1
|
Jürgens H, Roht L, Leitsalu L, Nõukas M, Palover M, Nikopensius T, Reigo A, Kals M, Kallak K, Kütner R, Budrikas K, Kuusk S, Valvere V, Laidre P, Toome K, Rekker K, Tooming M, Ülle Murumets, Kahre T, Kruuv-Käo K, Õunap K, Padrik P, Metspalu A, Esko T, Fischer K, Tõnisson N. Precise, Genotype-First Breast Cancer Prevention: Experience With Transferring Monogenic Findings From a Population Biobank to the Clinical Setting. Front Genet 2022; 13:881100. [PMID: 35938029 PMCID: PMC9355130 DOI: 10.3389/fgene.2022.881100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Although hereditary breast cancer screening and management are well accepted and established in clinical settings, these efforts result in the detection of only a fraction of genetic predisposition at the population level. Here, we describe our experience from a national pilot study (2018-2021) in which 180 female participants of Estonian biobank (of >150,000 participants in total) were re-contacted to discuss personalized clinical prevention measures based on their genetic predisposition defined by 11 breast cancer-related genes. Our results show that genetic risk variants are relatively common in the average-risk Estonian population. Seventy-five percent of breast cancer cases in at-risk subjects occurred before the age of 50 years. Only one-third of subjects would have been eligible for clinical screening according to the current criteria. The participants perceived the receipt of genetic risk information as valuable. Fluent cooperation of project teams supported by state-of-art data management, quality control, and secure transfer can enable the integration of research results to everyday medical practice in a highly efficient, timely, and well-accepted manner. The positive experience in this genotype-first breast cancer study confirms the value of using existing basic genomic data from population biobanks for precise prevention.
Collapse
Affiliation(s)
- Hannes Jürgens
- Tartu University Hospital, Clinic of Hematology and Oncology, Tartu, Estonia
- University of Tartu, Clinic of Hematology and Oncology, Tartu, Estonia
| | - Laura Roht
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Liis Leitsalu
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Margit Nõukas
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Marili Palover
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tiit Nikopensius
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Reigo
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mart Kals
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kersti Kallak
- Tartu University Hospital, Clinic of Hematology and Oncology, Tartu, Estonia
- University of Tartu, Clinic of Hematology and Oncology, Tartu, Estonia
| | - Riina Kütner
- North-Estonian Medical Center, Oncology and Haematology Clinic, Tallinn, Estonia
| | - Kai Budrikas
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Saskia Kuusk
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Vahur Valvere
- North-Estonian Medical Center, Oncology and Haematology Clinic, Tallinn, Estonia
| | - Piret Laidre
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Kadri Toome
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Kadri Rekker
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mikk Tooming
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ülle Murumets
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Tiina Kahre
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Krista Kruuv-Käo
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
- Tartu University Hospital, Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Peeter Padrik
- Tartu University Hospital, Clinic of Hematology and Oncology, Tartu, Estonia
- University of Tartu, Clinic of Hematology and Oncology, Tartu, Estonia
- Antegenes, Tartu, Estonia
| | - Andres Metspalu
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Krista Fischer
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Neeme Tõnisson
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Estonian Biobank, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
Irshaid L, Clark M, Fadare O, Finberg KE, Parkash V. Endometrial Carcinoma as the Presenting Malignancy in a Teenager With a Pathogenic TP53 Germline Mutation: A Case Report and Literature Review. Int J Gynecol Pathol 2022; 41:258-267. [PMID: 33990091 DOI: 10.1097/pgp.0000000000000792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patients with germline TP53 mutations are characterized by the occurrence of multiple early-onset malignancies. The characteristic syndrome is Li-Fraumeni syndrome (OMIM # 151623), an autosomal dominant disorder typified by premenopausal breast carcinoma, adrenal cortical tumors, bone and soft tissue sarcomas, leukemias, and tumors of the brain and spinal cord. Gynecologic malignancies are uncommonly reported in families harboring TP53 mutations, and the predominant tumor type reported is ovarian. Uterine carcinoma has been reported only a handful of times in patients with germline TP53 mutations, none as a presenting tumor in a teenager. We report on an 18-year-old patient who presented with grade 3, high-stage endometrioid endometrial carcinoma. Sequencing detected a single-nucleotide substitution in the TP53 gene (NM_000546.6:c.818G>A), encoding the missense substitution p.Arg273His (R273H) in both the tumor and normal tissue, consistent with a germline mutation. We discuss the biology of the TP53 gene and p53 protein, with emphasis on the R273H mutation. We also review the literature on endometrial carcinoma in patients with germline TP53 mutations.
