1
|
Yang DS, Wu Y, Kanatzidis EE, Avila R, Zhou M, Bai Y, Chen S, Sekine Y, Kim J, Deng Y, Guo H, Zhang Y, Ghaffari R, Huang Y, Rogers JA. 3D-printed epidermal sweat microfluidic systems with integrated microcuvettes for precise spectroscopic and fluorometric biochemical assays. MATERIALS HORIZONS 2023; 10:4992-5003. [PMID: 37641877 DOI: 10.1039/d3mh00876b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Systems for capture, storage and analysis of eccrine sweat can provide insights into physiological health status, quantify losses of water, electrolytes, amino acids and/or other essential species, and identify exposures to adverse environmental species or illicit drugs. Recent advances in materials and device designs serve as the basis for skin-compatible classes of microfluidic platforms and in situ colorimetric assays for precise assessments of sweat rate, sweat loss and concentrations of wide-ranging types of biomarkers in sweat. This paper presents a set of findings that enhances the performance of these systems through the use of microfluidic networks, integrated valves and microscale optical cuvettes formed by three dimensional printing in hard/soft hybrid materials systems, for accurate spectroscopic and fluorometric assays. Field studies demonstrate the capability of these microcuvette systems to evaluate the concentrations of copper, chloride, and glucose in sweat, along with the pH of sweat, with laboratory-grade accuracy and sensitivity.
Collapse
Affiliation(s)
- Da Som Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Precision Biology Research Center (PBRC), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Yixin Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Evangelos E Kanatzidis
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Rice University, Houston, TX, 77005, USA
| | - Mingyu Zhou
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yun Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shulin Chen
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yurina Sekine
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bionics of Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yujun Deng
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Hexia Guo
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yi Zhang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems Inc., Cambridge, MA, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems Inc., Cambridge, MA, USA
- Department of Neurological Surgery, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Mao P, Li H, Yu Z. A Review of Skin-Wearable Sensors for Non-Invasive Health Monitoring Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:3673. [PMID: 37050733 PMCID: PMC10099362 DOI: 10.3390/s23073673] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The early detection of fatal diseases is crucial for medical diagnostics and treatment, both of which benefit the individual and society. Portable devices, such as thermometers and blood pressure monitors, and large instruments, such as computed tomography (CT) and X-ray scanners, have already been implemented to collect health-related information. However, collecting health information using conventional medical equipment at home or in a hospital can be inefficient and can potentially affect the timeliness of treatment. Therefore, on-time vital signal collection via healthcare monitoring has received increasing attention. As the largest organ of the human body, skin delivers significant signals reflecting our health condition; thus, receiving vital signals directly from the skin offers the opportunity for accessible and versatile non-invasive monitoring. In particular, emerging flexible and stretchable electronics demonstrate the capability of skin-like devices for on-time and continuous long-term health monitoring. Compared to traditional electronic devices, this type of device has better mechanical properties, such as skin conformal attachment, and maintains compatible detectability. This review divides the health information that can be obtained from skin using the sensor aspect's input energy forms into five categories: thermoelectrical signals, neural electrical signals, photoelectrical signals, electrochemical signals, and mechanical pressure signals. We then summarize current skin-wearable health monitoring devices and provide outlooks on future development.
Collapse
Affiliation(s)
- Pengsu Mao
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Haoran Li
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Zhibin Yu
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
3
|
Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, Noor AM. A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7670. [PMID: 36236769 PMCID: PMC9573257 DOI: 10.3390/s22197670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte's response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|
4
|
Miglione A, Spinelli M, Amoresano A, Cinti S. Sustainable Copper Electrochemical Stripping onto a Paper-Based Substrate for Clinical Application. ACS MEASUREMENT SCIENCE AU 2022; 2:177-184. [PMID: 36785726 PMCID: PMC9838819 DOI: 10.1021/acsmeasuresciau.1c00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The electroanalytical field has exploited great advantages in using paper-based substrates, even if the word "paper" might be general. In fact, the mainly adopted paper-based substrates are often chromatographic and office ones. They are characterized by the following main features (and drawbacks): chromatographic paper is well-established for storing reagents/treating samples, but the sensitivity compared to traditional screen-printed ones is lower (due to porosity), while office paper represents a sustainable alternative to plastic (with similar sensitivity), but its porosity is not enough to load reagents. To overcome the limitations that might arise due to the adoption of a type of individual paper-based substrate, herein, we describe for the first time the development of a two-dimensional merged paper-based device for electrochemical copper ion detection in serum. In this work, we report a novel configuration to produce an integrated all-in-one electrochemical device, in which no additional working medium has to be added by the end user and the sensitivity can be tuned by rapid preconcentration on porous paper, with the advantage of making the platform adaptable to real matrix scenarios. The novel architecture has been obtained by combining office paper to screen-print a sustainable and robust electrochemical strip and a chromatographic disk to (1) store the reagents, (2) collect real samples, and (3) preconcentrate the analyte of interest. The novel sensing platform has allowed us to obtain a detection limit for copper ions down to 4 ppb in all the solutions that have been investigated, namely, standard solutions and serum, and a repeatability of ca. 10% has been obtained. Inductively coupled plasma-mass spectrometry measurements confirmed the satisfactory correlation.
