plant species homologs, enabling the classification of the Q. suber proteins. A link between the expression levels of each gene in different Q. suber tissues (buds, flowers, acorns, embryos, cork, and roots) with the functions already known for their closest homologs in other species was also established. Therefore, the data generated here will be important for future studies exploring the role of epigenetic regulators in this economically important species.
Collapse
|
11
|
Mu G, Chen F. Oncogenic Roles Of A Histone Methyltransferase SETDB2 In AML1-ETO Positive AML. Cancer Manag Res 2020; 12:783-792. [PMID: 32099474 PMCID: PMC7007814 DOI: 10.2147/cmar.s227036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction AML1-ETO produced by t(8;21) abnomality has multiple effects on the leukemogenesis of acute myeloid leukemia (AML). SET domain, bifurcated 2 (SETDB2) can mediate gene silencing by trimethylation of the ninth lysine residue of histone H3 protein (H3K9) of the promoter and has been confirmed as an oncogene in many cancers. The role of SETDB2 in AML1-ETO positive AML is not clear. Methods Quantitative reverse transcription PCR was performed to measure SETDB2 expression in bone marrow from AML patients and healthy people. Kaplan-Meier analysis was performed to investigate the effect of SETDB2 on prognosis of AML patients. Dual luciferase reporter gene assay, chromatin immunoprecipitation were performed to investigate the regulatory mechanism of AML1-ETO on SETDB2. CCK-8 and colony formation assay were performed to measure the effect of SETDB2 on leukemic cells. Results SETDB2 is highly expressed in AML1-ETO positive AML. The overall survival, event-free and relapse-free survival rate of patients with high SETDB2 expression was lower than those of patients with low SETDB2 expression. SETDB2 is epigenetically upregulated by AML1-ETO fusion protein. Downregulation of SETDB2 expression significantly inhibits the proliferation and clonality of leukemic cells and promotes the sensitivity of leukemic cells to an epigenetic inhibitor JQ1. Conclusion AML1-ETO/SETDB2 is a novel epigenetic pathway of leukemogenesis and SETDB2 is a potential therapeutic target of t(8;21) AML.
Collapse
Affiliation(s)
- Guangfu Mu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Fangping Chen
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
12
|
Chen DH, Qiu HL, Huang Y, Zhang L, Si JP. Genome-wide identification and expression profiling of SET DOMAIN GROUP family in Dendrobium catenatum. BMC PLANT BIOLOGY 2020; 20:40. [PMID: 31992218 PMCID: PMC6986063 DOI: 10.1186/s12870-020-2244-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Dendrobium catenatum, as a precious Chinese herbal medicine, is an epiphytic orchid plant, which grows on the trunks and cliffs and often faces up to diverse environmental stresses. SET DOMAIN GROUP (SDG) proteins act as histone lysine methyltransferases, which are involved in pleiotropic developmental events and stress responses through modifying chromatin structure and regulating gene transcription, but their roles in D. catenatum are unknown. RESULTS In this study, we identified 44 SDG proteins from D. catenatum genome. Subsequently, comprehensive analyses related to gene structure, protein domain organization, and phylogenetic relationship were performed to evaluate these D. catenatum SDG (DcSDG) proteins, along with the well-investigated homologs from the model plants Arabidopsis thaliana and Oryza sativa as well as the newly characterized 42 SDG proteins from a closely related orchid plant Phalaenopsis equestris. We showed DcSDG proteins can be grouped into eight distinct classes (I~VII and M), mostly consistent with the previous description. Based on the catalytic substrates of the reported SDG members mainly in Arabidopsis, Class I (E(z)-Like) is predicted to account for the deposition of H3K27me2/3, Class II (Ash-like) for H3K36me, Class III (Trx/ATX-like) for H3K4me2/3, Class M (ATXR3/7) for H3K4me, Class IV (Su (var)-like) for H3K27me1, Class V (Suv-like) for H3K9me, as well as class VI (S-ET) and class VII (RBCMT) for methylation of both histone and non-histone proteins. RNA-seq derived expression profiling showed that DcSDG proteins usually displayed wide but distinguished expressions in different tissues and organs. Finally, environmental stresses examination showed the expressions of DcASHR3, DcSUVR3, DcATXR4, DcATXR5b, and DcSDG49 are closely associated with drought-recovery treatment, the expression of DcSUVH5a, DcATXR5a and DcSUVR14a are significantly influenced by low temperature, and even 61% DcSDG genes are in response to heat shock. CONCLUSIONS This study systematically identifies and classifies SDG genes in orchid plant D. catenatum, indicates their functional divergence during the evolution, and discovers their broad roles in the developmental programs and stress responses. These results provide constructive clues for further functional investigation and epigenetic mechanism dissection of SET-containing proteins in orchids.
