1
|
Ma X, Dai S, Qin N, Zhu C, Qin J, Li J. Genome-wide identification and expression analysis of the SAUR gene family in foxtail millet (Setaria italica L.). BMC PLANT BIOLOGY 2023; 23:31. [PMID: 36639742 PMCID: PMC9840322 DOI: 10.1186/s12870-023-04055-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Auxin performs important functions in plant growth and development processes, as well as abiotic stress. Small auxin-up RNA (SAUR) is the largest gene family of auxin-responsive factors. However, the knowledge of the SAUR gene family in foxtail millet is largely obscure. RESULTS In the current study, 72 SiSAUR genes were identified and renamed according to their chromosomal distribution in the foxtail millet genome. These SiSAUR genes were unevenly distributed on nine chromosomes and were classified into three groups through phylogenetic tree analysis. Most of the SiSAUR members from the same group showed similar gene structure and motif composition characteristics. Analysis of cis-acting elements showed that many hormone and stress response elements were identified in the promoter region of SiSAURs. Gene replication analysis revealed that many SiSAUR genes were derived from gene duplication events. We also found that the expression of 10 SiSAURs was induced by abiotic stress and exogenous hormones, which indicated that SiSAUR genes may participated in complex physiological processes. CONCLUSIONS Overall, these results will be valuable for further studies on the biological role of SAUR genes in foxtail development and response to stress conditions and may shed light on the improvement of the genetic breeding of foxtail millet.
Collapse
Affiliation(s)
- Xiaoqian Ma
- College of Agriculture, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China
| | - Shutao Dai
- Henan Academy of Agriculture Sciences, Cereal Crops Institute, Zhengzhou, 450002, Henan, People's Republic of China
| | - Na Qin
- Henan Academy of Agriculture Sciences, Cereal Crops Institute, Zhengzhou, 450002, Henan, People's Republic of China
| | - Cancan Zhu
- Henan Academy of Agriculture Sciences, Cereal Crops Institute, Zhengzhou, 450002, Henan, People's Republic of China
| | - Jiafan Qin
- Luoyang Academy of Agriculture and Forestry Sciences, Sweet Potato and Millet Institute, , Luoyang, 471023, Henan, People's Republic of China
| | - Junxia Li
- Henan Academy of Agriculture Sciences, Cereal Crops Institute, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
2
|
Jiang L, Xu X, Cai Q, Han R, Tigabu M, Jiang T, Zhao X. Variations in Growth and Photosynthetic Traits of Polyploid Poplar Hybrids and Clones in Northeast China. Genes (Basel) 2022; 13:2161. [PMID: 36421836 PMCID: PMC9690688 DOI: 10.3390/genes13112161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
To evaluate differences among 19 different ploidy hybrid poplar clones grown in northeast China, 21 traits related to growth traits and photosynthetic characteristics were detected and analyzed. Abundant phenotypic variations exist among and within populations, and these variations are the basis of forest tree genetic improvements. In this research, variance analysis showed that the traits except the net photosynthesis rate among the different ploidies and all the other traits exhibited significant differences among the ploidies or clones (p < 0.01). Estimation of phenotypic coefficients of variation, genotypic coefficients of variation, and repeatability is important for selecting superior materials. The larger the value, the greater the potential for material selection improvement. The repeatability of the different traits ranged from 0.88 to 0.99. The phenotypic and genotypic coefficients of variation of all the investigated traits ranged from 6.88% to 57.40% and from 4.85% to 42.89%, respectively. Correlation analysis showed that there were significant positive correlations between tree height, diameter, and volume. Transpiration rate, intercellular carbon dioxide concentration, and stomatal conductance were significantly positively correlated with each other but negatively correlated with instantaneous water use efficiency. Growth traits were weakly correlated with photosynthetic indexes. The rank correlation coefficient showed that most of the growth indicators reached a significant correlation level among different years (0.40-0.98), except 1-year-old tree height with 4-year-old tree height and 1-year-old ground diameter with 3-year-old tree height, which indicated the potential possibility for early selection of elite clones. Principal analysis results showed that the contribution rate of the first principal component was 46.606%, and 2-year-old tree height, 2-year-old ground diameter, 3-year-old tree height, 3-year-old ground diameter, 3-year-old diameter at breast height, 3-year-old volume, 4-year-old tree height, 4-year-old ground diameter, 4-year-old diameter at breast height, and 4-year-old volume showed higher vector values than other traits. With the method of multiple-trait comprehensive evaluation to evaluate clones, SX3.1, SY3.1, and XY4.2 were selected as elite clones, and the genetic gains of height, basal diameter, diameter at breast height, and volume of selected clones ranged from 12.85% to 64.87% in the fourth growth year. The results showed fundamental information for selecting superior poplar clones, which might provide new materials for the regeneration and improvement of forests in Northeast China.