Collapse
Affiliation(s)
- Antonella Miglione
- Department
of Pharmacy, University of Naples “Federico
II”, Via D. Montesano
49, Naples 80131, Italy
| | - Michele Spinelli
- Department
of Chemical Sciences, University of Naples
Federico II, Naples 80126, Italy
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples
Federico II, Naples 80126, Italy
| | - Stefano Cinti
- Department
of Pharmacy, University of Naples “Federico
II”, Via D. Montesano
49, Naples 80131, Italy
- BAT
Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental
Technology, University of Naples Federico
II, Naples 80055, Italy
| |
Collapse
|
5
|
Hybrid 3D printed integrated microdevice for the determination of copper ions in human body fluids. Anal Bioanal Chem 2022; 414:4047-4057. [PMID: 35396610 PMCID: PMC8993678 DOI: 10.1007/s00216-022-04049-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022]
Abstract
On-site screening of copper ions in body fluid plays a critical role in monitoring human health, especially in heavy pollution areas. In this study, we have developed a hybrid 3D printed integrated microdevice for the determination of copper ions in human body fluids. A fixed and low volume of sample was detected by using the integrated microdevice without any preprocessing. The hybrid channel enables sample uniform mixing and quantitative dilution with buffer solution by inducing the “horseshoe vortex” phenomenon. The electrolytic microcell based on the flow detection system shows a more effective copper ion reaction ratio and, as a result, a better sensitivity. The simulation of the finite element method (FEM) determined the relevant optimum parameters of the hybrid channel and the microcell. The design, fabrication, and detection procedure of the integrated microdevice are here illustrated. The microdevice presented superior detection properties towards copper ions. The calibration curves covered two linear ranges varying from 20 to 100 ppb and 100 to 400 ppb, respectively. The limit of detection was estimated to be 15 ppb (S/N = 3). The relative standard deviation of the peak current measurements was 2.26%. The designed microdevice was further applied to detect copper ions in practical samples (calf serum sample and synthetic human urine sample) using a standard addition method, and the average recovery was found to be 95–104%. The performance of copper ion detection with the integrated microdevice was consistent with that of the inductively coupled plasma mass spectrometry (ICP-MS) in the same practical samples, demonstrating significant practicality in the test of body fluidics. The portable integrated microdevice is an excellent choice for on-site detection and has a promising prospect in the point-of-care testing (POCT) applications.
Collapse
|
6
|
Yang Q, Rosati G, Abarintos V, Aroca MA, Osma JF, Merkoçi A. Wearable and fully printed microfluidic nanosensor for sweat rate, conductivity, and copper detection with healthcare applications. Biosens Bioelectron 2022; 202:114005. [DOI: 10.1016/j.bios.2022.114005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
|
7
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Bagheri N, Mazzaracchio V, Cinti S, Colozza N, Di Natale C, Netti PA, Saraji M, Roggero S, Moscone D, Arduini F. Electroanalytical Sensor Based on Gold-Nanoparticle-Decorated Paper for Sensitive Detection of Copper Ions in Sweat and Serum. Anal Chem 2021; 93:5225-5233. [PMID: 33739824 DOI: 10.1021/acs.analchem.0c05469] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The growth of (bio)sensors in analytical chemistry is mainly attributable to the development of affordable, effective, portable, and user-friendly analytical tools. In the field of sensors, paper-based devices are gaining a relevant position for their outstanding features including foldability, ease of use, and instrument-free microfluidics. Herein, a multifarious use of filter paper to detect copper ions in bodily fluids is reported by exploiting this eco-friendly material to (i) synthesize AuNPs without the use of reductants and/or external stimuli, (ii) print the electrodes, (iii) load the reagents for the assay, (iv) filter the gross impurities, and (v) preconcentrate the target analyte. Copper ions were detected down to 3 ppb with a linearity up to 400 ppb in standard solutions. The applicability in biological matrices, namely, sweat and serum, was demonstrated by recovery studies and by analyzing these biofluids with the paper-based platform and the reference method (atomic absorption spectroscopy), demonstrating satisfactory accuracy of the novel eco-designed analytical tool.
