1
|
Schaid DJ, McDonnell SK, FitzGerald LM, DeRycke L, Fogarty Z, Giles GG, MacInnis RJ, Southey MC, Nguyen-Dumont T, Cancel-Tassin G, Cussenot O, Whittemore AS, Sieh W, Ioannidis NM, Hsieh CL, Stanford JL, Schleutker J, Cropp CD, Carpten J, Hoegel J, Eeles R, Kote-Jarai Z, Ackerman MJ, Klein CJ, Mandal D, Cooney KA, Bailey-Wilson JE, Helfand B, Catalona WJ, Wiklund F, Riska S, Bahetti S, Larson MC, Cannon Albright L, Teerlink C, Xu J, Isaacs W, Ostrander EA, Thibodeau SN. Two-stage Study of Familial Prostate Cancer by Whole-exome Sequencing and Custom Capture Identifies 10 Novel Genes Associated with the Risk of Prostate Cancer. Eur Urol 2020; 79:353-361. [PMID: 32800727 PMCID: PMC7881048 DOI: 10.1016/j.eururo.2020.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Family history of prostate cancer (PCa) is a well-known risk factor, and both common and rare genetic variants are associated with the disease. OBJECTIVE To detect new genetic variants associated with PCa, capitalizing on the role of family history and more aggressive PCa. DESIGN, SETTING, AND PARTICIPANTS A two-stage design was used. In stage one, whole-exome sequencing was used to identify potential risk alleles among affected men with a strong family history of disease or with more aggressive disease (491 cases and 429 controls). Aggressive disease was based on a sum of scores for Gleason score, node status, metastasis, tumor stage, prostate-specific antigen at diagnosis, systemic recurrence, and time to PCa death. Genes identified in stage one were screened in stage two using a custom-capture design in an independent set of 2917 cases and 1899 controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Frequencies of genetic variants (singly or jointly in a gene) were compared between cases and controls. RESULTS AND LIMITATIONS Eleven genes previously reported to be associated with PCa were detected (ATM, BRCA2, HOXB13, FAM111A, EMSY, HNF1B, KLK3, MSMB, PCAT1, PRSS3, and TERT), as well as an additional 10 novel genes (PABPC1, QK1, FAM114A1, MUC6, MYCBP2, RAPGEF4, RNASEH2B, ULK4, XPO7, and THAP3). Of these 10 novel genes, all but PABPC1 and ULK4 were primarily associated with the risk of aggressive PCa. CONCLUSIONS Our approach demonstrates the advantage of gene sequencing in the search for genetic variants associated with PCa and the benefits of sampling patients with a strong family history of disease or an aggressive form of disease. PATIENT SUMMARY Multiple genes are associated with prostate cancer (PCa) among men with a strong family history of this disease or among men with an aggressive form of PCa.
Collapse
Affiliation(s)
- Daniel J Schaid
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.
| | - Shannon K McDonnell
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Lissa DeRycke
- Specialized Services, National Marrow Donor Program, Minneapolis, MN, USA
| | - Zachary Fogarty
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Robert J MacInnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia; Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | - Alice S Whittemore
- Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Weiva Sieh
- Population Health Science and Policy, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nilah Monnier Ioannidis
- Center for Computational Biology and Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Chih-Lin Hsieh
- Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, and Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland
| | - Cheryl D Cropp
- Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| | - John Carpten
- Department of Translation Genomics, University of Southern California, Los Angeles, CA, USA
| | - Josef Hoegel
- Department of Human Genetics, University of Ulm, Ulm, Germany
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton Surrey, UK
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton Surrey, UK
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA; Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Diptasri Mandal
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Kathleen A Cooney
- Department of Medicine and Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Baltimore, MD, USA
| | - Brian Helfand
- Department of Surgery, North Shore University Health System/University of Chicago, Evanston, IL, USA
| | - William J Catalona
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fredrick Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Shaun Riska
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Saurabh Bahetti
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Lisa Cannon Albright
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Craig Teerlink
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jianfeng Xu
- Northshore University Health System, Evanston, IL, USA
| | - William Isaacs
- Department of Urology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomic Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Eeles R, Goh C, Castro E, Bancroft E, Guy M, Al Olama AA, Easton D, Kote-Jarai Z. The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol 2014; 11:18-31. [PMID: 24296704 DOI: 10.1038/nrurol.2013.266] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Worldwide, familial and epidemiological studies have generated considerable evidence of an inherited component to prostate cancer. Indeed, rare highly penetrant genetic mutations have been implicated. Genome-wide association studies (GWAS) have also identified 76 susceptibility loci associated with prostate cancer risk, which occur commonly but are of low penetrance. However, these mutations interact multiplicatively, which can result in substantially increased risk. Currently, approximately 30% of the familial risk is due to such variants. Evaluating the functional aspects of these variants would contribute to our understanding of prostate cancer aetiology and would enable population risk stratification for screening. Furthermore, understanding the genetic risks of prostate cancer might inform predictions of treatment responses and toxicities, with the goal of personalized therapy. However, risk modelling and clinical translational research are needed before we can translate risk profiles generated from these variants into use in the clinical setting for targeted screening and treatment.
Collapse
Affiliation(s)
- Rosalind Eeles
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Chee Goh
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Elena Castro
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Elizabeth Bancroft
- Clinical Academic Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Michelle Guy
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Ali Amin Al Olama
- Cancer Research UK Centre for Cancer Genetic Epidemiology, Strangeways Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Douglas Easton
- Departments of Public Health & Primary Care and Oncology, Strangeways Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Zsofia Kote-Jarai
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|