Collapse
|
3
|
Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers (Basel) 2021; 13:4287. [PMID: 34503097 PMCID: PMC8428369 DOI: 10.3390/cancers13174287] [Citation(s) in RCA: 740] [Impact Index Per Article: 185.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide with more than 2 million new cases in 2020. Its incidence and death rates have increased over the last three decades due to the change in risk factor profiles, better cancer registration, and cancer detection. The number of risk factors of BC is significant and includes both the modifiable factors and non-modifiable factors. Currently, about 80% of patients with BC are individuals aged >50. Survival depends on both stage and molecular subtype. Invasive BCs comprise wide spectrum tumors that show a variation concerning their clinical presentation, behavior, and morphology. Based on mRNA gene expression levels, BC can be divided into molecular subtypes (Luminal A, Luminal B, HER2-enriched, and basal-like). The molecular subtypes provide insights into new treatment strategies and patient stratifications that impact the management of BC patients. The eighth edition of TNM classification outlines a new staging system for BC that, in addition to anatomical features, acknowledges biological factors. Treatment of breast cancer is complex and involves a combination of different modalities including surgery, radiotherapy, chemotherapy, hormonal therapy, or biological therapies delivered in diverse sequences.
Collapse
Affiliation(s)
- Sergiusz Łukasiewicz
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.C.); (A.F.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (M.C.); (A.F.)
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Robert Sitarz
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Andrzej Stanisławek
- Department of Surgical Oncology, Center of Oncology of the Lublin Region St. Jana z Dukli, 20-091 Lublin, Poland; (S.Ł.); (A.S.)
- Department of Oncology, Chair of Oncology and Environmental Health, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
4
|
Johnatty SE, Pesaran T, Dolinsky J, Yussuf A, LaDuca H, James PA, O'Mara TA, Spurdle AB. Case-case analysis addressing ascertainment bias for multigene panel testing implicates BRCA1 and PALB2 in endometrial cancer. Hum Mutat 2021; 42:1265-1278. [PMID: 34245638 DOI: 10.1002/humu.24256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
Hereditary endometrial cancer (EC) is most commonly attributed to pathogenic variants in mismatch repair genes. Evidence supports the existence of additional genetic risk factors in the context of multiple cancer diagnoses and/or family history of EC. EC patients (n = 5292) referred for diagnostic multigene cancer panel testing were annotated for presence of a pathogenic gene variant; personal history of prior, concurrent, or subsequent cancer of another type; reported family history of Lynch syndrome or EC. The Pearson χ2 test was used to assess differences in gene variant prevalence between case sub-groups defined by personal and/or family history of cancer/s, using cases with no family history of Lynch/EC as reference. Another cancer diagnosis was reported for 55% of EC cases. EC cases with a prior and reported family history of Lynch cancer were enriched for variants in MLH1 (p = 3.5 × 10-7 ), MSH2 (p = 3.1 × 10-7 ), and PMS2 (p = .02). Consistent with expectations for a breast cancer gene also predisposing to EC, the variant frequency was increased in EC patients with prior BC and family history of EC for BRCA1 (p = 1.7 × 10-5 ) and PALB2 (p = .0002). Strategic case-case analyses to address cohort ascertainment bias have provided a rationale to direct future studies of candidate hereditary EC genes.
