1
|
Wang J, Calizo A, Zhang L, Pino JC, Lyu Y, Pollard K, Zhang X, Larsson AT, Conniff E, Llosa NJ, Wood DK, Largaespada DA, Moody SE, Gosline SJ, Hirbe AC, Pratilas CA. CDK4/6 inhibition enhances SHP2 inhibitor efficacy and is dependent upon RB function in malignant peripheral nerve sheath tumors. SCIENCE ADVANCES 2023; 9:eadg8876. [PMID: 38000020 PMCID: PMC10672174 DOI: 10.1126/sciadv.adg8876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive soft tissue sarcomas with limited treatment options, and new effective therapeutic strategies are desperately needed. We observe antiproliferative potency of genetic depletion of PTPN11 or pharmacological inhibition using the SHP2 inhibitor (SHP2i) TNO155. Our studies into the signaling response to SHP2i reveal that resistance to TNO155 is partially mediated by reduced RB function, and we therefore test the addition of a CDK4/6 inhibitor (CDK4/6i) to enhance RB activity and improve TNO155 efficacy. In combination, TNO155 attenuates the adaptive response to CDK4/6i, potentiates its antiproliferative effects, and converges on enhancement of RB activity, with greater suppression of cell cycle and inhibitor-of-apoptosis proteins, leading to deeper and more durable antitumor activity in in vitro and in vivo patient-derived models of MPNST, relative to either single agent. Overall, our study provides timely evidence to support the clinical advancement of this combination strategy in patients with MPNST and other tumors driven by loss of NF1.
Collapse
Affiliation(s)
- Jiawan Wang
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ana Calizo
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindy Zhang
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James C. Pino
- Pacific Northwest National Laboratory (PNNL), Seattle, WA, USA
| | - Yang Lyu
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Kai Pollard
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaochun Zhang
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Alex T. Larsson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Eric Conniff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicolas J. Llosa
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David A. Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Susan E. Moody
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Sara J. Gosline
- Pacific Northwest National Laboratory (PNNL), Seattle, WA, USA
| | - Angela C. Hirbe
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Christine A. Pratilas
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Wang J, Calizo A, Zhang L, Pino JC, Lyu Y, Pollard K, Zhang X, Larsson AT, Conniff E, Llosa N, Wood DK, Largaespada DA, Moody SE, Gosline SJ, Hirbe AC, Pratilas CA. CDK4/6 inhibition enhances SHP2 inhibitor efficacy and is dependent upon restoration of RB function in malignant peripheral nerve sheath tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526674. [PMID: 36778419 PMCID: PMC9915673 DOI: 10.1101/2023.02.02.526674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft tissue sarcomas with limited treatment options, and novel effective therapeutic strategies are desperately needed. We observe anti-proliferative efficacy of genetic depletion or pharmacological inhibition using the clinically available SHP2 inhibitor (SHP2i) TNO155. Our studies into the signaling response to SHP2i reveal that resistance to TNO155 is partially mediated by reduced RB function, and we therefore test the addition of a CDK4/6 inhibitor (CDK4/6i) to enhance RB activity and improve TNO155 efficacy. In combination, TNO155 attenuates the adaptive response to CDK4/6i, potentiates its anti-proliferative effects, and converges on enhancement of RB activity, with greater suppression of cell cycle and inhibitor-of-apoptosis proteins, leading to deeper and more durable anti-tumor activity in in vitro and in vivo patient-derived models of MPNST, relative to either single agent. Overall, our study provides timely evidence to support the clinical advancement of this combination strategy in patients with MPNST and other tumors driven by loss of NF1.
