1
|
New Perspectives on Unscheduled DNA Synthesis: Functional Assay for Global Genomic DNA Nucleotide Excision Repair. Methods Mol Biol 2020; 2102:483-507. [PMID: 31989573 DOI: 10.1007/978-1-0716-0223-2_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C (254 nm) irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results have been used to clinically diagnose human DNA repair deficiency disorders, and provide a basis for investigation of repair deficiency in human tissues or tumors. Genomic sequencing to establish the presence of specific mutations is also used now for clinical diagnosis of DNA repair deficiency syndromes. Few functional assays are available which directly measure the capacity to perform NER on the entire genome. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR). As discussed in Chap. 28 is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER. Our laboratory also explored the fluorescent label-based Click-iT assay that uses EdU as the label, rather than 3H thymidine. Despite emerging studies in the literature finding this assay to be useful for other purposes, we found that the EdU-based UDS assay was not consistent or reproducible compared with the 3H thymidine-based assay.
Collapse
|
2
|
Dodda BR, Bondi CD, Hasan M, Clafshenkel WP, Gallagher KM, Kotlarczyk MP, Sethi S, Buszko E, Latimer JJ, Cline JM, Witt-Enderby PA, Davis VL. Co-administering Melatonin With an Estradiol-Progesterone Menopausal Hormone Therapy Represses Mammary Cancer Development in a Mouse Model of HER2-Positive Breast Cancer. Front Oncol 2019; 9:525. [PMID: 31355130 PMCID: PMC6636553 DOI: 10.3389/fonc.2019.00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin has numerous anti-cancer properties reported to influence cancer initiation, promotion, and metastasis. With the need for effective hormone therapies (HT) to treat menopausal symptoms without increasing breast cancer risk, co-administration of nocturnal melatonin with a natural, low-dose HT was evaluated in mice that develop primary and metastatic mammary cancer. Individually, melatonin (MEL) and estradiol-progesterone therapy (EPT) did not significantly affect mammary cancer development through age 14 months, but, when combined, the melatonin-estradiol-progesterone therapy (MEPT) significantly repressed tumor formation. This repression was due to effects on tumor incidence, but not latency. These results demonstrate that melatonin and the HT cooperate to decrease the mammary cancer risk. Melatonin and EPT also cooperate to alter the balance of the progesterone receptor (PR) isoforms by significantly increasing PRA protein expression only in MEPT mammary glands. Melatonin significantly suppressed amphiregulin transcripts in MEL and MEPT mammary glands, suggesting that amphiregulin together with the higher PRA:PRB balance and other factors may contribute to reducing cancer development in MEPT mice. Melatonin supplementation influenced mammary morphology by increasing tertiary branching in the mouse mammary glands and differentiation in human mammary epithelial cell cultures. Uterine weight in the luteal phase was elevated after long-term exposure to EPT, but not to MEPT, indicating that melatonin supplementation may reduce estrogen-induced uterine stimulation. Melatonin supplementation significantly decreased the incidence of grossly-detected lung metastases in MEL mice, suggesting that melatonin delays the formation of metastatic lesions and/or decreases aggressiveness in this model of HER2+ breast cancer. Mammary tumor development was similar in EPT and MEPT mice until age 8.6 months, but after 8.6 months, only MEPT continued to suppress cancer development. These data suggest that melatonin supplementation has a negligible effect in young MEPT mice, but is required in older mice to inhibit tumor formation. Since melatonin binding was significantly decreased in older mammary glands, irrespective of treatment, melatonin supplementation may overcome reduced melatonin responsiveness in the aged MEPT mice. Since melatonin levels are known to decline near menopause, nocturnal melatonin supplementation may also be needed in aging women to cooperate with HT to decrease breast cancer risk.