Collapse
Affiliation(s)
- Sharon E Johnatty
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Amal Yussuf
- Ambry Genetics, Aliso Viejo, California, USA
| | | | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Tracy A O'Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
5
|
Kondrashova O, Shamsani J, O’Mara TA, Newell F, Reed AEM, Lakhani SR, Kirk J, Pearson JV, Waddell N, Spurdle AB. Tumor Signature Analysis Implicates Hereditary Cancer Genes in Endometrial Cancer Development. Cancers (Basel) 2021; 13:cancers13081762. [PMID: 33917078 PMCID: PMC8067736 DOI: 10.3390/cancers13081762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Risk of endometrial cancer (EC) is increased ~2-fold for women with a family history of cancer, partly due to inherited pathogenic variants in mismatch repair (MMR) genes. We explored the role of additional genes as explanation for familial EC presentation by investigating germline and EC tumor sequence data from The Cancer Genome Atlas (n = 539; 308 European ancestry), and germline data from 33 suspected familial European ancestry EC patients demonstrating immunohistochemistry-detected tumor MMR proficiency. Germline variants in MMR and 26 other known/candidate EC risk genes were annotated for pathogenicity in the two EC datasets, and also for European ancestry individuals from gnomAD as a population reference set (n = 59,095). Ancestry-matched case-control comparisons of germline variant frequency and/or sequence data from suspected familial EC cases highlighted ATM, PALB2, RAD51C, MUTYH and NBN as candidates for large-scale risk association studies. Tumor mutational signature analysis identified a microsatellite-high signature for all cases with a germline pathogenic MMR gene variant. Signature analysis also indicated that germline loss-of-function variants in homologous recombination (BRCA1, PALB2, RAD51C) or base excision (NTHL1, MUTYH) repair genes can contribute to EC development in some individuals with germline variants in these genes. These findings have implications for expanded therapeutic options for EC cases.
Collapse
Affiliation(s)
- Olga Kondrashova
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
| | - Jannah Shamsani
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
| | - Tracy A. O’Mara
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
| | - Felicity Newell
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (A.E.M.R.); (S.R.L.)
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (A.E.M.R.); (S.R.L.)
- Anatomical Pathology, Pathology Queensland, Brisbane 4029, Australia
| | - Judy Kirk
- Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney 2145, Australia;
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney Medical School, University of Sydney, Sydney 2145, Australia
| | - John V. Pearson
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
| | - Nicola Waddell
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
| | - Amanda B. Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (O.K.); (J.S.); (T.A.O.); (F.N.); (J.V.P.); (N.W.)
- Correspondence: ; Tel.: +61-(73)-362-0371
| |
Collapse
|
6
|
Shin S, Kim Y, Lee JK, Lee KA. Frequency and Clinical Characteristics of Unselected Korean Gastric Cancer Patients with a Germline CDH1 V832M Mutation. J Cancer 2020; 11:208-212. [PMID: 31892987 PMCID: PMC6930413 DOI: 10.7150/jca.36513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Germline mutations in CDH1 are associated with hereditary and early onset- diffuse gastric cancer. However, the frequency of CDH1 germline mutation in unselected gastric cancer cases is not well established. Aim: The aim of this study was to investigate the frequency and clinical characteristics of germline CDH1 V832M mutation carriers in unselected Korean gastric cancer cases. Methods: Direct sequencing was performed to determine the presence of CDH1 V832M in 305 unselected Korean gastric cancer patients. Lauren's histologic type, family history of gastric cancer, and age of cancer diagnosis were compared between V832M carriers and non-carriers. Results: In the study population, seven gastric cancer patients (7/305, 2.29%) were found to have the CDH1 V832M mutation. The CDH1 V832M mutation carrier state was not significantly associated with phenotypes including Lauren's histologic type, family history of gastric cancer, age of cancer diagnosis, and other cancer history in a patient. Conclusion: This study demonstrates that the germline CDH1 V832M mutation is common in sporadic, late onset, and intestinal type gastric cancer as well as familial, early onset, and diffuse type gastric cancer. Our finding suggests that guidelines for managing CDH1 mutation carriers should be refined through additional data on penetration according to CDH1 mutation type in sporadic cases.
Collapse
Affiliation(s)
- Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Kyung Lee
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Blombery P, Thompson E, Ryland GL, Joyce R, Byrne DJ, Khoo C, Lade S, Hertzberg M, Hapgood G, Marlton P, Deva A, Lindeman G, Fox S, Westerman D, Prince M. Frequent activating STAT3 mutations and novel recurrent genomic abnormalities detected in breast implant-associated anaplastic large cell lymphoma. Oncotarget 2018; 9:36126-36136. [PMID: 30546832 PMCID: PMC6281423 DOI: 10.18632/oncotarget.26308] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/25/2018] [Indexed: 11/25/2022] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a rare form of T-cell lymphoma that occurs after implantation of breast prostheses. We performed comprehensive next generation sequencing based genomic characterization of 11 cases of BIA-ALCL including sequence variant detection on 180 genes frequently mutated in haematological malignancy, genome-wide copy number assessment, structural variant detection involving the T-cell receptor loci and TRB deep-sequencing. We observed sequence variants leading to JAK/STAT activation in 10 out of 11 patients. We also observed germline TP53 mutations in two cases. In addition we detected a recurrent copy number loss involving RPL5 as well as copy number amplifications involving TNFRSF11A [RANK] (in 2 cases), MYC, P2RX7, TMEM119 and PDGFRA. In summary, our comprehensive genomic characterisation of 11 cases of BIA-ALCL has provided insight into potential pathobiological mechanisms (JAK/STAT, MYC and TP53) as well as identifying targets for future therapeutic intervention (TNFRSF11A, PDGFRA) in this rare entity.