Collapse
Affiliation(s)
- Jiawan Wang
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Ana Calizo
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Lindy Zhang
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - James C. Pino
- Pacific Northwest National Laboratory; Seattle, WA, USA
| | - Yang Lyu
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University in St. Louis; St. Louis, MO, USA
| | - Kai Pollard
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Xiaochun Zhang
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University in St. Louis; St. Louis, MO, USA
| | - Alex T. Larsson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota; Minneapolis, MN, USA
| | - Eric Conniff
- Department of Biomedical Engineering, University of Minnesota; Minneapolis, MN, USA
| | - Nicolas Llosa
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota; Minneapolis, MN, USA
| | - David A. Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota; Minneapolis, MN, USA
| | - Susan E. Moody
- Novartis Institutes for Biomedical Research; Cambridge, MA, USA
| | | | - Angela C. Hirbe
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University in St. Louis; St. Louis, MO, USA
| | - Christine A. Pratilas
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology and Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| |
Collapse
|
3
|
Lugo-Fagundo E, Lugo-Fagundo C, Weisberg E, Fishman EK. CT of malignant peripheral nerve sheath tumor. Radiol Case Rep 2023; 18:620-623. [DOI: 10.1016/j.radcr.2022.10.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 12/02/2022] Open
|
4
|
Muacevic A, Adler JR, Qiao J. Primary Urethral Malignant Peripheral Neural Sheath Tumor in a 58-Year-Old Female in the Absence of Neurofibromatosis Type 1. Cureus 2022; 14:e32634. [PMID: 36654587 PMCID: PMC9842070 DOI: 10.7759/cureus.32634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 12/23/2022] Open
Abstract
A malignant peripheral neural sheath tumor (MPNST) is a malignant soft tissue neoplasm with cellular origin arising from the outer lining of peripheral nerves. Approximately 10 cases have been identified to date where the lower urinary tract was affected. We discuss the case of a female patient that presented with primary MPNST that arose in the urethral tract in the absence of neurofibromatosis type 1 (NF1) or prior malignancies. This patient presented with pain and acute urinary tract symptoms secondary to urethral obstruction by a protruding vaginal mass. The patient underwent an incomplete initial resection to alleviate symptoms and to obtain a tissue diagnosis. Three months after the first hospitalization, the patient was re-hospitalized due to the recurrence of symptoms and subsequently underwent a complete tumor excision. The initial resection showed a 7.0 x 4.5 x 4.5 cm aggregate of tan-red to gray tumor masses. Microscopic examination showed a spindle cell neoplasm with malignant cytological features (hypercellularity, atypical mitoses, nuclear pleomorphism, and indistinct borders). Tumor cells stained positive for SOX10, S-100 (10% of tumor), with a "mosaic pattern" of H3K27ME3 (50% of tumor nuclei positive). Other lineage-specific and keratin markers stained negative. In the absence of other patient known primaries, the findings were consistent with a primary MPNST of the urinary tract. Residual tumor was identified on MRI scans one month after the follow-up. The completely excised tumor specimen on the second admission showed identical morphology when compared to the first specimen. While MPNSTs typically carry a poor prognosis, knowledge of behavior and prognosis of primary MPNSTs in the bladder is limited, due to the few relative numbers of available case reports. Further research is needed to study the clinical behavior, morphology, immunophenotypes, and genetics of primary MPNSTs arising from the lower urinary tract.
Collapse
|
5
|
Knockdown of NCOR2 Inhibits Cell Proliferation via BDNF/TrkB/ERK in NF1-Derived MPNSTs. Cancers (Basel) 2022; 14:cancers14235798. [PMID: 36497280 PMCID: PMC9738545 DOI: 10.3390/cancers14235798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
(1) Background: malignant peripheral nerve sheath tumours (MPNSTs) are aggressive Schwann cell-derived sarcomas with dismal prognoses. Previous studies have shown that nuclear receptor corepressor 2 (NCOR2) plays a vital role in neurodevelopment and in various tumours. However, the impact of NCOR2 on the progression of MPNST remains unclear. (2) Methods: by GEO database, MPNST tissue microarray, and NF1-related tumour tissues and cell lines were used to explore NCOR2 expression level in the MPNSTs. The role and mechanism of NCOR2 in NF1-derived MPNSTs were explored by experiments in vivo and in vitro and by transcriptome high-throughput sequencing. (3) Results: NCOR2 expression is significantly elevated in NF1-derived MPNSTs and is associated with patient 10-year survival time. Knockdown of NCOR2 suppressed NF1-derived MPNST cell proliferation by blocking the cell cycle in the G0/G1 phase. Moreover, decreased NCOR2 expression could down-regulate MAPK signal activity through the BDNF/TrkB pathway. (4) Conclusions: our findings demonstrated that NCOR2 expression is significantly elevated in NF1-derived MPNSTs. NCOR2 knockdown can inhibit NF1-derived MPNST cell proliferation by weakened BDNF/TrkB/ERK signalling. Targeting NF1-derived MPNSTs with TrkB inhibitors, or in combination with ERK inhibitors, may be a novel therapeutic strategy for clinical trials.