Collapse
Affiliation(s)
- Dong-Hong Chen
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| | - Han-Lin Qiu
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Yong Huang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jin-Ping Si
- State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium catenatum (D. officinale), Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
13
|
Payá-Milans M, Poza-Viejo L, Martín-Uriz PS, Lara-Astiaso D, Wilkinson MD, Crevillén P. Genome-wide analysis of the H3K27me3 epigenome and transcriptome in Brassica rapa. Gigascience 2019; 8:giz147. [PMID: 31800038 PMCID: PMC6892454 DOI: 10.1093/gigascience/giz147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/24/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Genome-wide maps of histone modifications have been obtained for several plant species. However, most studies focus on model systems and do not enforce FAIR data management principles. Here we study the H3K27me3 epigenome and associated transcriptome of Brassica rapa, an important vegetable cultivated worldwide. FINDINGS We performed H3K27me3 chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis by 3'-end RNA sequencing from B. rapa leaves and inflorescences. To analyze these data we developed a Reproducible Epigenomic Analysis pipeline using Galaxy and Jupyter, packaged into Docker images to facilitate transparency and reuse. We found that H3K27me3 covers roughly one-third of all B. rapa protein-coding genes and its presence correlates with low transcript levels. The comparative analysis between leaves and inflorescences suggested that the expression of various floral regulatory genes during development depends on H3K27me3. To demonstrate the importance of H3K27me3 for B. rapa development, we characterized a mutant line deficient in the H3K27 methyltransferase activity. We found that braA.clf mutant plants presented pleiotropic alterations, e.g., curly leaves due to increased expression and reduced H3K27me3 levels at AGAMOUS-like loci. CONCLUSIONS We characterized the epigenetic mark H3K27me3 at genome-wide levels and provide genetic evidence for its relevance in B. rapa development. Our work reveals the epigenomic landscape of H3K27me3 in B. rapa and provides novel genomics datasets and bioinformatics analytical resources. We anticipate that this work will lead the way to further epigenomic studies in the complex genome of Brassica crops.
Collapse
Affiliation(s)
- Miriam Payá-Milans
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Laura Poza-Viejo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Patxi San Martín-Uriz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - David Lara-Astiaso
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Mark D Wilkinson
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, 28223, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
14
|
Identification, Evolution, and Expression Profiling of Histone Lysine Methylation Moderators in Brassica rapa. PLANTS 2019; 8:plants8120526. [PMID: 31756989 PMCID: PMC6963287 DOI: 10.3390/plants8120526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
Abstract
Histone modifications, such as methylation and demethylation, are vital for regulating chromatin structure, thus affecting its expression patterns. The objective of this study is to understand the phylogenetic relationships, genomic organization, diversification of motif modules, gene duplications, co-regulatory network analysis, and expression dynamics of histone lysine methyltransferases and histone demethylase in Brassica rapa. We identified 60 SET (HKMTases), 53 JmjC, and 4 LSD (HDMases) genes in B. rapa. The domain composition analysis subcategorized them into seven and nine subgroups, respectively. Duplication analysis for paralogous pairs of SET and JmjC (eight and nine pairs, respectively) exhibited variation. Interestingly, three pairs of SET exhibited Ka/Ks > 1.00 values, signifying positive selection, whereas the remaining underwent purifying selection with values less than 1.00. Furthermore, RT-PCR validation analysis and RNA-sequence data acquired on six different tissues (i.e., leaf, stem, callus, silique, flower, and root) revealed dynamic expression patterns. This comprehensive study on the abundance, classification, co-regulatory network analysis, gene duplication, and responses to heat and cold stress of SET and JmjC provides insights into the structure and diversification of these family members in B. rapa. This study will be helpful to reveal functions of these putative SET and JmjC genes in B. rapa.
Collapse
|
15
|
The transcription factor OsSUF4 interacts with SDG725 in promoting H3K36me3 establishment. Nat Commun 2019; 10:2999. [PMID: 31278262 PMCID: PMC6611904 DOI: 10.1038/s41467-019-10850-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
The different genome-wide distributions of tri-methylation at H3K36 (H3K36me3) in various species suggest diverse mechanisms for H3K36me3 establishment during evolution. Here, we show that the transcription factor OsSUF4 recognizes a specific 7-bp DNA element, broadly distributes throughout the rice genome, and recruits the H3K36 methyltransferase SDG725 to target a set of genes including the key florigen genes RFT1 and Hd3a to promote flowering in rice. Biochemical and structural analyses indicate that several positive residues within the zinc finger domain are vital for OsSUF4 function in planta. Our results reveal a regulatory mechanism contributing to H3K36me3 distribution in plants. The distribution of H3K36me3 varies between species. Here Liu et al. show that the OsSUF4 transcription factor binds its target motif via a zinc finger domain to promote H3K36 methyltransferase targeting close to the transcription start site of genes including the flowering regulators RFT1 and Hd3a.
Collapse
|
16
|
Jiang L, Li D, Jin L, Ruan Y, Shen WH, Liu C. Histone lysine methyltransferases BnaSDG8.A and BnaSDG8.C are involved in the floral transition in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:672-685. [PMID: 29797624 DOI: 10.1111/tpj.13978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 05/22/2023]
Abstract
Although increasing experimental evidence demonstrates that histone methylations play important roles in Arabidopsis plant growth and development, little information is available regarding Brassica napus. In this study, we characterized two genes encoding homologues of the Arabidopsis histone 3 lysine 36 (H3K36) methyltransferase SDG8, namely, BnaSDG8.A and BnaSDG8.C. Although no duplication of SDG8 homologous genes had been previously reported to occur during the evolution of any sequenced species, a domain-duplication was uncovered in BnaSDG8.C. This duplication led to the identification of a previously unknown NNH domain in the SDG8 homologues, providing a useful reference for future studies and revealing the finer mechanism of SDG8 function. One NNH domain is present in BnaSDG8.A, while two adjacent NNH domains are present in BnaSDG8.C. Reverse transcriptase-quantitative polymerase chain reaction analysis revealed similar patterns but with varied levels of expression of BnaSDG8.A/C in different plant organs/tissues. To directly investigate their function, BnaSDG8.A/C cDNA was ectopically expressed to complement the Arabidopsis mutant. We observed that the expression of either BnaSDG8.A or BnaSDG8.C could rescue the Arabidopsis sdg8 mutant to the wild-type phenotype. Using RNAi and CRISPR/Cas9-mediated gene editing, we obtained BnaSDG8.A/C knockdown and knockout mutants with the early flowering phenotype as compared with the control. Further analysis of two types of the mutants revealed that BnaSDG8.A/C are required for H3K36 m2/3 deposition and prevent the floral transition of B. napus by directly enhancing the H3K36 m2/3 levels at the BnaFLC chromatin loci. This observation on the floral transition by epigenetic modification in B. napus provides useful information for breeding early-flowering varieties.
