1
|
Fragoso Costa P, Shi K, Holm S, Vidal-Sicart S, Kracmerova T, Tosi G, Grimm J, Visvikis D, Knapp WH, Gnanasegaran G, van Leeuwen FWB. Surgical radioguidance with beta-emitting radionuclides; challenges and possibilities: A position paper by the EANM. Eur J Nucl Med Mol Imaging 2024; 51:2903-2921. [PMID: 38189911 PMCID: PMC11300492 DOI: 10.1007/s00259-023-06560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024]
Abstract
Radioguidance that makes use of β-emitting radionuclides is gaining in popularity and could have potential to strengthen the range of existing radioguidance techniques. While there is a strong tendency to develop new PET radiotracers, due to favorable imaging characteristics and the success of theranostics research, there are practical challenges that need to be overcome when considering use of β-emitters for surgical radioguidance. In this position paper, the EANM identifies the possibilities and challenges that relate to the successful implementation of β-emitters in surgical guidance, covering aspects related to instrumentation, radiation protection, and modes of implementation.
Collapse
Affiliation(s)
- Pedro Fragoso Costa
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, Essen, Germany.
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Computer Aided Medical Procedures and Augmented Reality, Institute of Informatics I16, Technical University of Munich, Munich, Germany
| | - Soren Holm
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Sergi Vidal-Sicart
- Nuclear Medicine Department, Hospital Clinic Barcelona, Barcelona, Spain
| | - Tereza Kracmerova
- Department of Medical Physics, Motol University Hospital, Prague, Czech Republic
| | - Giovanni Tosi
- Department of Medical Physics, Ospedale U. Parini, Aosta, Italy
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Wolfram H Knapp
- Department of Nuclear Medicine, Medizinische Hochschule Hannover, Hannover, Germany
| | - Gopinath Gnanasegaran
- Institute of Nuclear Medicine, University College London Hospital, Tower 5, 235 Euston Road, London, NW1 2BU, UK
- Royal Free London NHS Foundation Trust Hospital, London, UK
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Van Oosterom MN, Rietbergen DDD, Welling MM, Van Der Poel HG, Maurer T, Van Leeuwen FWB. Recent advances in nuclear and hybrid detection modalities for image-guided surgery. Expert Rev Med Devices 2019; 16:711-734. [PMID: 31287715 DOI: 10.1080/17434440.2019.1642104] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
Abstract
Introduction: Radioguided surgery is an ever-evolving part of nuclear medicine. In fact, this nuclear medicine sub-discipline actively bridges non-invasive molecular imaging with surgical care. Next to relying on the availability of radio- and bimodal-tracers, the success of radioguided surgery is for a large part dependent on the imaging modalities and imaging concepts available for the surgical setting. With this review, we have aimed to provide a comprehensive update of the most recent advances in the field. Areas covered: We have made an attempt to cover all aspects of radioguided surgery: 1) the use of radioisotopes that emit γ, β+, and/or β- radiation, 2) hardware developments ranging from probes to 2D cameras and even the use of advanced 3D interventional imaging solutions, and 3) multiplexing solutions such as dual-isotope detection or combined radionuclear and optical detection. Expert opinion: Technical refinements in the field of radioguided surgery should continue to focus on supporting its implementation in the increasingly complex minimally invasive surgical setting, e.g. by accommodating robot-assisted laparoscopic surgery. In addition, hybrid concepts that integrate the use of radioisotopes with other image-guided surgery modalities such as fluorescence or ultrasound are likely to expand in the future.
Collapse
Affiliation(s)
- Matthias N Van Oosterom
- a Interventional Molecular Imaging laboratory, Department of Radiology, Leiden University Medical Center , Leiden , the Netherlands
- b Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital , Amsterdam , the Netherlands
| | - Daphne D D Rietbergen
- a Interventional Molecular Imaging laboratory, Department of Radiology, Leiden University Medical Center , Leiden , the Netherlands
- c Department of Radiology, Section Nuclear Medicine, Leiden University Medical Center , Leiden , the Netherlands
| | - Mick M Welling
- a Interventional Molecular Imaging laboratory, Department of Radiology, Leiden University Medical Center , Leiden , the Netherlands
| | - Henk G Van Der Poel
- b Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital , Amsterdam , the Netherlands
| | - Tobias Maurer
- d Martini-Clinic, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Fijs W B Van Leeuwen
- a Interventional Molecular Imaging laboratory, Department of Radiology, Leiden University Medical Center , Leiden , the Netherlands
- b Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital , Amsterdam , the Netherlands
- e Orsi Academy , Melle , Belgium
| |
Collapse
|
3
|
Grootendorst MR, Cariati M, Kothari A, Tuch DS, Purushotham A. Cerenkov luminescence imaging (CLI) for image-guided cancer surgery. Clin Transl Imaging 2016; 4:353-366. [PMID: 27738626 PMCID: PMC5037157 DOI: 10.1007/s40336-016-0183-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/29/2016] [Indexed: 12/30/2022]
Abstract
Cerenkov luminescence imaging (CLI) is a novel molecular optical imaging technique based on the detection of optical Cerenkov photons emitted by positron emission tomography (PET) imaging agents. The ability to use clinically approved tumour-targeted tracers in combination with small-sized imaging equipment makes CLI a particularly interesting technique for image-guided cancer surgery. The past few years have witnessed a rapid increase in proof-of-concept preclinical studies in this field, and several clinical trials are currently underway. This article provides an overview of the basic principles of Cerenkov radiation and outlines the challenges of CLI-guided surgery for clinical use. The preclinical and clinical trial literature is examined including applications focussed on image-guided lymph node detection and Cerenkov luminescence endoscopy, and the ongoing clinical studies and technological developments are highlighted. By intraoperatively guiding the oncosurgeon towards more accurate and complete resections, CLI has the potential to transform current surgical practice, and improve oncological and cosmetic outcomes for patients.