Collapse
Affiliation(s)
- Luping Jiang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiangzhu Xu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qun Cai
- Tree Seedling Management Station, Forestry Department of Jilin Province, Changchun 130607, China
| | - Rui Han
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Center, Swedish University of Agricultural Science, P.O. Box 49, 230 52 Lomma, Sweden
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Quan M, Liu X, Du Q, Xiao L, Lu W, Fang Y, Li P, Ji L, Zhang D. Genome-wide association studies reveal the coordinated regulatory networks underlying photosynthesis and wood formation in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5372-5389. [PMID: 33733665 DOI: 10.1093/jxb/erab122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Photosynthesis and wood formation underlie the ability of trees to provide renewable resources and perform ecological functions; however, the genetic basis and regulatory pathways coordinating these two linked processes remain unclear. Here, we used a systems genetics strategy, integrating genome-wide association studies, transcriptomic analyses, and transgenic experiments, to investigate the genetic architecture of photosynthesis and wood properties among 435 unrelated individuals of Populus tomentosa, and unravel the coordinated regulatory networks resulting in two trait categories. We detected 222 significant single-nucleotide polymorphisms, annotated to 177 candidate genes, for 10 traits of photosynthesis and wood properties. Epistasis uncovered 74 epistatic interactions for phenotypes. Strikingly, we deciphered the coordinated regulation patterns of pleiotropic genes underlying phenotypic variations for two trait categories. Furthermore, expression quantitative trait nucleotide mapping and coexpression analysis were integrated to unravel the potential transcriptional regulatory networks of candidate genes coordinating photosynthesis and wood properties. Finally, heterologous expression of two pleiotropic genes, PtoMYB62 and PtoMYB80, in Arabidopsis thaliana demonstrated that they control regulatory networks balancing photosynthesis and stem secondary cell wall components, respectively. Our study provides insights into the regulatory mechanisms coordinating photosynthesis and wood formation in poplar, and should facilitate genetic breeding in trees via molecular design.
Collapse
Affiliation(s)
- Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Xin Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Liang Xiao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Wenjie Lu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Yuanyuan Fang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Peng Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Li Ji
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
4
|
Alzate-Marin AL, Rivas PMS, Galaschi-Teixeira JS, Bonifácio-Anacleto F, Silva CC, Schuster I, Nazareno AG, Giuliatti S, da Rocha Filho LC, Garófalo CA, Martinez CA. Warming and elevated CO 2 induces changes in the reproductive dynamics of a tropical plant species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144899. [PMID: 33736351 DOI: 10.1016/j.scitotenv.2020.144899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Tropical plant species are vulnerable to climate change and global warming. Since flowering is a critical factor for plant reproduction and seed-set, warming and elevated atmospheric carbon dioxide concentrations (eCO2) are crucial climate change factors that can affect plant reproductive dynamics and flowering related events in the tropics. Using a combined free-air CO2 enrichment and a free-air temperature-controlled enhancement system, we investigate how warming (+2 °C above ambient, eT) and elevated [CO2] (~600 ppm, eCO2) affect the phenological pattern, plant-insect interactions, and outcrossing rates in the tropical legume forage species Stylosanthes capitata Vogel (Fabaceae). In comparison to the control, a significantly greater number of flowers (NF) per plot (+62%) were observed in eT. Furthermore, in warmed plots flowers began opening approximately 1 h earlier (~09:05), with a canopy temperature of ~23 °C, than the control (~09:59) and eCO2 (~09:55) treatments. Flower closure occurred about 3 h later in eT (~11:57) and control (~13:13), with a canopy temperature of ~27 °C. These changes in flower phenology increased the availability of floral resources and attractiveness for pollinators such as Apis mellifera L. and visitors such as Paratrigona lineata L., with significant interactions between eT treatments and insect visitation per hour/day, especially between 09:00-10:40. In comparison to the control, the additive effects of combined eCO2 + eT enhanced the NF by 137%, while the number of A. mellifera floral visits per plot/week increased by 83% during the period of greatest flower production. Although we found no significant effect of treatments on mating system parameters, the overall mean multilocus outcrossing rate (tm = 0.53 ± 0.03) did confirm that S. capitata has a mixed mating system. The effects of elevated [CO2] and warming on plant-pollinator relationships observed here may have important implications for seed production of tropical forage species in future climate scenarios.