Collapse
|
6
|
Zhou HY, Jiang S, Ma FX, Lu H. Peripheral nerve tumors of the hand: Clinical features, diagnosis, and treatment. World J Clin Cases 2020; 8:5086-5098. [PMID: 33269245 PMCID: PMC7674743 DOI: 10.12998/wjcc.v8.i21.5086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
The majority of the tumors arising from the peripheral nerves of the hand are relatively benign. However, a tumor diagnosed as malignant peripheral nerve sheath tumor (MPNST) has destructive consequences. Clinical signs and symptoms are usually caused by direct and indirect effects of the tumor, such as nerve invasion or compression and infiltration of surrounding tissues. Definitive diagnosis is made by tumor biopsy. Complete surgical removal with maximum reservation of residual neurologic function is the most appropriate intervention for most symptomatic benign peripheral nerve tumors (PNTs) of the hand; however, MPNSTs require surgical resection with a sufficiently wide margin or even amputation to improve prognosis. In this article, we review the clinical presentation and radiographic features, summarize the evidence for an accurate diagnosis, and discuss the available treatment options for PNTs of the hand.
Collapse
Affiliation(s)
- Hai-Ying Zhou
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Shuai Jiang
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Fei-Xia Ma
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
7
|
Wang J, Pollard K, Allen AN, Tomar T, Pijnenburg D, Yao Z, Rodriguez FJ, Pratilas CA. Combined Inhibition of SHP2 and MEK Is Effective in Models of NF1-Deficient Malignant Peripheral Nerve Sheath Tumors. Cancer Res 2020; 80:5367-5379. [PMID: 33032988 DOI: 10.1158/0008-5472.can-20-1365] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
Loss of the RAS GTPase-activating protein (RAS-GAP) NF1 drives aberrant activation of RAS/MEK/ERK signaling and other effector pathways in the majority of malignant peripheral nerve sheath tumors (MPNST). These dysregulated pathways represent potential targets for therapeutic intervention. However, studies of novel single agents including MEK inhibitors (MEKi) have demonstrated limited efficacy both preclinically and clinically, with little advancement in overall patient survival. By interrogation of kinome activity through an unbiased screen and targeted evaluation of the signaling response to MEK inhibition, we have identified global activation of upstream receptor tyrosine kinases (RTK) that converges on activation of RAS as a mechanism to limit sensitivity to MEK inhibition. As no direct inhibitors of pan-RAS were available, an inhibitor of the protein tyrosine phosphatase SHP2, a critical mediator of RAS signal transduction downstream of multiple RTK, represented an alternate strategy. The combination of MEKi plus SHP099 was superior to MEKi alone in models of NF1-MPNST, including those with acquired resistance to MEKi. Our findings have immediate translational implications and may inform future clinical trials for patients with MPNST harboring alterations in NF1. SIGNIFICANCE: Combined inhibition of MEK and SHP2 is effective in models of NF1-MPNST, both those naïve to and those resistant to MEKi, as well as in the MPNST precursor lesion plexiform neurofibroma.
Collapse
Affiliation(s)
- Jiawan Wang
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kai Pollard
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amy N Allen
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tushar Tomar
- PamGene International BV, 's-Hertogenbosch, the Netherlands
| | | | - Zhan Yao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fausto J Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine A Pratilas
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
8
|
Tabata MM, Li S, Knight P, Bakker A, Sarin KY. Phenotypic heterogeneity of neurofibromatosis type 1 in a large international registry. JCI Insight 2020; 5:136262. [PMID: 32814709 PMCID: PMC7455126 DOI: 10.1172/jci.insight.136262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a rare genetic disorder, characterized by the development of benign and malignant nerve tumors. Although all individuals with NF1 harbor genetic alterations in the same gene, the clinical manifestations of NF1 are extremely heterogeneous even among individuals who carry identical genetic defects. In order to deepen the understanding of phenotypic manifestations in NF1, we comprehensively characterized the prevalence of 18 phenotypic traits in 2051 adults with NF1 from the Children's Tumor Foundation's NF1 registry. We further investigated the coassociation of traits and found positive correlations between spinal neurofibromas and pain, spinal neurofibromas and scoliosis, spinal neurofibromas and optic gliomas, and optic gliomas and sphenoid wing dysplasia. Furthermore, with increasing numbers of cutaneous neurofibromas, the odds ratio of malignant peripheral nerve sheath tumor increased. Phenotypic clustering revealed 6 phenotypic patient cluster subtypes: mild, freckling predominant, neurofibroma predominant, skeletal predominant, late-onset neural severe, and early-onset neural severe, highlighting potential phenotypic subtypes within NF1. Together, our results support potential shared molecular pathogenesis for certain clinical manifestations and illustrate the utility of disease registries for understanding rare diseases.