Collapse
Affiliation(s)
- M. R. Grootendorst
- Department of Research Oncology, 3rd Floor Bermondsey Wing, King’s College London, London, SE1 9RT UK
- Department of Breast Surgery, 3rd Floor Tower Wing, Guy’s Hospital, London, SE1 9RT UK
| | - M. Cariati
- Department of Research Oncology, 3rd Floor Bermondsey Wing, King’s College London, London, SE1 9RT UK
- Department of Breast Surgery, 3rd Floor Tower Wing, Guy’s Hospital, London, SE1 9RT UK
| | - A. Kothari
- Department of Breast Surgery, 3rd Floor Tower Wing, Guy’s Hospital, London, SE1 9RT UK
| | - D. S. Tuch
- Lightpoint Medical Ltd, The Island, Moor Road, HP5 1NZ Chesham, UK
| | - A. Purushotham
- Department of Research Oncology, 3rd Floor Bermondsey Wing, King’s College London, London, SE1 9RT UK
- Department of Breast Surgery, 3rd Floor Tower Wing, Guy’s Hospital, London, SE1 9RT UK
| |
Collapse
|
4
|
Povoski SP, Hall NC, Murrey DA, Wright CL, Martin EW. Feasibility of a multimodal (18)F-FDG-directed lymph node surgical excisional biopsy approach for appropriate diagnostic tissue sampling in patients with suspected lymphoma. BMC Cancer 2015; 15:378. [PMID: 25953144 PMCID: PMC4426183 DOI: 10.1186/s12885-015-1381-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/28/2015] [Indexed: 11/22/2022] Open
Abstract
Background 18F-FDG PET/CT imaging is widely utilized in the clinical evaluation of patients with suspected or documented lymphoma. The aim was to describe our cumulative experience with a multimodal 18F-FDG-directed lymph node surgical excisional biopsy approach in patients with suspected lymphoma. Methods Thirteen patients (mean age 51 (±16;22–76) years), with suspected new or suspected recurrent lymphoma suggested by 18F-FDG-avid lesions seen on prior diagnostic whole-body PET/CT imaging, were injected IV with 18F-FDG prior to undergoing same-day diagnostic lymph node surgical excisional biopsy in the operating room. Various 18F-FDG detection strategies were used on the day of surgery, including, (1) same-day pre-resection patient PET/CT; (2) intraoperative gamma probe assessment; (3) clinical scanner specimen PET/CT imaging of whole surgically excised tissue specimens; (4) specimen gamma well counts; and/or (5) same-day post-resection patient PET/CT. Results Same-day 18F-FDG injection dose was 14.8 (±2.4;12.5-20.6) millicuries or 548 (±89;463–762) megabecquerels. Sites of 18F-FDG-avid lesions were 4 inguinal, 3 cervical, 3 abdominal/retroperitoneal, 2 axillary, and 1 gluteal region subcutaneous tissue. Same-day pre-resection patient PET/CT was performed on 6 patients. Intraoperative gamma probe assessment was performed on 13 patients. Clinical scanner PET/CT imaging of whole surgically excised tissue specimens was performed in 10 cases. Specimen gamma well counts were performed in 6 cases. Same-day post-resection patient PET/CT imaging was performed on 8 patients. Time from 18F-FDG injection to same-day pre-resection patient PET/CT, intraoperative gamma probe assessment, and same-day post-resection patient PET/CT were 76 (±8;64–84), 240 (±63;168–304), and 487 (±104;331–599) minutes, respectively. Time from 18F-FDG injection to clinical scanner PET/CT of whole surgically excised tissue specimens was 363 (±60;272–446) minutes. Time from 18F-FDG injection to specimen gamma well counts was 591 (±96;420–689) minutes. Intraoperative gamma probe assessment successfully identified 18F-FDG-avid lesions in 12/13 patients. Histopathologic evaluation confirmed lymphoma in 12/13 patients and benign disease in 1/13 patients. Conclusions A multimodal approach to 18F-FDG-directed lymph node surgical excisional biopsy for suspected lymphoma is technically feasible for guiding appropriate diagnostic tissue sampling of lymph nodes seen as 18F-FDG-avid lesions on diagnostic 18F-FDG PET/CT imaging.