Collapse
Affiliation(s)
- Ana Lilia Alzate-Marin
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Department of Genetics, Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | - Priscila Marlys Sá Rivas
- Department of Genetics, Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Juliana S Galaschi-Teixeira
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature, University of São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Fernando Bonifácio-Anacleto
- Department of Genetics, Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Carolina Costa Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Ivan Schuster
- Longping High-Tech, SP-330, km 296, 14140-000 Cravinhos, SP, Brazil
| | - Alison Gonçalves Nazareno
- The Biosciences Institute (IB), University of São Paulo, Rua do Matão, Tv. 14 - Butantã, 05508-090 São Paulo, SP, Brazil; Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos, 6627 - Pampulha/Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; Department of Genetics, Graduate Program in Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Léo Correia da Rocha Filho
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature, University of São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Carlos A Garófalo
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature, University of São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil
| | - Carlos A Martinez
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature, University of São Paulo, Av. Bandeirantes 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Veldkornet D, Rajkaran A, Paul S, Naidoo G. Oil induces chlorophyll deficient propagules in mangroves. MARINE POLLUTION BULLETIN 2020; 150:110667. [PMID: 31689609 DOI: 10.1016/j.marpolbul.2019.110667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
In Australia, some trees of the mangrove, Avicennia marina, growing in a chronic oil polluted site, produce chlorophyll deficient (albino) propagules. We tested the hypothesis that albinism was due to an oil-induced mutant allele that controls photosynthesis. We determined whether there are genetic differences between normal and chlorophyll deficient propagules. Four gene regions (nuclear 18S-26S cistron; chloroplast - trnH-psbA, rsp16 and matK) were sequenced and analysed for normal and albino propagules. Mutations occurred in both nuclear (ITS) and coding chloroplast (matK) genes of albino propagules. There were 10 mutational differences between normal and albino propagules in the matK samples. Analysis of molecular variation (AMOVA) of the matK dataset indicated highly significant genetic differentiation between normal and albino propagules. Our study suggests for the first time that PAHs from a chronic oil polluted site resulted in mutations in both nuclear and chloroplast genes, resulting in the production of albino propagules.
Collapse
Affiliation(s)
- Dimitri Veldkornet
- Department of Biodiversity and Conservation Biology, University of the Western Cape, South Africa
| | - Anusha Rajkaran
- Department of Biodiversity and Conservation Biology, University of the Western Cape, South Africa
| | - Swapan Paul
- Sydney Olympic Park Authority, Sydney, Australia
| | - Gonasageran Naidoo
- University of KwaZulu-Natal, School of Life Sciences, Westville, South Africa.
| |
Collapse
|
6
|
Hu W, Yan H, Luo S, Pan F, Wang Y, Xiang Y. Genome-wide analysis of poplar SAUR gene family and expression profiles under cold, polyethylene glycol and indole-3-acetic acid treatments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:50-65. [PMID: 29758473 DOI: 10.1016/j.plaphy.2018.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Small auxin-up RNA (SAUR) proteins play an important role in the regulation of plant growth and development. Here, we identified 105 SAUR genes and comprehensively analyzed them in Populus trichocarpa. Based on the phylogenetic relationships, the PtSAURs were classified into ten subfamilies. Of the 105 PtSAURs, 100 were randomly distributed along the nineteen chromosomes, while the remaining genes were located along unassigned scafoolds. These genes mainly evolved through segmental duplications. In total, 94 PtSAURs contained no introns, and each group had a similar conserved motif structure. A promoter analysis revealed various cis-elements related to growth, development and stress responses, and a synteny analysis established orthologous relationships among SAURs in Arabidopsis, rice, grape and poplar. The qRT-PCR and tissue expression analyses indicated that PtSAURs show different expression levels in various tissues in response to different treatments. PtSAUR53 was located on the nuclear and plasma membrane by conducting subcellular localization analysis. This study provides a comprehensive overview of poplar SAUR proteins and a foundation for further investigations for functional analysis of SAURs in poplar growth and development. At the same time, it will be valuable to further study the poplar SAUR genes to reveal their biological effects.