Collapse
Affiliation(s)
- Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Ella Thompson
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Georgina L Ryland
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rachel Joyce
- Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - David J Byrne
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Christine Khoo
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen Lade
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mark Hertzberg
- Department of Haematology, Prince of Wales Hospital, University of New South Wales, Randwick, NSW, Australia
| | - Greg Hapgood
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Paula Marlton
- Department of Haematology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Anand Deva
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Geoffrey Lindeman
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Stephen Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - David Westerman
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Miles Prince
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Cardona AF, Zatarain-Barrón ZL, Rubio C, Martínez S, Ruiz-Patiño A, Ricaurte L, Serna A, Barrios R, Garzón JC, Navarrete C, Balaguera A, Corrales L, Rojas L, Arrieta O. Probable hereditary familial overlap syndrome with multiple synchronous lung tumors. Lung Cancer 2018; 124:279-282. [PMID: 30268473 DOI: 10.1016/j.lungcan.2018.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
Abstract
Here we report a case of a young, never-smoker Hispanic woman with a hereditary familial overlap syndrome (Li-Fraumeni plus CDH1). The patient developed multiple synchronous primary lung adenocarcinomas related to Intra-Alveolar Tumor Spread (STAS) several years after the diagnosis of a locally advanced lower limb osteosarcoma. Comprehensive genomic profiling by next generation sequencing (NGS) was performed on 90 cancer-related genes over each lung lesion (including two nodules of acinar adenocarcinoma, one lepidic spread tumor and in the STAS area). Likewise, the broad genomic analysis was performed on archival tissue from the previous bone tumor. Lung tumors were found to harbor PIK3CA (invasive lesions) and a rare in-frame insertion of nucleotides in exon 19 of EGFR (lepidic tumor). STAS area showed KRAS and BRAF mutations in two different segments, and osteosarcoma tested positive for well known PIK3CA, KRAS and CDH1 alterations. This unique case raises practical questions as to the challenges of molecular testing and highlights the potential association of germline TP53 and CDH1 mutations with concurrent somatic alterations that elucidate the basis of tumor heterogeneity.
Collapse
Affiliation(s)
- Andrés F Cardona
- Clinical and Translational Oncology Group, Thoracic Oncology Unit, Institute of Oncology, Clínica del Country, Bogotá, Colombia; Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia; Molecular Oncology and Biology Systems Research Group (Fox-G), Bogotá, Colombia.