Collapse
Affiliation(s)
- Neda Bagheri
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.,Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Vincenzo Mazzaracchio
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy.,BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Via D. Montesano 49, 80055 Naples, Italy
| | - Noemi Colozza
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care, CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.,Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care, CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.,Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125 Naples, Italy
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Simona Roggero
- Cardiovascular Lab, Via Locatelli, 2, 20124 Milan, Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.,SENSE4MED, via Renato Rascel 30, 00128 Rome, Italy
| |
Collapse
|
9
|
Hui X, Sharifuzzaman M, Sharma S, Xuan X, Zhang S, Ko SG, Yoon SH, Park JY. High-Performance Flexible Electrochemical Heavy Metal Sensor Based on Layer-by-Layer Assembly of Ti 3C 2T x/MWNTs Nanocomposites for Noninvasive Detection of Copper and Zinc Ions in Human Biofluids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48928-48937. [PMID: 33074662 DOI: 10.1021/acsami.0c12239] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A flexible electrochemical heavy metal sensor based on a gold (Au) electrode modified with layer-by-layer (LBL) assembly of titanium carbide (Ti3C2Tx) and multiwalled carbon nanotubes (MWNTs) nanocomposites was successfully fabricated for the detection of copper (Cu) and zinc (Zn) ions. An LBL drop-coating process was adopted to modify the surface of Au electrodes with Ti3C2Tx/MWNTs treated via ultrasonication to fabricate this novel nanocomposite electrode. In addition, an in situ simultaneous deposition of "green metal" antimony (Sb) and target analytes was performed to improve the detection performance further. The electrochemical measurement was realized using square wave anodic stripping voltammetry (SWASV). Moreover, the fabricated sensor exhibited excellent detection performance under the optimal experimental conditions. The detection limits for Cu and Zn are as low as 0.1 and 1.5 ppb, respectively. Furthermore, Cu and Zn ions were successfully detected in biofluids, that is, urine and sweat, in a wide range of concentration (urine Cu: 10-500 ppb; urine Zn: 200-600 ppb; sweat Cu: 300-1500 ppb; and sweat Zn: 500-1500 ppb). The fabricated flexible sensor also possesses other advantages of ultra-repeatability and excellent stability. Thus, these advantages provide a great possibility for the noninvasive smart monitoring of heavy metals in the future.
Collapse
Affiliation(s)
- Xue Hui
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Md Sharifuzzaman
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sudeep Sharma
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Xing Xuan
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Shipeng Zhang
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Seok Gyu Ko
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang Hyuk Yoon
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jae Yeong Park
- Advanced Sensor and Energy Research (ASER) Laboratory, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
10
|
|
11
|
Gao W, Nyein HYY, Shahpar Z, Fahad HM, Chen K, Emaminejad S, Gao Y, Tai LC, Ota H, Wu E, Bullock J, Zeng Y, Lien DH, Javey A. Wearable Microsensor Array for Multiplexed Heavy Metal Monitoring of Body Fluids. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00287] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Gao
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hnin Y. Y. Nyein
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | | | - Kevin Chen
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sam Emaminejad
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yuji Gao
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Li-Chia Tai
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hiroki Ota
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - James Bullock
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Der-Hsien Lien
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ali Javey
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Abstract
GOALS To determine the prevalence and characteristics of lipomas in patients with Wilson disease. BACKGROUND Wilson disease is an autosomal recessive disorder resulting in copper accumulation in the liver and the central nervous tissue. Subcutaneous lipomas were often noted by the authors during clinical examinations of patients with Wilson disease. This is the first study to analyze the prevalence and progression of lipoma development in patients with Wilson disease. STUDY Eighty consecutive patients attending a tertiary care center were examined for the presence of subcutaneous lipomas. RESULTS Subcutaneous lipomas could be detected during the examination of 21 (26%) of the 80 patients with Wilson disease. Multiple subcutaneous lipomas were present in 16 (76%) of the 21 affected patients. Lipomas were mainly found on the extremities and the trunk. Neither initial presentation nor decoppering treatment influenced the presence or course of lipomas in these patients. CONCLUSIONS Subcutaneous lipoma formation is more common in patients with Wilson disease than in the general population. We suggest that the presence of lipomas contributes to the differential diagnosis of Wilson disease.