Collapse
Affiliation(s)
- Balasunder R Dodda
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Corry D Bondi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mahmud Hasan
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - William P Clafshenkel
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Katie M Gallagher
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mary P Kotlarczyk
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Shalini Sethi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Ethan Buszko
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jean J Latimer
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Paula A Witt-Enderby
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vicki L Davis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Wang M, Li W, Xing X, Zhang D, Lei J, Li G. BRCA1 and STMN1 as prognostic markers in NSCLCs who received cisplatin-based adjuvant chemotherapy. Oncotarget 2017; 8:80869-80877. [PMID: 29113350 PMCID: PMC5655245 DOI: 10.18632/oncotarget.20715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/08/2017] [Indexed: 12/02/2022] Open
Abstract
Objective In this study, we aimed to investigate the predictive effect of BRCA1, STMN1, MAPT and TUBB3 on the prognosis of patients with non-small cell lung cancer (NSCLC). Methods Seventy NSCLC patients who received platinum-based chemotherapy from June 2009 to July 2011 were enrolled. The protein and mRNA levels of BRCA1, STMN1, MAPT and TUBB3 were determined. Survival time of the patients with NSCLC was also calculated. Results High expression of BRCA1 or low expression of STMN1 was associated with a better prognosis in NSCLC patients (p<0.01). In contrast, the expression of MAPT and TUBB3 were not closely related with the prognosis of NSCLC patients(p>0.05). Furthermore, patients with high expression of BRCA1 and low expression of STMN1 have lived longer (p<0.01). Conclusion BRCA1 and STMN1 were independently predictors for prognosis of NSCLCs which received cisplatin-based adjuvant chemotherapy.
Collapse
Affiliation(s)
- Mingxing Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wanjun Li
- Department of Pathology, Hanzhong 3201 Hospital Affiliated to Xi'anJiaotong University, Xi'an, Shaanxi, China
| | - Xuemei Xing
- Department of Clinical Laboratory, Hanzhong 3201 Hospital Affiliated to Xi'anJiaotong University, Xi'an, Shaanxi, China
| | - Dan Zhang
- Department of Oncology, Hanzhong 3201 Hospital Affiliated to Xi'anJiaotong University, Xi'an, Shaanxi, China
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guoyin Li
- Department of Pathology, Hanzhong 3201 Hospital Affiliated to Xi'anJiaotong University, Xi'an, Shaanxi, China.,Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Tang H, Sebti S, Titone R, Zhou Y, Isidoro C, Ross TS, Hibshoosh H, Xiao G, Packer M, Xie Y, Levine B. Decreased BECN1 mRNA Expression in Human Breast Cancer is Associated with Estrogen Receptor-Negative Subtypes and Poor Prognosis. EBioMedicine 2015; 2:255-263. [PMID: 25825707 PMCID: PMC4376376 DOI: 10.1016/j.ebiom.2015.01.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both BRCA1 and Beclin 1 (BECN1) are tumor suppressor genes, which are in close proximity on the human chromosome 17q21 breast cancer tumor susceptibility locus and are often concurrently deleted. However, their importance in sporadic human breast cancer is not known. To interrogate the effects of BECN1 and BRCA1 in breast cancer, we studied their mRNA expression patterns in breast cancer patients from two large datasets: The Cancer Genome Atlas (TCGA) (n = 1067) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (n = 1992). In both datasets, low expression of BECN1 was more common in HER2-enriched and basal-like (mostly triple-negative) breast cancers compared to luminal A/B intrinsic tumor subtypes, and was also strongly associated with TP53 mutations and advanced tumor grade. In contrast, there was no significant association between low BRCA1 expression and HER2-enriched or basal-like subtypes, TP53 mutations or tumor grade. In addition, low expression of BECN1 (but not low BRCA1) was associated with poor prognosis, and BECN1 (but not BRCA1) expression was an independent predictor of survival. These findings suggest that decreased mRNA expression of the autophagy gene BECN1 may contribute to the pathogenesis and progression of HER2-enriched, basal-like, and TP53 mutant breast cancers. The tumor suppressor genes, BECN1 and BRCA1, are in close proximity to the 17q21 breast cancer tumor susceptibility locus. We studied mRNA expression patterns of BECN1 and BRCA1 in breast cancer patients in the large TCGA and METABRIC datasets. Decreased BECN1 (but not BRCA1) expression is linked with aggressive clinico-pathological features in human breast cancer. Decreased BECN1 (but not BRCA1) expression is linked with worse survival in human breast cancer patients.