| | - Zyanya Lucia Zatarain-Barrón
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Cladelis Rubio
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia
| | - Stella Martínez
- Thoracic Surgery Department, Clínica Colsanitas, Bogotá, Colombia
| | | | - Luisa Ricaurte
- Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia
| | - Adriana Serna
- Thoracic Surgery Department, Clínica Colsanitas, Bogotá, Colombia
| | - Rodolfo Barrios
- Thoracic Surgery Department, Clínica Colsanitas, Bogotá, Colombia
| | - Juan Carlos Garzón
- Thoracic Surgery Department, Clínica Colsanitas, Bogotá, Colombia; Thoracic Surgery Department, Fundación Cardio Infantil, Bogotá, Colombia
| | | | | | - Luis Corrales
- Oncology Department, Hospital San Juan de Dios, San José de Costa Rica, Costa Rica
| | - Leonardo Rojas
- Clinical Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit and Laboratory of Personalized Medicine, Instituto Nacional de Cancerología (INCan), México City, Mexico
| |
Collapse
|
9
|
Abstract
With the increased use of modern next generation sequencing technologies in routine molecular pathology practice, the proportion of cancer cases with a definite or probable hereditary background seems to be steadily increasing. Currently, it is assumed that ≥10% of all malignancies develop in the setting of germline predisposition. Diagnosis and recognition of cancer predisposition syndromes relies not rarely on distinctive histopathological features that proved to be highly valuable and reproducible in uncovering those diseases that would otherwise have gone undetected by clinicians as being hereditary in nature. This is especially true in case of new mutations without suspicious family history. Example of such entities are fumarate hydratase-deficient renal cell carcinoma (RCC), succinate dehydrogenase-deficient RCC, hereditary gastrointestinal stromal tumor syndromes and many other diseases. It is remarkable that many of these inherited cancer syndromes do present as unifocal disease with highly variable age of onset so that many of them are misinterpreted as sporadic on clinical grounds. Availability of specialized cancer screening programs and disease-specific follow-up schemes for several hereditary cancer syndromes encourages the recognition of such disorders, so that "at risk patients" can be enrolled in such programs for early detection and timely intervention/ treatment of these malignancies which are in the majority of cases aggressive. In several conditions, as in familial adenomatous polyposis coli (FAP), well established prophylactic surgical interventions may be adopted to prevent the disease manifestations, highlighting the importance of the timely recognition of these potentially life-limiting neoplasms. In this review, the clinicopathological, demographic and histological features that are considered highly suggestive of a hereditary basis of "a neoplasm under consideration" are highlighted and discussed briefly. The details of some of these entities are in addition dealt with in reviews devoted to them in this special issue.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital, Erlangen, Germany.
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| |
Collapse
|
10
|
Endometrial cancer gene panels: clinical diagnostic vs research germline DNA testing. Mod Pathol 2017; 30:1048-1068. [PMID: 28452373 DOI: 10.1038/modpathol.2017.20] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
Endometrial cancer is the most common gynecological cancer, but is nevertheless uncommon enough to have value as a signature cancer for some hereditary cancer syndromes. Commercial multigene testing panels include up to 13 different genes annotated for germline DNA testing of patients with endometrial cancer. Many other genes have been reported as relevant to familial endometrial cancer from directed genome-wide sequencing studies or multigene panel testing, or research. This review assesses the evidence supporting association with endometrial cancer risk for 32 genes implicated in hereditary endometrial cancer, and presents a summary of rare germline variants in these 32 genes detected by analysis of quasi-population-based endometrial cancer patients from The Cancer Genome Atlas project. This comprehensive investigation has led to the conclusion that convincing evidence currently exists to support clinical testing of only six of these genes for diagnosis of hereditary endometrial cancer. Testing of endometrial cancer patients for the remaining genes should be considered in the context of research studies, as a means to better establish the level of endometrial cancer risk, if any, associated with genetic variants that are deleterious to gene or protein function. It is acknowledged that clinical testing of endometrial cancer patients for several genes included on commercial panels may provide actionable findings in relation to risk of other cancers, but these should be considered secondary or incidental findings and not conclusive evidence for diagnosis of inherited endometrial cancer. In summary, this review and analysis provides a comprehensive report of current evidence to guide the selection of genes for clinical and research gene testing of germline DNA from endometrial cancer patients.
Collapse
|
11
|
|
12
|
Sheikh A, Hussain SA, Ghori Q, Naeem N, Fazil A, Giri S, Sathian B, Mainali P, Al Tamimi DM. The spectrum of genetic mutations in breast cancer. Asian Pac J Cancer Prev 2016; 16:2177-85. [PMID: 25824734 DOI: 10.7314/apjcp.2015.16.6.2177] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is the most common malignancy in women around the world. About one in 12 women in the West develop breast cancer at some point in life. It is estimated that 5%-10% of all breast cancer cases in women are linked to hereditary susceptibility due to mutations in autosomal dominant genes. The two key players associated with high breast cancer risk are mutations in BRCA 1 and BRCA 2. Another highly important mutation can occur in TP53 resulting in a triple negative breast cancer. However, the great majority of breast cancer cases are not related to a mutated gene of high penetrance, but to genes of low penetrance such as CHEK2, CDH1, NBS1, RAD50, BRIP1 and PALB2, which are frequently mutated in the general population. In this review, we discuss the entire spectrum of mutations which are associated with breast cancer.