Collapse
Affiliation(s)
- Mika M. Tabata
- Department of Dermatology, Stanford University School of Medicine, Redwood City, California, USA
| | - Shufeng Li
- Department of Dermatology, Stanford University School of Medicine, Redwood City, California, USA
| | - Pamela Knight
- Children’s Tumor Foundation, New York, New York, USA
| | | | - Kavita Y. Sarin
- Department of Dermatology, Stanford University School of Medicine, Redwood City, California, USA
| |
Collapse
|
9
|
Chen A, Wang T, Xu X. Giant Malignant Peripheral Nerve Sheath Tumor of the Head and Neck: A Case Report and Literature Review. EAR, NOSE & THROAT JOURNAL 2020; 100:624S-628S. [PMID: 31914814 DOI: 10.1177/0145561319897645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a malignant soft tissue sarcoma with high mortality, low morbidity, and poor prognosis. The MPNST occurs mostly in the limbs and torso, and rarely in the head and neck. However, MPNST is insensitive to radiotherapy and chemotherapy, and complete surgical resection with negative margin is the most important and effective strategy. We present a case of MPNST in the head and neck. The tumor invades the left temporal bone, petrous bone, and mastoid bone, and compression changes in the focal cerebellum and sigmoid sinus. The patient underwent the left temporal region tumor resection + surgical reconstruction with temporalis muscle flap and pectoralis major myocutaneous flap. Adjuvant radiotherapy (55 Gy) was given after surgery, and there were no local recurrence and distant metastasis after 31-month follow-up.
Collapse
Affiliation(s)
- Anju Chen
- Department of Otolaryngology-Head and Neck Surgery, 12465Peking University Civil Aviation School of Clinical Medicine, Beijing, China
| | - Tiantian Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Civil Aviation General Hospital, Beijing, China
| | - Xianfa Xu
- Department of Otolaryngology-Head and Neck Surgery, 12465Peking University Civil Aviation School of Clinical Medicine, Beijing, China
| |
Collapse
|
10
|
James AW, Shurell E, Singh A, Dry SM, Eilber FC. Malignant Peripheral Nerve Sheath Tumor. Surg Oncol Clin N Am 2018; 25:789-802. [PMID: 27591499 DOI: 10.1016/j.soc.2016.05.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is the sixth most common type of soft tissue sarcoma. Most MPNSTs arise in association with a peripheral nerve or preexisting neurofibroma. Neurofibromatosis type is the most important risk factor for MPNST. Tumor size and fludeoxyglucose F 18 avidity are among the most helpful parameters to distinguish MPNST from a benign peripheral nerve sheath tumor. The histopathologic diagnosis is predominantly a diagnosis of light microscopy. Immunohistochemical stains are most helpful to distinguish high-grade MPNST from its histologic mimics. Current surgical management of high-grade MPNST is similar to that of other high-grade soft tissue sarcomas.
Collapse
Affiliation(s)
- Aaron W James
- Department of Pathology, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 21287-6417, USA
| | - Elizabeth Shurell
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Arun Singh
- Sarcoma Service, Division of Hematology/Oncology, University of California, Los Angeles, 2825 Santa Monica Boulevard, Suite 213 TORL, Santa Monica, CA 90404, USA
| | - Sarah M Dry
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Box 951732, 13-145D CHS, Los Angeles, CA 90095-1732, USA
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, 10833 LeConte Avenue, Room 54-140 CHS, Los Angeles, CA 90095-1782, USA.
| |
Collapse
|