Collapse
|
13
|
Opländer C, Deck A, Volkmar CM, Kirsch M, Liebmann J, Born M, van Abeelen F, van Faassen EE, Kröncke KD, Windolf J, Suschek CV. Mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic nitric oxide generation from photolabile nitric oxide derivates in human skin in vitro and in vivo. Free Radic Biol Med 2013; 65:1363-1377. [PMID: 24121056 DOI: 10.1016/j.freeradbiomed.2013.09.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 11/29/2022]
Abstract
Human skin contains photolabile nitric oxide (NO) derivates such as nitrite and S-nitrosothiols, which upon UVA radiation decompose under high-output NO formation and exert NO-specific biological responses such as increased local blood flow or reduced blood pressure. To avoid the injurious effects of UVA radiation, we here investigated the mechanism and biological relevance of blue-light (420-453 nm)-induced nonenzymatic NO generation from photolabile nitric oxide derivates in human skin in vitro and in vivo. As quantified by chemiluminescence detection (CLD), at physiological pH blue light at 420 or 453 nm induced a significant NO formation from S-nitrosoalbumin and also from aqueous nitrite solutions by a to-date not entirely identified Cu(1+)-dependent mechanism. As detected by electron paramagnetic resonance spectrometry in vitro with human skin specimens, blue light irradiation significantly increased the intradermal levels of free NO. As detected by CLD in vivo in healthy volunteers, irradiation of human skin with blue light induced a significant emanation of NO from the irradiated skin area as well as a significant translocation of NO from the skin surface into the underlying tissue. In parallel, blue light irradiation caused a rapid and significant rise in local cutaneous blood flow as detected noninvasively by using micro-light-guide spectrophotometry. Irradiation of human skin with moderate doses of blue light caused a significant increase in enzyme-independent cutaneous NO formation as well as NO-dependent local biological responses, i.e., increased blood flow. The effects were attributed to blue-light-induced release of NO from cutaneous photolabile NO derivates. Thus, in contrast to UVA, blue-light-induced NO generation might be therapeutically used in the treatment of systemic and local hemodynamic disorders that are based on impaired physiological NO production or bioavailability.
Collapse
Affiliation(s)
- Christian Opländer
- Department of Trauma and Hand Surgery, Medical Faculty, University Hospital, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Annika Deck
- Department of Plastic and Reconstructive Surgery, Hand Surgery, and Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christine M Volkmar
- Department of Trauma and Hand Surgery, Medical Faculty, University Hospital, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Kirsch
- Institute of Physiological Chemistry, University Hospital, Essen, Germany
| | - Jörg Liebmann
- Innovative Technologies, Philips Technologie GmbH, Aachen, Germany
| | - Matthias Born
- Innovative Technologies, Philips Technologie GmbH, Aachen, Germany
| | | | - Ernst E van Faassen
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Klaus-Dietrich Kröncke
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Joachim Windolf
- Department of Trauma and Hand Surgery, Medical Faculty, University Hospital, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph V Suschek
- Department of Trauma and Hand Surgery, Medical Faculty, University Hospital, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
14
|
Abstract
In the almost 100 years since Wilson's description of the illness that now bears his name, tremendous advances have been made in our understanding of this disorder. The genetic basis for Wilson's disease - mutation within the ATP7B gene - has been identified. The pathophysiologic basis for the damage resulting from the inability to excrete copper via the biliary system with its consequent gradual accumulation, first in the liver and ultimately in the brain and other organs and tissues, is now known. This has led to the development of effective diagnostic and treatment modalities that, although they may not eliminate the disorder, do provide the means for efficient diagnosis and effective amelioration if carried out in a dedicated and persistent fashion. Nevertheless, Wilson's disease remains both a diagnostic and treatment challenge for physician and patient. Its protean clinical manifestations make diagnosis difficult. Appropriate diagnostic evaluations to confirm the diagnosis and institute treatment can be confusing. In this chapter, the clinical manifestations, diagnostic evaluation, and treatment approaches for Wilson's disease are discussed.
Collapse
Affiliation(s)
- Ronald F Pfeiffer
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
15
|
Souza APD, Lima AS, Salles MO, Nascimento AN, Bertotti M. The use of a gold disc microelectrode for the determination of copper in human sweat. Talanta 2010; 83:167-70. [DOI: 10.1016/j.talanta.2010.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/27/2022]
|