Collapse
Affiliation(s)
- Ling Jiang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Donghao Li
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lu Jin
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Ying Ruan
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cedex, 67084, France
| | - Chunlin Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
17
|
Huang Y, Chen DH, Liu BY, Shen WH, Ruan Y. Conservation and diversification of polycomb repressive complex 2 (PRC2) proteins in the green lineage. Brief Funct Genomics 2017; 16:106-119. [PMID: 27032420 DOI: 10.1093/bfgp/elw007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The polycomb group (PcG) proteins are key epigenetic regulators of gene expression in animals and plants. They act in multiprotein complexes, of which the best characterized is the polycomb repressive complex 2 (PRC2), which catalyses the trimethylation of histone H3 at lysine 27 (H3K27me3) at chromatin targets. In Arabidopsis thaliana, PRC2 proteins are involved in the regulation of diverse developmental processes, including cell fate determination, vegetative growth and development, flowering time control and embryogenesis. Here, we systematically analysed the evolutionary conservation and diversification of PRC2 components in lower and higher plants. We searched for and identified PRC2 homologues from the sequenced genomes of several green lineage species, from the unicellular green alga Ostreococcus lucimarinus to more complicated angiosperms. We found that some PRC2 core components, e.g. E(z), ESC/FIE and MSI/p55, are ancient and have multiplied coincidently with multicellular evolution. For one component, some members are newly formed, especially in the Cruciferae. During evolution, higher plants underwent copy number multiplication of various PRC2 components, which occurred independently for each component, without any obvious co-amplification of PRC2 members. Among the amplified members, usually one was well-conserved and the others were more diversified. Gene amplification occurred at different times for different PcG members during green lineage evolution. Certain PRC2 core components or members of them were highly conserved. Our study provides an insight into the evolutionary conservation and diversification of PcG proteins and may guide future functional characterization of these important epigenetic regulators in plants other than Arabidopsis.
Collapse
Affiliation(s)
- Yong Huang
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | - Dong-Hong Chen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China
| | - Bo-Yu Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| | - Wen-Hui Shen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Institut de Biologie Moléculaire Des Plantes Du CNRS, Université de Strasbourg, 12 Rue Du Général Zimmer, Strasbourg Cedex, France
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China
| |
Collapse
|
18
|
Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S. Multilevel Regulation of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1564. [PMID: 29033955 PMCID: PMC5627039 DOI: 10.3389/fpls.2017.01564] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/28/2017] [Indexed: 05/18/2023]
Abstract
The sessile lifestyle of plants requires them to cope with stresses in situ. Plants overcome abiotic stresses by altering structure/morphology, and in some extreme conditions, by compressing the life cycle to survive the stresses in the form of seeds. Genetic and molecular studies have uncovered complex regulatory processes that coordinate stress adaptation and tolerance in plants, which are integrated at various levels. Investigating natural variation in stress responses has provided important insights into the evolutionary processes that shape the integrated regulation of adaptation and tolerance. This review primarily focuses on the current understanding of how transcriptional, post-transcriptional, post-translational, and epigenetic processes along with genetic variation orchestrate stress responses in plants. We also discuss the current and future development of computational tools to identify biologically meaningful factors from high dimensional, genome-scale data and construct the signaling networks consisting of these components.
Collapse
Affiliation(s)
- David C. Haak
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, AthensOH, United States
| | - Rumen Ivanov
- Institut für Botanik, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Giorgio Perrella
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, United Kingdom
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| |
Collapse
|
19
|
Pinon V, Yao X, Dong A, Shen WH. SDG2-Mediated H3K4me3 Is Crucial for Chromatin Condensation and Mitotic Division during Male Gametogenesis in Arabidopsis. PLANT PHYSIOLOGY 2017; 174:1205-1215. [PMID: 28455402 PMCID: PMC5462044 DOI: 10.1104/pp.17.00306] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/25/2017] [Indexed: 05/02/2023]
Abstract
Epigenetic reprogramming occurring during reproduction is crucial for both animal and plant development. Histone H3 Lys 4 trimethylation (H3K4me3) is an evolutionarily conserved epigenetic mark of transcriptional active euchromatin. While much has been learned in somatic cells, H3K4me3 deposition and function in gametophyte is poorly studied. Here, we demonstrate that SET DOMAIN GROUP2 (SDG2)-mediated H3K4me3 deposition participates in epigenetic reprogramming during Arabidopsis male gametogenesis. We show that loss of SDG2 barely affects meiosis and cell fate establishment of haploid cells. However, we found that SDG2 is critical for postmeiotic microspore development. Mitotic cell division progression is partly impaired in the loss-of-function sdg2-1 mutant, particularly at the second mitosis setting up the two sperm cells. We demonstrate that SDG2 is involved in promoting chromatin decondensation in the pollen vegetative nucleus, likely through its role in H3K4me3 deposition, which prevents ectopic heterochromatic H3K9me2 speckle formation. Moreover, we found that derepression of the LTR retrotransposon ATLANTYS1 is compromised in the vegetative cell of the sdg2-1 mutant pollen. Consistent with chromatin condensation and compromised transcription activity, pollen germination and pollen tube elongation, representing the key function of the vegetative cell in transporting sperm cells during fertilization, are inhibited in the sdg2-1 mutant. Taken together, we conclude that SDG2-mediated H3K4me3 is an essential epigenetic mark of the gametophyte chromatin landscape, playing critical roles in gamete mitotic cell cycle progression and pollen vegetative cell function during male gametogenesis and beyond.