Collapse
Affiliation(s)
- Hao Tang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Salwa Sebti
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Rossella Titone
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Yunyun Zhou
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and Nanobioimaging, Department of Health Sciences, Università del Piemonte Orientale "A Avogrado", Via Solaroli 17, 28100 Novara, Italy
| | - Theodora S Ross
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University College of Physicians & Surgeons, New York, New York 10032
| | - Guanghua Xiao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Milton Packer
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Yang Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390 ; Howard Hughes Medical Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
5
|
Latimer JJ, Majekwana VJ, Pabón-Padín YR, Pimpley MR, Grant SG. Regulation and disregulation of mammalian nucleotide excision repair: a pathway to nongermline breast carcinogenesis. Photochem Photobiol 2014; 91:493-500. [PMID: 25393451 DOI: 10.1111/php.12387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/27/2014] [Indexed: 12/13/2022]
Abstract
Nucleotide excision repair (NER) is an important modulator of disease, especially in constitutive deficiencies such as the cancer predisposition syndrome Xeroderma pigmentosum. We have found profound variation in NER capacity among normal individuals, between cell-types and during carcinogenesis. NER is a repair system for many types of DNA damage, and therefore many types of genotoxic carcinogenic exposures, including ultraviolet light, products of organic combustion, metals and oxidative stress. Because NER is intimately related to cellular metabolism, requiring components of both the DNA replicative and transcription machinery, it has a narrow range of functional viability. Thus, genes in the NER pathway are expressed at the low levels manifested by, for example, nuclear transcription factors. As NER activity and gene expression vary by cell-type, it is inherently epigenetically regulated. Furthermore, this epigenetic modulation is disregulated during sporadic breast carcinogenesis. Loss of NER is one basis of genomic instability, a required element in cellular transformation, and one that potentially influences response to therapy. In this study, we demonstrate differences in NER capacity in eight adult mouse tissues, and place this result into the context of our previous work on mouse extraembryonic tissues, normal human tissues and sporadic early stage human breast cancer.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL
| | | | | | | | | |
Collapse
|
6
|
Latimer JJ, Kelly CM. Unscheduled DNA synthesis: the clinical and functional assay for global genomic DNA nucleotide excision repair. Methods Mol Biol 2014; 1105:511-32. [PMID: 24623250 DOI: 10.1007/978-1-62703-739-6_36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The unscheduled DNA synthesis (UDS) assay measures the ability of a cell to perform global genomic nucleotide excision repair (NER). This chapter provides instructions for the application of this technique by creating 6-4 photoproducts and pyrimidine dimers using UV-C irradiation. This procedure is designed specifically for quantification of the 6-4 photoproducts. Repair is quantified by the amount of radioactive thymidine incorporated during repair synthesis after this insult, and radioactivity is evaluated by grain counting after autoradiography. The results are used to clinically diagnose human DNA repair deficiency disorders and provide a basis for investigation of repair deficiency in human tissues or tumors. No other functional assay is available that directly measures the capacity to perform NER on the entire genome without the use of specific antibodies. Since live cells are required for this assay, explant culture techniques must be previously established. Host cell reactivation (HCR), as discussed in Chapter 37, is not an equivalent technique, as it measures only transcription-coupled repair (TCR) at active genes, a small subset of total NER.
Collapse
Affiliation(s)
- Jean J Latimer
- Department of Pharmaceutical Sciences, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale-Davie, FL, 33314-7796, USA,
| | | |
Collapse
|
7
|
Wang J, Su F, Smilenov LB, Zhou L, Hu W, Ding N, Zhou G. Mechanisms of increased risk of tumorigenesis in Atm and Brca1 double heterozygosity. Radiat Oncol 2011; 6:96. [PMID: 21849032 PMCID: PMC3169458 DOI: 10.1186/1748-717x-6-96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/17/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Both epidemiological and experimental studies suggest that heterozygosity for a single gene is linked with tumorigenesis and heterozygosity for two genes increases the risk of tumor incidence. Our previous work has demonstrated that Atm/Brca1 double heterozygosity leads to higher cell transformation rate than single heterozygosity. However, the underlying mechanisms have not been fully understood yet. In the present study, a series of pathways were investigated to clarify the possible mechanisms of increased risk of tumorigenesis in Atm and Brca1 heterozygosity. METHODS Wild type cells, Atm or Brca1 single heterozygous cells, and Atm/Brca1 double heterozygous cells were used to investigate DNA damage and repair, cell cycle, micronuclei, and cell transformation after photon irradiation. RESULTS Remarkable high transformation frequency was confirmed in Atm/Brca1 double heterozygous cells compared to wild type cells. It was observed that delayed DNA damage recognition, disturbed cell cycle checkpoint, incomplete DNA repair, and increased genomic instability were involved in the biological networks. Haploinsufficiency of either ATM or BRCA1 negatively impacts these pathways. CONCLUSIONS The quantity of critical proteins such as ATM and BRCA1 plays an important role in determination of the fate of cells exposed to ionizing radiation and double heterozygosity increases the risk of tumorigenesis. These findings also benefit understanding of the individual susceptibility to tumor initiation.