Collapse
Affiliation(s)
- Asfandyar Sheikh
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ning J, Guo X, Wang N, Xue L. Construction and analysis of three networks of genes and microRNAs in adenocarcinoma. Oncol Lett 2015; 10:3243-3251. [PMID: 26722320 DOI: 10.3892/ol.2015.3676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 07/28/2015] [Indexed: 12/16/2022] Open
Abstract
Adenocarcinoma is one of the most serious diseases that threaten human health. Numerous studies have investigated adenocarcinoma and have obtained a considerable amount of data regarding genes and microRNA (miRNA) in adenocarcinoma. However, studies have only focused on one or a small number of genes and miRNAs, and the data is stored in a scattered form, making it challenging to summarize and assess the associations between the genes and miRNAs. In the present study, three networks of genes and miRNAs in adenocarcinoma were focused on. This enabled the construction of networks of elements involved in adenocarcinoma and the analysis of these networks, rather than only discussing one gene. Transcription factors (TFs), miRNAs, and target and host genes of miRNAs in adenocarcinoma, and the regulatory associations between these elements were identified in the present study. These elements and associations were then used to construct three networks, which consisted of the differentially-expressed, associated and global networks. The similarities and differences between the three networks were compared and analyzed. In total, 3 notable TFs, consisting of TP53, phosphatase and tensin homolog and SMAD4, were identified in adenocarcinoma. These TFs were able to regulate the differentially-expressed genes and the majority of the differentially-expressed miRNAs. Certain important regulatory associations were also found in adenocarcinoma, in addition to self-regulating associations between TFs and miRNAs. The upstream and downstream elements of the differentially-expressed genes and miRNAs were recorded, which revealed the regulatory associations between genes and miRNAs. The present study clearly revealed components of the pathogenesis of adenocarcinoma and the regulatory associations between the elements in adenocarcinoma. The present study may aid the investigation of gene therapy in adenocarcinoma and provides a theoretical basis for studies of gene therapy methods as a treatment for adenocarcinoma.
Collapse
Affiliation(s)
- Jiahui Ning
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbol Computation and Knowledge Engineering of The Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xiaoxin Guo
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbol Computation and Knowledge Engineering of The Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Ning Wang
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbol Computation and Knowledge Engineering of The Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Luchen Xue
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, P.R. China ; Key Laboratory of Symbol Computation and Knowledge Engineering of The Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
14
|
A Novel WRN Frameshift Mutation Identified by Multiplex Genetic Testing in a Family with Multiple Cases of Cancer. PLoS One 2015; 10:e0133020. [PMID: 26241669 PMCID: PMC4524609 DOI: 10.1371/journal.pone.0133020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 06/23/2015] [Indexed: 11/25/2022] Open
Abstract
Next-generation sequencing technology allows simultaneous analysis of multiple susceptibility genes for clinical cancer genetics. In this study, multiplex genetic testing was conducted in a Chinese family with multiple cases of cancer to determine the variations in cancer predisposition genes. The family comprises a mother and her five daughters, of whom the mother and the eldest daughter have cancer and the secondary daughter died of cancer. We conducted multiplex genetic testing of 90 cancer susceptibility genes using the peripheral blood DNA of the mother and all five daughters. WRN frameshift mutation is considered a potential pathogenic variation according to the guidelines of the American College of Medical Genetics. A novel WRN frameshift mutation (p.N1370Tfs*23) was identified in the three cancer patients and in the youngest unaffected daughter. Other rare non-synonymous germline mutations were also detected in DICER and ELAC2. Functional mutations in WRN cause Werner syndrome, a human autosomal recessive disease characterized by premature aging and associated with genetic instability and increased cancer risk. Our results suggest that the WRN frameshift mutation is important in the surveillance of other members of this family, especially the youngest daughter, but the pathogenicity of the novel WRN frameshift mutation needs to be investigated further. Given its extensive use in clinical genetic screening, multiplex genetic testing is a promising tool in clinical cancer surveillance.
Collapse
|
15
|
Establishing a clinical and molecular diagnosis for hereditary colorectal cancer syndromes: Present tense, future perfect? Gastrointest Endosc 2014; 80:1145-55. [PMID: 25434663 DOI: 10.1016/j.gie.2014.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/23/2014] [Indexed: 02/08/2023]
|