Collapse
Affiliation(s)
- Violaine Pinon
- Université de Strasbourg, Centre National de la Recherche Scientifique UPR2357, F-67000 Strasbourg, France (V.P., W.-H.S.)
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of Centre National de la Recherche Scientifique-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (X.Y., A.D., W.-H.S.); and
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.Y.)
| | - Xiaozhen Yao
- Université de Strasbourg, Centre National de la Recherche Scientifique UPR2357, F-67000 Strasbourg, France (V.P., W.-H.S.)
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of Centre National de la Recherche Scientifique-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (X.Y., A.D., W.-H.S.); and
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.Y.)
| | - Aiwu Dong
- Université de Strasbourg, Centre National de la Recherche Scientifique UPR2357, F-67000 Strasbourg, France (V.P., W.-H.S.)
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of Centre National de la Recherche Scientifique-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (X.Y., A.D., W.-H.S.); and
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.Y.)
| | - Wen-Hui Shen
- Université de Strasbourg, Centre National de la Recherche Scientifique UPR2357, F-67000 Strasbourg, France (V.P., W.-H.S.);
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of Centre National de la Recherche Scientifique-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China (X.Y., A.D., W.-H.S.); and
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China (X.Y.)
| |
Collapse
|
20
|
Berr A, Zhang X, Shen WH. [Reciprocity between active transcription and histone methylation]. Biol Aujourdhui 2017; 210:269-282. [PMID: 28327284 DOI: 10.1051/jbio/2017004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/08/2023]
Abstract
In the nucleus of eukaryotic cells, the chromatin states dictated by the different combinations of histone post-translational modifications, such as the methylation of lysine residues, are an integral part of the multitude of epigenomes involved in the fine tuning of all genome functions, and in particular transcription. Over the last decade, an increasing number of factors have been identified as regulators involved in the establishment, reading or erasure of histone methylations. Their characterization in model organisms such as Arabidopsis has thus unraveled their fundamental roles in the control and regulation of essential developmental processes such as the floral transition, cell differentiation, gametogenesis, and/or the response/adaptation of plants to environmental stresses. In this review, we will focus on the methylation of histones functioning as a mark of activate transcription and we will try to highlight, based on recent findings, the more or less direct links between this mark and gene expression. Thus, we will discuss the different mechanisms allowing the dynamics and the integration of the chromatin states resulting from the different histone methylations in connection with the transcriptional machinery of the RNA polymerase II.
Collapse
|
21
|
Identification of SET Domain-Containing Proteins in Gossypium raimondii and Their Response to High Temperature Stress. Sci Rep 2016; 6:32729. [PMID: 27601353 PMCID: PMC5013442 DOI: 10.1038/srep32729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/15/2016] [Indexed: 11/26/2022] Open
Abstract
SET (Su(var), E(z), and Trithorax) domain-containing proteins play an important role in plant development and stress responses through modifying lysine methylation status of histone. Gossypium raimondii may be the putative contributor of the D-subgenome of economical crops allotetraploid G. hirsutum and G. barbadense and therefore can potentially provide resistance genes. In this study, we identified 52 SET domain-containing genes from G. raimondii genome. Based on conserved sequences, these genes are grouped into seven classes and are predicted to catalyze the methylation of different substrates: GrKMT1 for H3K9me, GrKMT2 and GrKMT7 for H3K4me, GrKMT3 for H3K36me, GrKMT6 for H3K27me, but GrRBCMT and GrS-ET for nonhistones substrate-specific methylation. Seven pairs of GrKMT and GrRBCMT homologous genes are found to be duplicated, possibly one originating from tandem duplication and five from a large scale or whole genome duplication event. The gene structure, domain organization and expression patterns analyses suggest that these genes’ functions are diversified. A few of GrKMTs and GrRBCMTs, especially for GrKMT1A;1a, GrKMT3;3 and GrKMT6B;1 were affected by high temperature (HT) stress, demonstrating dramatically changed expression patterns. The characterization of SET domain-containing genes in G. raimondii provides useful clues for further revealing epigenetic regulation under HT and function diversification during evolution.
Collapse
|
22
|
Yadav CB, Muthamilarasan M, Dangi A, Shweta S, Prasad M. Comprehensive analysis of SET domain gene family in foxtail millet identifies the putative role of SiSET14 in abiotic stress tolerance. Sci Rep 2016; 6:32621. [PMID: 27585852 PMCID: PMC5009302 DOI: 10.1038/srep32621] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022] Open
Abstract
SET domain-containing genes catalyse histone lysine methylation, which alters chromatin structure and regulates the transcription of genes that are involved in various developmental and physiological processes. The present study identified 53 SET domain-containing genes in C4 panicoid model, foxtail millet (Setaria italica) and the genes were physically mapped onto nine chromosomes. Phylogenetic and structural analyses classified SiSET proteins into five classes (I–V). RNA-seq derived expression profiling showed that SiSET genes were differentially expressed in four tissues namely, leaf, root, stem and spica. Expression analyses using qRT-PCR was performed for 21 SiSET genes under different abiotic stress and hormonal treatments, which showed differential expression of these genes during late phase of stress and hormonal treatments. Significant upregulation of SiSET gene was observed during cold stress, which has been confirmed by over-expressing a candidate gene, SiSET14 in yeast. Interestingly, hypermethylation was observed in gene body of highly differentially expressed genes, whereas methylation event was completely absent in their transcription start sites. This suggested the occurrence of demethylation events during various abiotic stresses, which enhance the gene expression. Altogether, the present study would serve as a base for further functional characterization of SiSET genes towards understanding their molecular roles in conferring stress tolerance.