Collapse
Affiliation(s)
- Wenfang Hu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Biomass Improvement and Conversion, Anhui Agriculture University, Hefei, 230036, China.
| | - Shuangshuang Luo
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Feng Pan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yue Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Biomass Improvement and Conversion, Anhui Agriculture University, Hefei, 230036, China.
| |
Collapse
|
7
|
Bai Q, Hou D, Li L, Cheng Z, Ge W, Liu J, Li X, Mu S, Gao J. Genome-wide analysis and expression characteristics of small auxin-up RNA (SAUR) genes in moso bamboo (Phyllostachys edulis). Genome 2016; 60:325-336. [PMID: 28177844 DOI: 10.1139/gen-2016-0097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Moso bamboo (Phyllostachys edulis) is well known for its rapid shoot growth. Auxin exerts pleiotropic effects on plant growth. The small auxin-up RNA (SAUR) genes are early auxin-responsive genes involved in plant growth. In total, 38 SAUR genes were identified in P. edulis (PheSAUR). A comprehensive overview of the PheSAUR gene family is presented, including the gene structures, phylogeny, and subcellular location predictions. A transcriptome analysis indicated that 37 (except PheSAUR18) of the PheSAUR genes were expressed during shoot growth process and that the PheSAUR genes were differentially expressed. Furthermore, quantitative real-time PCR analysis indicated that all of the PheSAUR genes could be induced in different tissues of seedlings and that 37 (except PheSAUR41) of the PheSAUR genes were up-regulated after indole-3-acetic acid (IAA) treatment. These results reveal a comprehensive overview of the PheSAUR gene family and may pave the way for deciphering their functions during bamboo development.
Collapse
Affiliation(s)
- Qingsong Bai
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Dan Hou
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Long Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Zhanchao Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Wei Ge
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Jun Liu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Xueping Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Shaohua Mu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China.,International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing, People's Republic of China
| |
Collapse
|
8
|
Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1941-55. [PMID: 26990124 PMCID: PMC5043468 DOI: 10.1111/pbi.12559] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 05/18/2023]
Abstract
Biological assay has been based on analysis of all individuals collected from sample populations. Bulked sample analysis (BSA), which works with selected and pooled individuals, has been extensively used in gene mapping through bulked segregant analysis with biparental populations, mapping by sequencing with major gene mutants and pooled genomewide association study using extreme variants. Compared to conventional entire population analysis, BSA significantly reduces the scale and cost by simplifying the procedure. The bulks can be built by selection of extremes or representative samples from any populations and all types of segregants and variants that represent wide ranges of phenotypic variation for the target trait. Methods and procedures for sampling, bulking and multiplexing are described. The samples can be analysed using individual markers, microarrays and high-throughput sequencing at all levels of DNA, RNA and protein. The power of BSA is affected by population size, selection of extreme individuals, sequencing strategies, genetic architecture of the trait and marker density. BSA will facilitate plant breeding through development of diagnostic and constitutive markers, agronomic genomics, marker-assisted selection and selective phenotyping. Applications of BSA in genetics, genomics and crop improvement are discussed with their future perspectives.