Collapse
Affiliation(s)
- Stephen P Povoski
- Division of Surgical Oncology, Department of Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Nathan C Hall
- Division of Molecular Imaging and Nuclear Medicine, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA. .,Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Douglas A Murrey
- Division of Molecular Imaging and Nuclear Medicine, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Chadwick L Wright
- Division of Molecular Imaging and Nuclear Medicine, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Edward W Martin
- Division of Surgical Oncology, Department of Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Hall NC, Nichols SD, Povoski SP, James IAO, Wright CL, Harris R, Schmidt CR, Muscarella P, Latchana N, Martin EW, Ellison EC. Intraoperative Use of a Portable Large Field of View Gamma Camera and Handheld Gamma Detection Probe for Radioguided Localization and Prediction of Complete Surgical Resection of Gastrinoma: Proof of Concept. J Am Coll Surg 2015. [PMID: 26206636 DOI: 10.1016/j.jamcollsurg.2015.03.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Surgical management of Zollinger-Ellison syndrome (ZES) relies on localization and resection of all tumor foci. We describe the benefit of combined intraoperative use of a portable large field of view gamma camera (LFOVGC) and a handheld gamma detection probe (HGDP) for indium-111 ((111)In)-pentetreotide radioguided localization and confirmation of gastrinoma resection in ZES. STUDY DESIGN Five patients (6 cases) with (111)In-pentetreotide-avid ZES were evaluated. Patients were injected with (111)In-pentetreotide for diagnostic imaging the day before surgery. Intraoperatively, an HGDP and LFOVGC were used to localize (111)In-pentetreotide-avid lesions, guide resection, assess specimens for (111)In-pentetreotide activity, and to verify lack of abnormal post-resection surgical field activity. RESULTS Large field of view gamma camera imaging and HGDP-assisted detection were helpful for localization and guided resection of tumor and removal of (111)In-pentetreotide-avid tumor foci in all cases. In 3 of 5 patients (3 of 6 cases), these techniques led to detection and resection of additional tumor foci beyond those detected by standard surgical techniques. The (111)In-pentetreotide-positive or-negative specimens correlated with neuroendocrine tumors or benign pathology, respectively. In one patient with mild residual focal activity on post-resection portable LFOVGC imaging, thought to be artifact, had recurrence of disease in the same area 5 months after surgery. CONCLUSIONS Real-time LFOVGC imaging and HGDP use for surgical management of gastrinoma improve success of localizing and resecting all neuroendocrine tumor-positive tumor foci, providing instantaneous navigational feedback. This approach holds potential for improving long-term patient outcomes in patients with ZES.
Collapse
Affiliation(s)
- Nathan C Hall
- Department of Radiology, College of Public Health, The Ohio State University, Wexner Medical Center, Columbus, OH; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA.
| | - Shawnn D Nichols
- Department of Surgery, College of Public Health, The Ohio State University, Wexner Medical Center, Columbus, OH; Department of Surgery, San Antonio Military Medical Center, Fort Sam Houston, TX
| | - Stephen P Povoski
- Department of Surgery, College of Public Health, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Iyore A O James
- Department of Surgery, College of Public Health, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Chadwick L Wright
- Department of Radiology, College of Public Health, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Randall Harris
- Division of Epidemiology, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Carl R Schmidt
- Department of Surgery, College of Public Health, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Peter Muscarella
- Department of Surgery, College of Public Health, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Nicholas Latchana
- Department of Surgery, College of Public Health, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - Edward W Martin
- Department of Surgery, College of Public Health, The Ohio State University, Wexner Medical Center, Columbus, OH
| | - E Christopher Ellison
- Department of Surgery, College of Public Health, The Ohio State University, Wexner Medical Center, Columbus, OH
| |
Collapse
|
6
|