Collapse
Affiliation(s)
- Chandra Bhan Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | | | - Anand Dangi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Shweta Shweta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| |
Collapse
|
23
|
Asensi-Fabado MA, Amtmann A, Perrella G. Plant responses to abiotic stress: The chromatin context of transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:106-122. [PMID: 27487458 DOI: 10.1016/j.bbagrm.2016.07.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/09/2016] [Accepted: 07/26/2016] [Indexed: 12/29/2022]
Abstract
The ability of plants to cope with abiotic environmental stresses such as drought, salinity, heat, cold or flooding relies on flexible mechanisms for re-programming gene expression. Over recent years it has become apparent that transcriptional regulation needs to be understood within its structural context. Chromatin, the assembly of DNA with histone proteins, generates a local higher-order structure that impacts on the accessibility and effectiveness of the transcriptional machinery, as well as providing a hub for multiple protein interactions. Several studies have shown that chromatin features such as histone variants and post-translational histone modifications are altered by environmental stress, and they could therefore be primary stress targets that initiate transcriptional stress responses. Alternatively, they could act downstream of stress-induced transcription factors as an integral part of transcriptional activity. A few experimental studies have addressed this 'chicken-and-egg' problem in plants and other systems, but to date the causal relationship between dynamic chromatin changes and transcriptional responses under stress is still unclear. In this review we have collated the existing information on concurrent epigenetic and transcriptional responses of plants to abiotic stress, and we have assessed the evidence using a simple theoretical framework of causality scenarios. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Anna Amtmann
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow, G128QQ, UK
| | - Giorgio Perrella
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow, G128QQ, UK.
| |
Collapse
|
24
|
Gu T, Han Y, Huang R, McAvoy RJ, Li Y. Identification and characterization of histone lysine methylation modifiers in Fragaria vesca. Sci Rep 2016; 6:23581. [PMID: 27049067 PMCID: PMC4822149 DOI: 10.1038/srep23581] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/09/2016] [Indexed: 12/31/2022] Open
Abstract
The diploid woodland strawberry (Fragaria vesca) is an important model for fruit crops because of several unique characteristics including the small genome size, an ethylene-independent fruit ripening process, and fruit flesh derived from receptacle tissues rather than the ovary wall which is more typical of fruiting plants. Histone methylation is an important factor in gene regulation in higher plants but little is known about its roles in fruit development. We have identified 45 SET methyltransferase, 22 JmjC demethylase and 4 LSD demethylase genes in F. vesca. The analysis of these histone modifiers in eight plant species supports the clustering of those genes into major classes consistent with their functions. We also provide evidence that whole genome duplication and dispersed duplications via retrotransposons may have played pivotal roles in the expansion of histone modifier genes in F. vesca. Furthermore, transcriptome data demonstrated that expression of some SET genes increase as the fruit develops and peaks at the turning stage. Meanwhile, we have observed that expression of those SET genes responds to cold and heat stresses. Our results indicate that regulation of histone methylation may play a critical role in fruit development as well as responses to abiotic stresses in strawberry.
Collapse
Affiliation(s)
- Tingting Gu
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yuhui Han
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ruirui Huang
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Richard J McAvoy
- Department of Plant Science and Landscape Architecture, University of Connecticut, CT 06269, USA
| | - Yi Li
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China.,Department of Plant Science and Landscape Architecture, University of Connecticut, CT 06269, USA
| |
Collapse
|
25
|
Ma S, Martin-Laffon J, Mininno M, Gigarel O, Brugière S, Bastien O, Tardif M, Ravanel S, Alban C. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants. MOLECULAR PLANT 2016; 9:569-81. [PMID: 26785049 DOI: 10.1016/j.molp.2016.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/07/2015] [Accepted: 01/11/2016] [Indexed: 05/09/2023]
Abstract
Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity.
Collapse
Affiliation(s)
- Sheng Ma
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Jacqueline Martin-Laffon
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Morgane Mininno
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Océane Gigarel
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Sabine Brugière
- Université Grenoble Alpes, 38041 Grenoble, France; CEA, iRTSV, Biologie à Grande Echelle, 38054 Grenoble, France; INSERM, U1038, 38054 Grenoble, France
| | - Olivier Bastien
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Marianne Tardif
- Université Grenoble Alpes, 38041 Grenoble, France; CEA, iRTSV, Biologie à Grande Echelle, 38054 Grenoble, France; INSERM, U1038, 38054 Grenoble, France
| | - Stéphane Ravanel
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Claude Alban
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France.