Collapse
Affiliation(s)
- Cheng Zou
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pingxi Wang
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunbi Xu
- Institute of Crop Science, National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
| |
Collapse
|
9
|
Yang X, Wei Z, Du Q, Chen J, Wang Q, Quan M, Song Y, Xie J, Zhang D. The genetic regulatory network centered on Pto-Wuschela and its targets involved in wood formation revealed by association studies. Sci Rep 2015; 5:16507. [PMID: 26549216 PMCID: PMC4637887 DOI: 10.1038/srep16507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/14/2015] [Indexed: 11/25/2022] Open
Abstract
Transcription factors (TFs) regulate gene expression and can strongly affect phenotypes. However, few studies have examined TF variants and TF interactions with their targets in plants. Here, we used genetic association in 435 unrelated individuals of Populus tomentosa to explore the variants in Pto-Wuschela and its targets to decipher the genetic regulatory network of Pto-Wuschela. Our bioinformatics and co-expression analysis identified 53 genes with the motif TCACGTGA as putative targets of Pto-Wuschela. Single-marker association analysis showed that Pto-Wuschela was associated with wood properties, which is in agreement with the observation that it has higher expression in stem vascular tissues in Populus. Also, SNPs in the 53 targets were associated with growth or wood properties under additive or dominance effects, suggesting these genes and Pto-Wuschela may act in the same genetic pathways that affect variation in these quantitative traits. Epistasis analysis indicated that 75.5% of these genes directly or indirectly interacted Pto-Wuschela, revealing the coordinated genetic regulatory network formed by Pto-Wuschela and its targets. Thus, our study provides an alternative method for dissection of the interactions between a TF and its targets, which will strength our understanding of the regulatory roles of TFs in complex traits in plants.
Collapse
Affiliation(s)
- Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Zunzheng Wei
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, No. 50, Zhanghua Road, Beijing 10097, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Qingshi Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| |
Collapse
|
10
|
Ren H, Gray WM. SAUR Proteins as Effectors of Hormonal and Environmental Signals in Plant Growth. MOLECULAR PLANT 2015; 8:1153-64. [PMID: 25983207 PMCID: PMC5124491 DOI: 10.1016/j.molp.2015.05.003] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 05/18/2023]
Abstract
The plant hormone auxin regulates numerous aspects of plant growth and development. Early auxin response genes mediate its genomic effects on plant growth and development. Discovered in 1987, small auxin up RNAs (SAURs) are the largest family of early auxin response genes. SAUR functions have remained elusive, however, presumably due to extensive genetic redundancy. However, recent molecular, genetic, biochemical, and genomic studies have implicated SAURs in the regulation of a wide range of cellular, physiological, and developmental processes. Recently, crucial mechanistic insight into SAUR function was provided by the demonstration that SAURs inhibit PP2C.D phosphatases to activate plasma membrane (PM) H(+)-ATPases and promote cell expansion. In addition to auxin, several other hormones and environmental factors also regulate SAUR gene expression. We propose that SAURs are key effector outputs of hormonal and environmental signals that regulate plant growth and development.
Collapse
Affiliation(s)
- Hong Ren
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St. Paul, MN 55108, USA
| | - William M Gray
- Department of Plant Biology, University of Minnesota, 250 Biological Sciences Center, 1445 Gortner Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
11
|
Wang B, Zhang D. Association of allelic variation in PtoXET16A with growth and wood properties in Populus tomentosa. Int J Mol Sci 2014; 15:16949-74. [PMID: 25250912 PMCID: PMC4200824 DOI: 10.3390/ijms150916949] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 12/26/2022] Open
Abstract
Xyloglucan endo-transglycosylases (XETs) modify the xyloglucan-cellulose framework of plant cell walls and, thus, affect cell wall expansion and strength. Dissecting the mechanism by which natural variation in XETs affects wood properties can inform breeding efforts to improve wood quality and yield traits. To this end, we isolated a full-length PtoXET16A cDNA clone from Populus tomentosa. Real-time PCR analysis showed that PtoXET16A was maximally expressed in the root, followed by phloem, cambium, and developing xylem, suggesting that PtoXET16A plays important roles in the development of vascular tissues. Nucleotide diversity and linkage disequilibrium analysis revealed that PtoXET16A has high single nucleotide polymorphism (SNP) diversity (π = 0.01266 and θw = 0.01392) and low linkage disequilibrium (r2 ≥ 0.1, within 900 bp). SNP- and haplotype-based association analyses of 426 individuals from a natural population indicated that nine SNPs (including two non-synonymous markers and one splicing variant) (p ≤ 0.05, false discovery rate Q ≤ 0.01), and nine haplotypes (p ≤ 0.05) were significantly associated with growth and wood properties, each explaining from 3.40%–10.95% of phenotypic variance. This work shows that examination of allelic variation and linkage disequilibrium by a candidate-gene-based approach can help to decipher the genetic basis of wood formation. Moreover, the SNP markers identified in this study can potentially be applied for marker-assisted selection to improve growth and wood-property traits in Populus.
Collapse
Affiliation(s)
- Bowen Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|