Chapman GJ, Povoski SP, Hall NC, Murrey DA, Lee R, Martin EW. Comparison of two threshold detection criteria methodologies for determination of probe positivity for intraoperative in situ identification of presumed abnormal 18F-FDG-avid tissue sites during radioguided oncologic surgery. BMC Cancer 2014; 14:667. [PMID: 25218021 PMCID: PMC4171551 DOI: 10.1186/1471-2407-14-667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background Intraoperative in situ identification of 18F-FDG-avid tissue sites during radioguided oncologic surgery remains a significant challenge for surgeons. The purpose of our study was to evaluate the 1.5-to-1 ratiometric threshold criteria method versus the three-sigma statistical threshold criteria method for determination of gamma detection probe positivity for intraoperative in situ identification of presumed abnormal 18F-FDG-avid tissue sites in a manner that was independent of the specific type of gamma detection probe used. Methods From among 52 patients undergoing appropriate in situ evaluation of presumed abnormal 18F-FDG-avid tissue sites during 18F-FDG-directed surgery using 6 available gamma detection probe systems, a total of 401 intraoperative gamma detection probe measurement sets of in situ counts per second measurements were cumulatively taken. Results For the 401 intraoperative gamma detection probe measurement sets, probe positivity was successfully met by the 1.5-to-1 ratiometric threshold criteria method in 150/401 instances (37.4%) and by the three-sigma statistical threshold criteria method in 259/401 instances (64.6%) (P < 0.001). Likewise, the three-sigma statistical threshold criteria method detected true positive results at target-to-background ratios much lower than the 1.5-to-1 target-to-background ratio of the 1.5-to-1 ratiometric threshold criteria method. Conclusions The three-sigma statistical threshold criteria method was significantly better than the 1.5-to-1 ratiometric threshold criteria method for determination of gamma detection probe positivity for intraoperative in situ detection of presumed abnormal 18F-FDG-avid tissue sites during radioguided oncologic surgery. This finding may be extremely important for reshaping the ongoing and future research and development of gamma detection probe systems that are necessary for optimizing the in situ detection of radioisotopes of higher-energy gamma photon emissions used during radioguided oncologic surgery.
Collapse
Affiliation(s)
| | - Stephen P Povoski
- Division of Surgical Oncology, Department of Surgery, Arthur G, James Cancer Hospital and Richard J, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
7
|
Povoski SP, Murrey DA, Smith SM, Martin EW, Hall NC. 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals derived from a single-institution 18F-FDG-directed surgery experience: feasibility and quantification of 18F-FDG accumulation within 18F-FDG-avid lesions and background tissues. BMC Cancer 2014; 14:453. [PMID: 24942656 PMCID: PMC4075626 DOI: 10.1186/1471-2407-14-453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/13/2014] [Indexed: 12/31/2022] Open
Abstract
Background 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality for a wide variety of solid malignancies. Currently, only limited data exists regarding the utility of PET/CT imaging at very extended injection-to-scan acquisition times. The current retrospective data analysis assessed the feasibility and quantification of diagnostic 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals. Methods 18F-FDG-avid lesions (not surgically manipulated or altered during 18F-FDG-directed surgery, and visualized both on preoperative and postoperative 18F-FDG PET/CT imaging) and corresponding background tissues were assessed for 18F-FDG accumulation on same-day preoperative and postoperative 18F-FDG PET/CT imaging. Multiple patient variables and 18F-FDG-avid lesion variables were examined. Results For the 32 18F-FDG-avid lesions making up the final 18F-FDG-avid lesion data set (from among 7 patients), the mean injection-to-scan times of the preoperative and postoperative 18F-FDG PET/CT scans were 73 (±3, 70-78) and 530 (±79, 413-739) minutes, respectively (P < 0.001). The preoperative and postoperative mean 18F-FDG-avid lesion SUVmax values were 7.7 (±4.0, 3.6-19.5) and 11.3 (±6.0, 4.1-29.2), respectively (P < 0.001). The preoperative and postoperative mean background SUVmax values were 2.3 (±0.6, 1.0-3.2) and 2.1 (±0.6, 1.0-3.3), respectively (P = 0.017). The preoperative and postoperative mean lesion-to-background SUVmax ratios were 3.7 (±2.3, 1.5-9.8) and 5.8 (±3.6, 1.6-16.2), respectively, (P < 0.001). Conclusions 18F-FDG PET/CT oncologic imaging can be successfully performed at extended injection-to-scan acquisition time intervals of up to approximately 5 half-lives for 18F-FDG while maintaining good/adequate diagnostic image quality. The resultant increase in the 18F-FDG-avid lesion SUVmax values, decreased background SUVmax values, and increased lesion-to-background SUVmax ratios seen from preoperative to postoperative 18F-FDG PET/CT imaging have great potential for allowing for the integrated, real-time use of 18F-FDG PET/CT imaging in conjunction with 18F-FDG-directed interventional radiology biopsy and ablation procedures and 18F-FDG-directed surgical procedures, as well as have far-reaching impact on potentially re-shaping future thinking regarding the “most optimal” injection-to-scan acquisition time interval for all routine diagnostic 18F-FDG PET/CT oncologic imaging.
Collapse
Affiliation(s)
- Stephen P Povoski
- Division of Surgical Oncology, Department of Surgery, Arthur G, James Cancer Hospital and Richard J, Solove Research Institute and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|