| |
Collapse
|
26
|
Liu B, Berr A, Chang C, Liu C, Shen WH, Ruan Y. Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:581-90. [DOI: 10.1016/j.bbagrm.2016.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 12/27/2022]
|
27
|
Huang Y, Chen D, Liu C, Shen W, Ruan Y. Evolution and conservation of JmjC domain proteins in the green lineage. Mol Genet Genomics 2015; 291:33-49. [PMID: 26152513 DOI: 10.1007/s00438-015-1089-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/29/2015] [Indexed: 10/25/2022]
Abstract
Histone modification regulates plant development events by epigenetically silencing or activating gene expression, and histone methylation is regulated by histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). The JmjC domain proteins, an important KDM family, erase methyl marks (CH3-) from histones and play key roles in maintaining homeostasis of histone methylation in vivo. Here, we analyzed 169 JmjC domain proteins from whole genomes of plants ranging from green alga to higher plants together with 36 from two animals (fruit fly and human). The plant JmjC domain proteins were divided into seven groups. Group-I KDM4/JHDM3 and Group-V JMJD6 were found in all the plant species and the other groups were detected mainly in vascular or seed plants. Group-I KDM4/JHDM3 was potentially associated with demethylation of H3K9me2/3, H3K27me2/3, and H3K36me1/2/3, Group-II KDM5A with H3K4me1/2/3, Group-III KDM5B with H3K4me1/2/3 and H3K9me1/2/3, Group-V JMJD6 with H3R2, H4R3, and hydroxylation of H4, and Group-VII KDM3/JHDM2 with H3K9me1/2/3. Group-IV/Group-VI JmjC domain-only A/B proteins were involved in hydroxylation and demethylation of unknown substrate sites. The binding sites for the cofactors Fe(II) and α-ketoglutarate in the JmjC domains also were analyzed. In the α-ketoglutarate binding sites, Thr/Phe/Ser and Lys were conserved and in the Fe(II) binding sites, two His and Glu/Asp were conserved. The results show that JmjC domain proteins are a conserved family in which domain organization and cofactor binding sites have been modified in some species. Our results provide insights into KDM evolution and lay a foundation for functional characterization of KDMs.
Collapse
Affiliation(s)
- Yong Huang
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China. .,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, 410128, Changsha, China.
| | - Donghong Chen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, 410128, Changsha, China
| | - Chunlin Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, 410128, Changsha, China
| | - Wenhui Shen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China.,Institut de Biologie Moléculaire Des Plantes Du CNRS, Université de Strasbourg, 12 Rue Du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China. .,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, 410128, Changsha, China. .,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, 410128, Changsha, China.
| |
Collapse
|
28
|
Kim EJ, Ma X, Cerutti H. Gene silencing in microalgae: mechanisms and biological roles. BIORESOURCE TECHNOLOGY 2015; 184:23-32. [PMID: 25466994 DOI: 10.1016/j.biortech.2014.10.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 05/18/2023]
Abstract
Microalgae exhibit enormous diversity and can potentially contribute to the production of biofuels and high value compounds. However, for most species, our knowledge of their physiology, metabolism, and gene regulation is fairly limited. In eukaryotes, gene silencing mechanisms play important roles in both the reversible repression of genes that are required only in certain contexts and the suppression of genome invaders such at transposons. The recent sequencing of several algal genomes is providing insights into the complexity of these mechanisms in microalgae. Collectively, glaucophyte, red, and green microalgae contain the machineries involved in repressive histone H3 lysine methylation, DNA cytosine methylation, and RNA interference. However, individual species often only have subsets of these gene silencing mechanisms. Moreover, current evidence suggests that algal silencing systems function in transposon and transgene repression but their role(s) in gene regulation or other cellular processes remains virtually unexplored, hindering rational genetic engineering efforts.
Collapse
Affiliation(s)
- Eun-Jeong Kim
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Xinrong Ma
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
29
|
Kim JM, Sasaki T, Ueda M, Sako K, Seki M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:114. [PMID: 25784920 PMCID: PMC4345800 DOI: 10.3389/fpls.2015.00114] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/11/2015] [Indexed: 05/11/2023]
Abstract
Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation) in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.
Collapse
Affiliation(s)
- Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Taku Sasaki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- *Correspondence: Motoaki Seki, Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan e-mail:
| |
Collapse
|
30
|
Berr A, Shafiq S, Pinon V, Dong A, Shen WH. The trxG family histone methyltransferase SET DOMAIN GROUP 26 promotes flowering via a distinctive genetic pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:316-28. [PMID: 25409787 DOI: 10.1111/tpj.12729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/21/2014] [Accepted: 11/14/2014] [Indexed: 05/18/2023]
Abstract
Histone methylation is a major component in numerous processes such as determination of flowering time, which is fine-tuned by multiple genetic pathways that integrate both endogenous and environmental signals. Previous studies identified SET DOMAIN GROUP 26 (SDG26) as a histone methyltransferase involved in the activation of flowering, as loss of function of SDG26 caused a late-flowering phenotype in Arabidopsis thaliana. However, the SDG26 function and the underlying molecular mechanism remain largely unknown. In this study, we undertook a genetic analysis by combining the sdg26 mutant with mutants of other histone methylation enzymes, including the methyltransferase mutants Arabidopsis trithorax1 (atx1), sdg25 and curly leaf (clf), as well as the demethylase double mutant lsd1-like1 lsd1-like2 (ldl1 ldl2). We found that the early-flowering mutants sdg25, atx1 and clf interact antagonistically with the late-flowering mutant sdg26, whereas the late-flowering mutant ldl1 ldl2 interacts synergistically with sdg26. Based on microarray analysis, we observed weak overlaps in the genes that were differentially expressed between sdg26 and the other mutants. Our analyses of the chromatin of flowering genes revealed that the SDG26 protein binds at the key flowering integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1/AGAMOUS-LIKE 20 (SOC1/AGL20), and is required for histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 36 trimethylation (H3K36me3) at this locus. Together, our results indicate that SDG26 promotes flowering time through a distinctive genetic pathway, and that loss of function of SDG26 causes a decrease in H3K4me3 and H3K36me3 at its target gene SOC1, leading to repression of this gene and the late-flowering phenotype.