Collapse
Affiliation(s)
- Jufang Wang
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P R China
| | | | | | | | | | | | | |
Collapse
|
8
|
Nucleotide excision repair deficiency is intrinsic in sporadic stage I breast cancer. Proc Natl Acad Sci U S A 2010; 107:21725-30. [PMID: 21118987 DOI: 10.1073/pnas.0914772107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The molecular etiology of breast cancer has proven to be remarkably complex. Most individual oncogenes are disregulated in only approximately 30% of breast tumors, indicating that either very few molecular alterations are common to the majority of breast cancers, or that they have not yet been identified. In striking contrast, we now show that 19 of 19 stage I breast tumors tested with the functional unscheduled DNA synthesis assay exhibited a significant deficiency of DNA nucleotide excision repair (NER) capacity relative to normal epithelial tissue from disease-free controls (n = 23). Loss of DNA repair capacity, including the complex, damage-comprehensive NER pathway, results in genomic instability, a hallmark of carcinogenesis. By microarray analysis, mRNA expression levels for 20 canonical NER genes were reduced in representative tumor samples versus normal. Significant reductions were observed in 19 of these genes analyzed by the more sensitive method of RNase protection. These results were confirmed at the protein level for five NER gene products. Taken together, these data suggest that NER deficiency may play an important role in the etiology of sporadic breast cancer, and that early-stage breast cancer may be intrinsically susceptible to genotoxic chemotherapeutic agents, such as cis-platinum, whose damage is remediated by NER. In addition, reduced NER capacity, or reduced expression of NER genes, could provide a basis for the development of biomarkers for the identification of tumorigenic breast epithelium.
Collapse
|
9
|
Latimer JJ, Johnson JM, Miles TD, Dimsdale JM, Edwards RP, Kelley JL, Grant SG. Cell-type-specific level of DNA nucleotide excision repair in primary human mammary and ovarian epithelial cell cultures. Cell Tissue Res 2008; 333:461-7. [PMID: 18575893 DOI: 10.1007/s00441-008-0645-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 05/13/2008] [Indexed: 12/21/2022]
Abstract
DNA repair, a fundamental function of cellular metabolism, has long been presumed to be constitutive and equivalent in all cells. However, we have previously shown that normal levels of nucleotide excision repair (NER) can vary by 20-fold in a tissue-specific pattern. We have now successfully established primary cultures of normal ovarian tissue from seven women by using a novel culture system originally developed for breast epithelial cells. Epithelial cells in these cultures aggregated to form three-dimensional structures called "attached ovarian epispheres". The availability of these actively proliferating cell cultures allowed us to measure NER functionally and quantitatively by the unscheduled DNA synthesis (UDS) assay, a clinical test used to diagnose constitutive deficiencies in NER capacity. We determined that ovarian epithelial cells manifested an intermediate level of NER capacity in humans, viz., only 25% of that of foreskin fibroblasts, but still 2.5-fold higher than that of peripheral blood lymphocytes. This level of DNA repair capacity was indistinguishable from that of normal breast epithelial cells, suggesting that it might be characteristic of the epithelial cell type. Similar levels of NER activity were observed in cultures established from a disease-free known carrier of a BRCA1 truncation mutation, consistent with previous normal results shown in breast epithelium and blood lymphocytes. These results establish that at least three "normal" levels of such DNA repair occur in human tissues, and that NER capacity is epigenetically regulated during cell differentiation and development.