Collapse
Affiliation(s)
- Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg, 67084, France
| | | | | | | | | |
Collapse
|
31
|
Qian Y, Xi Y, Cheng B, Zhu S, Kan X. Identification and characterization of the SET domain gene family in maize. Mol Biol Rep 2014; 41:1341-54. [PMID: 24390243 DOI: 10.1007/s11033-013-2980-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/24/2013] [Indexed: 12/17/2022]
Abstract
Histone lysine methylation plays a pivotal role in a variety of developmental and physiological processes through modifying chromatin structure and thereby regulating eukaryotic gene transcription. The SET domain proteins represent putative candidates for lysine methyltransferases containing the evolutionarily-conserved SET domain, and important epigenetic regulators present in eukaryotes. In recent years, increasing evidence reveals that SET domain proteins are encoded by a large multigene family in plants and investigation of the SET domain gene family will serve to elucidate the epigenetic mechanism diversity in plants. Although the SET domain gene family has been thoroughly characterized in multiple plant species including two model plant systems, Arabidopsis and rice, through their sequenced genomes, analysis of the entire SET domain gene family in maize was not completed following maize (B73) genome sequencing project. Here, we performed a genome-wide structural and evolutionary analysis of maize SET domain genes from the latest version of the maize (B73) genome. A complete set of 43 SET domain genes (Zmset1-43) were identified in the maize genome using Blast search tools and categorized into seven classes (Class I-VII) based on phylogeny. Chromosomal location of these genes revealed that they are unevenly distributed on all ten chromosomes with seven segmental duplication events, suggesting that segmental duplication played a key role in expansion of the maize SET domain gene family. EST expression data mining revealed that these newly identified genes had temporal and spatial expression pattern and suggested that many maize SET domain genes play functional developmental roles in multiple tissues. Furthermore, the transcripts of the 18 genes (the Class V subfamily) were detected in the leaves by two different abiotic stress treatments using semi-quantitative RT-PCR. The data demonstrated that these genes exhibited different expression levels in stress treatments. Overall, our study will serve to better understand the complexity of the maize SET domain gene family and also be beneficial for future experimental research to further unravel the mechanisms of epigenetic regulation in plants.
Collapse
Affiliation(s)
- Yexiong Qian
- Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, China,
| | | | | | | | | |
Collapse
|
32
|
Shi J, Dong A, Shen WH. Epigenetic regulation of rice flowering and reproduction. FRONTIERS IN PLANT SCIENCE 2014; 5:803. [PMID: 25674094 PMCID: PMC4309181 DOI: 10.3389/fpls.2014.00803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/22/2014] [Indexed: 05/19/2023]
Abstract
Current understanding of the epigenetic regulator roles in plant growth and development has largely derived from studies in the dicotyledonous model plant Arabidopsis thaliana. Rice (Oryza sativa) is one of the most important food crops in the world and has more recently becoming a monocotyledonous model plant in functional genomics research. During the past few years, an increasing number of studies have reported the impact of DNA methylation, non-coding RNAs and histone modifications on transcription regulation, flowering time control, and reproduction in rice. Here, we review these studies to provide an updated complete view about chromatin modifiers characterized in rice and in particular on their roles in epigenetic regulation of flowering time, reproduction, and seed development.
Collapse
Affiliation(s)
- Jinlei Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan UniversityShanghai, China
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de StrasbourgStrasbourg, France
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan UniversityShanghai, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan UniversityShanghai, China
- CNRS, Institut de Biologie Moléculaire des Plantes, Université de StrasbourgStrasbourg, France
- *Correspondence: Wen-Hui Shen, CNRS, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg Cédex, France e-mail:
| |
Collapse
|
33
|
Zhao L, Huang Y, Hu Y, He X, Shen W, Liu C, Ruan Y. Phylogenetic Analysis of Brassica rapa MATH-Domain Proteins. Curr Genomics 2013; 14:214-23. [PMID: 24179444 PMCID: PMC3664471 DOI: 10.2174/1389202911314030007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/12/2013] [Accepted: 04/12/2013] [Indexed: 12/14/2022] Open
Abstract
The MATH (meprin and TRAF-C homology) domain is a fold of seven anti-parallel β-helices involved in protein-protein interaction. Here, we report the identification and characterization of 90 MATH-domain proteins from the Brassica rapa genome. By sequence analysis together with MATH-domain proteins from other species, the B. rapa MATH-domain proteins can be grouped into 6 classes. Class-I protein has one or several MATH domains without any other recognizable domain; Class-II protein contains a MATH domain together with a conserved BTB (Broad Complex, Tramtrack, and Bric-a-Brac ) domain; Class-III protein belongs to the MATH/Filament domain family; Class-IV protein contains a MATH domain frequently combined with some other domains; Class-V protein has a relative long sequence but contains only one MATH domain; Class-VI protein is characterized by the presence of Peptidase and UBQ (Ubiquitinylation) domains together with one MATH domain. As part of our study regarding seed development of B. rapa, six genes are screened by SSH (Suppression Subtractive Hybridization) and their expression levels are analyzed in combination with seed developmental stages, and expression patterns suggested that Bra001786, Bra03578 and Bra036572 may be seed development specific genes, while Bra001787, Bra020541 and Bra040904 may be involved in seed and flower organ development. This study provides the first characterization of the MATH domain proteins in B. rapa.
Collapse
Affiliation(s)
- Liming Zhao
- 1Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128 Hunan, China ; 2College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 Hunan, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhang L, Ma H. Complex evolutionary history and diverse domain organization of SET proteins suggest divergent regulatory interactions. THE NEW PHYTOLOGIST 2012; 195:248-63. [PMID: 22510098 DOI: 10.1111/j.1469-8137.2012.04143.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
• Plants and animals possess very different developmental processes, yet share conserved epigenetic regulatory mechanisms, such as histone modifications. One of the most important forms of histone modification is methylation on lysine residues of the tails, carried out by members of the SET protein family, which are widespread in eukaryotes. • We analyzed molecular evolution by comparative genomics and phylogenetics of the SET genes from plant and animal genomes, grouping SET genes into several subfamilies and uncovering numerous gene duplications, particularly in the Suv, Ash, Trx and E(z) subfamilies. • Domain organizations differ between different subfamilies and between plant and animal SET proteins in some subfamilies, and support the grouping of SET genes into seven main subfamilies, suggesting that SET proteins have acquired distinctive regulatory interactions during evolution. We detected evidence for independent evolution of domain organization in different lineages, including recruitment of new domains following some duplications. • More recent duplications in both vertebrates and land plants are probably the result of whole-genome or segmental duplications. The evolution of the SET gene family shows that gene duplications caused by segmental duplications and other mechanisms have probably contributed to the complexity of epigenetic regulation, providing insights into the evolution of the regulation of chromatin structure.
Collapse
Affiliation(s)
- Liangsheng Zhang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | | |
Collapse
|
35
|
Mininno M, Brugière S, Pautre V, Gilgen A, Ma S, Ferro M, Tardif M, Alban C, Ravanel S. Characterization of chloroplastic fructose 1,6-bisphosphate aldolases as lysine-methylated proteins in plants. J Biol Chem 2012; 287:21034-44. [PMID: 22547063 PMCID: PMC3375527 DOI: 10.1074/jbc.m112.359976] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/28/2012] [Indexed: 11/06/2022] Open
Abstract
In pea (Pisum sativum), the protein-lysine methyltransferase (PsLSMT) catalyzes the trimethylation of Lys-14 in the large subunit (LS) of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the enzyme catalyzing the CO(2) fixation step during photosynthesis. Homologs of PsLSMT, herein referred to as LSMT-like enzymes, are found in all plant genomes, but methylation of LS Rubisco is not universal in the plant kingdom, suggesting a species-specific protein substrate specificity of the methyltransferase. In this study, we report the biochemical characterization of the LSMT-like enzyme from Arabidopsis thaliana (AtLSMT-L), with a focus on its substrate specificity. We show that, in Arabidopsis, LS Rubisco is not naturally methylated and that the physiological substrates of AtLSMT-L are chloroplastic fructose 1,6-bisphosphate aldolase isoforms. These enzymes, which are involved in the assimilation of CO(2) through the Calvin cycle and in chloroplastic glycolysis, are trimethylated at a conserved lysyl residue located close to the C terminus. Both AtLSMT-L and PsLSMT are able to methylate aldolases with similar kinetic parameters and product specificity. Thus, the divergent substrate specificity of LSMT-like enzymes from pea and Arabidopsis concerns only Rubisco. AtLSMT-L is able to interact with unmethylated Rubisco, but the complex is catalytically unproductive. Trimethylation does not modify the kinetic properties and tetrameric organization of aldolases in vitro. The identification of aldolases as methyl proteins in Arabidopsis and other species like pea suggests a role of protein lysine methylation in carbon metabolism in chloroplasts.
Collapse
Affiliation(s)
- Morgane Mininno
- From the INRA, USC1359, F-38054 Grenoble
- CNRS, UMR5168, F-38054 Grenoble
- the Commissariat à l'Energie Atomique, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble
- the Université Joseph Fourier-Grenoble I, UMR5168, F-38041 Grenoble
| | - Sabine Brugière
- the Commissariat à l'Energie Atomique, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble
- INSERM, U1038, F-38054 Grenoble, and
- the Université Joseph Fourier-Grenoble I, U1038, F-38041 Grenoble, France
| | - Virginie Pautre
- From the INRA, USC1359, F-38054 Grenoble
- CNRS, UMR5168, F-38054 Grenoble
- the Commissariat à l'Energie Atomique, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble
- the Université Joseph Fourier-Grenoble I, UMR5168, F-38041 Grenoble
| | - Annabelle Gilgen
- From the INRA, USC1359, F-38054 Grenoble
- CNRS, UMR5168, F-38054 Grenoble
- the Commissariat à l'Energie Atomique, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble
- the Université Joseph Fourier-Grenoble I, UMR5168, F-38041 Grenoble
| | - Sheng Ma
- From the INRA, USC1359, F-38054 Grenoble
- CNRS, UMR5168, F-38054 Grenoble
- the Commissariat à l'Energie Atomique, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble
- the Université Joseph Fourier-Grenoble I, UMR5168, F-38041 Grenoble
| | - Myriam Ferro
- the Commissariat à l'Energie Atomique, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble
- INSERM, U1038, F-38054 Grenoble, and
- the Université Joseph Fourier-Grenoble I, U1038, F-38041 Grenoble, France
| | - Marianne Tardif
- the Commissariat à l'Energie Atomique, Laboratoire Biologie à Grande Echelle, F-38054 Grenoble
- INSERM, U1038, F-38054 Grenoble, and
- the Université Joseph Fourier-Grenoble I, U1038, F-38041 Grenoble, France
| | - Claude Alban
- From the INRA, USC1359, F-38054 Grenoble
- CNRS, UMR5168, F-38054 Grenoble
- the Commissariat à l'Energie Atomique, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble
- the Université Joseph Fourier-Grenoble I, UMR5168, F-38041 Grenoble
| | - Stéphane Ravanel
- From the INRA, USC1359, F-38054 Grenoble
- CNRS, UMR5168, F-38054 Grenoble
- the Commissariat à l'Energie Atomique, Laboratoire de Physiologie Cellulaire et Végétale, F-38054 Grenoble
- the Université Joseph Fourier-Grenoble I, UMR5168, F-38041 Grenoble
| |
Collapse
|