Collapse
Affiliation(s)
- Jean J Latimer
- Center for Environmental Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Grant SG, Das R, Cerceo CM, Rubinstein WS, Latimer JJ. Elevated levels of somatic mutation in a manifesting BRCA1 mutation carrier. Pathol Oncol Res 2007; 13:276-83. [PMID: 18158561 DOI: 10.1007/bf02940305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 09/21/2007] [Indexed: 01/23/2023]
Abstract
Homozygous loss of activity at the breast cancerpredisposing genes BRCA1 and BRCA2 (FANCD1) confers increased susceptibility to DNA double strand breaks, but this genotype occurs only in the tumor itself, following loss of heterozygosity at one of these loci. Thus, if these genes play a role in tumor etiology as opposed to tumor progression, they must manifest a heterozygous phenotype at the cellular level. To investigate the potential consequences of somatic heterozygosity for a BRCA1 mutation demonstrably associated with breast carcinogenesis on background somatic mutational burden, we applied the two standard assays of in vivo human somatic mutation to blood samples from a manifesting carrier of the Q1200X mutation in BRCA1 whose tumor was uniquely ascertained through an MRI screening study. The patient had an allele-loss mutation frequency of 19.4 x 10(-6) at the autosomal GPA locus in erythrocytes and 17.1 x 10(-6) at the X-linked HPRT locus in lymphocytes. Both of these mutation frequencies are significantly higher than expected from age-matched disease-free controls (P < 0.05). Mutation at the HPRT locus was similarly elevated in lymphoblastoid cell lines established from three other BRCA1 mutation carriers with breast cancer. Our patient's GPA mutation frequency is below the level established for diagnosis of homozygous Fanconi anemia patients, but consistent with data from obligate heterozygotes. The increased HPRT mutation frequency is more reminiscent of data from patients with xeroderma pigmentosum, a disease characterized by UV sensitivity and deficiency in the nucleotide excision pathway of DNA repair. Therefore, this BRCA1-associated breast cancer patient manifests a unique phenotype of increased background mutagenesis that likely contributed to the development of her disease independent of loss of heterozygosity at the susceptibility locus.
Collapse
Affiliation(s)
- Stephen G Grant
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
| | | | | | | | | |
Collapse
|
11
|
Rubinstein WS, Latimer JJ, Sumkin JH, Huerbin M, Grant SG, Vogel VG. Prospective screening study of 0.5 Tesla dedicated magnetic resonance imaging for the detection of breast cancer in young, high-risk women. BMC WOMENS HEALTH 2006; 6:10. [PMID: 16800895 PMCID: PMC1553433 DOI: 10.1186/1472-6874-6-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 06/26/2006] [Indexed: 11/10/2022]
Abstract
Background Evidence-based screening guidelines are needed for women under 40 with a family history of breast cancer, a BRCA1 or BRCA2 mutation, or other risk factors. An accurate assessment of breast cancer risk is required to balance the benefits and risks of surveillance, yet published studies have used narrow risk assessment schemata for enrollment. Breast density limits the sensitivity of film-screen mammography but is not thought to pose a limitation to MRI, however the utility of MRI surveillance has not been specifically examined before in women with dense breasts. Also, all MRI surveillance studies yet reported have used high strength magnets that may not be practical for dedicated imaging in many breast centers. Medium strength 0.5 Tesla MRI may provide an alternative economic option for surveillance. Methods We conducted a prospective, nonrandomized pilot study of 30 women age 25–49 years with dense breasts evaluating the addition of 0.5 Tesla MRI to conventional screening. All participants had a high quantitative breast cancer risk, defined as ≥ 3.5% over the next 5 years per the Gail or BRCAPRO models, and/or a known BRCA1 or BRCA2 germline mutation. Results The average age at enrollment was 41.4 years and the average 5-year risk was 4.8%. Twenty-two subjects had BIRADS category 1 or 2 breast MRIs (negative or probably benign), whereas no category 4 or 5 MRIs (possibly or probably malignant) were observed. Eight subjects had BIRADS 3 results, identifying lesions that were "probably benign", yet prompting further evaluation. One of these subjects was diagnosed with a stage T1aN0M0 invasive ductal carcinoma, and later determined to be a BRCA1 mutation carrier. Conclusion Using medium-strength MRI we were able to detect 1 early breast tumor that was mammographically undetectable among 30 young high-risk women with dense breasts. These results support the concept that breast MRI can enhance surveillance for young high-risk women with dense breasts, and further suggest that a medium-strength instrument is sufficient for this application. For the first time, we demonstrate the use of quantitative breast cancer risk assessment via a combination of the Gail and BRCAPRO models for enrollment in a screening trial.
Collapse
Affiliation(s)
- Wendy S Rubinstein
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Evanston Northwestern Healthcare Center for Medical Genetics, Evanston, IL, USA
| | - Jean J Latimer
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Research Institute, Magee-Womens Hospital, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Jules H Sumkin
- Department of Radiology, Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Michelle Huerbin
- Research Institute, Magee-Womens Hospital, Pittsburgh, PA, USA
- Department of Radiology, Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Stephen G Grant
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Research Institute, Magee-Womens Hospital, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor G Vogel
- Research Institute, Magee-Womens Hospital, Pittsburgh, PA, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|