1
|
Byrne DP, Keeshan B, Hosgood G, Adler A, Mosing M. Comparison of electrical impedance tomography and spirometry-based measures of airflow in healthy adult horses. Front Physiol 2023; 14:1164646. [PMID: 37476683 PMCID: PMC10354512 DOI: 10.3389/fphys.2023.1164646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Electrical impedance tomography (EIT) is a non-invasive diagnostic tool for evaluating lung function. The objective of this study was to compare respiratory flow variables calculated from thoracic EIT measurements with corresponding spirometry variables. Ten healthy research horses were sedated and instrumented with spirometry via facemask and a single-plane EIT electrode belt around the thorax. Horses were exposed to sequentially increasing volumes of apparatus dead space between 1,000 and 8,500 mL, in 5-7 steps, to induce carbon dioxide rebreathing, until clinical hyperpnea or a tidal volume of 150% baseline was reached. A 2-min stabilization period followed by 2 minutes of data collection occurred at each timepoint. Peak inspiratory and expiratory flow, inspiratory and expiratory time, and expiratory nadir flow, defined as the lowest expiratory flow between the deceleration of flow of the first passive phase of expiration and the acceleration of flow of the second active phase of expiration were evaluated with EIT and spirometry. Breathing pattern was assessed based on the total impedance curve. Bland-Altman analysis was used to evaluate the agreement where perfect agreement was indicated by a ratio of EIT:spirometry of 1.0. The mean ratio (bias; expressed as a percentage difference from perfect agreement) and the 95% confidence interval of the bias are reported. There was good agreement between EIT-derived and spirometry-derived peak inspiratory [-15% (-46-32)] and expiratory [10% (-32-20)] flows and inspiratory [-6% (-25-18)] and expiratory [5% (-9-20)] times. Agreement for nadir flows was poor [-22% (-87-369)]. Sedated horses intermittently exhibited Cheyne-Stokes variant respiration, and a breath pattern with incomplete expiration in between breaths (crown-like breaths). Electrical impedance tomography can quantify airflow changes over increasing tidal volumes and changing breathing pattern when compared with spirometry in standing sedated horses.
Collapse
Affiliation(s)
- David P. Byrne
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Ben Keeshan
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Giselle Hosgood
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Andy Adler
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Martina Mosing
- Anaesthesiology and Perioperative Intensive Care, Department for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
2
|
Zhang Z, Zhang L, Zhu J, Dong J, Liu H. Effect of electrical impedance-guided PEEP in reducing pulmonary complications after craniotomy: study protocol for a randomized controlled trial. Trials 2022; 23:837. [PMID: 36183099 PMCID: PMC9526950 DOI: 10.1186/s13063-022-06751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Objective The purpose of this study is to explore whether electrical impedance tomography (EIT)-guided individualized positive end-expiratory pressure (PEEP) can reduce the incidence of pulmonary complications within 1 week following a craniotomy compared with a single PEEP (PEEP = 6 cmH2O) from dura suturing to extubation. Methods A randomized controlled trial will be conducted at the Second Affiliated Hospital of Soochou University. Five hundred forty patients undergoing a craniotomy in the supine position will be randomly allocated into the P6 (PEEP = 6 cmH2O) or Pi (individualized PEEP) group. Both groups of patients will receive a lung recruitment maneuver before suturing the dura. Then, the P6 group will receive 6 cmH2O PEEP, and the Pi group will receive EIT-guided individualized PEEP. The incidence and severity score of pulmonary complications within 1 week following surgery, the lung ultrasound score (LUS), regional cerebral oxygen saturation (rScO2), and PaO2/FiO2 before anesthesia (T0), 10 min after extubation (T1), 24 h after extubation (T2), and 72 h after extubation (T3) will be compared between the two groups. The duration of surgery and anesthesia, the level and duration of PEEP during surgery, the volume of liquid intake and output during surgery, and the postoperative ICU and hospital stays will be recorded. The main outcome of this study will be the incidence of pulmonary complications within 1 week after surgery. Discussion The purposes of this study are to determine whether EIT-guided individualized PEEP from the beginning of dura suturing to extubation reduces the incidence of pulmonary complications within 1 week after a craniotomy compared with a single constant PEEP and to evaluate the length of ICU and hospital stays. If our results are positive, this study will show that EIT-guided individualized PEEP is better than a single constant PEEP and can further improve the prognosis of neurosurgical patients and reduce hospitalization costs, which will promote the wide application of individualized PEEP in clinical anesthesia. Trial registration Chinese Clinical Trial Registry CHiCTR2100051200. Registered on 15 September 2021. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06751-6.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Lianqin Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Hairui Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
3
|
Brabant OA, Byrne DP, Sacks M, Moreno Martinez F, Raisis AL, Araos JB, Waldmann AD, Schramel JP, Ambrosio A, Hosgood G, Braun C, Auer U, Bleul U, Herteman N, Secombe CJ, Schoster A, Soares J, Beazley S, Meira C, Adler A, Mosing M. Thoracic Electrical Impedance Tomography-The 2022 Veterinary Consensus Statement. Front Vet Sci 2022; 9:946911. [PMID: 35937293 PMCID: PMC9354895 DOI: 10.3389/fvets.2022.946911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical impedance tomography (EIT) is a non-invasive real-time non-ionising imaging modality that has many applications. Since the first recorded use in 1978, the technology has become more widely used especially in human adult and neonatal critical care monitoring. Recently, there has been an increase in research on thoracic EIT in veterinary medicine. Real-time imaging of the thorax allows evaluation of ventilation distribution in anesthetised and conscious animals. As the technology becomes recognised in the veterinary community there is a need to standardize approaches to data collection, analysis, interpretation and nomenclature, ensuring comparison and repeatability between researchers and studies. A group of nineteen veterinarians and two biomedical engineers experienced in veterinary EIT were consulted and contributed to the preparation of this statement. The aim of this consensus is to provide an introduction to this imaging modality, to highlight clinical relevance and to include recommendations on how to effectively use thoracic EIT in veterinary species. Based on this, the consensus statement aims to address the need for a streamlined approach to veterinary thoracic EIT and includes: an introduction to the use of EIT in veterinary species, the technical background to creation of the functional images, a consensus from all contributing authors on the practical application and use of the technology, descriptions and interpretation of current available variables including appropriate statistical analysis, nomenclature recommended for consistency and future developments in thoracic EIT. The information provided in this consensus statement may benefit researchers and clinicians working within the field of veterinary thoracic EIT. We endeavor to inform future users of the benefits of this imaging modality and provide opportunities to further explore applications of this technology with regards to perfusion imaging and pathology diagnosis.
Collapse
Affiliation(s)
- Olivia A. Brabant
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - David P. Byrne
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Muriel Sacks
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | | | - Anthea L. Raisis
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Joaquin B. Araos
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Andreas D. Waldmann
- Department of Anaesthesiology and Intensive Care Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Johannes P. Schramel
- Department of Anaesthesiology and Perioperative Intensive Care Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Aline Ambrosio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Giselle Hosgood
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Christina Braun
- Department of Anaesthesiology and Perioperative Intensive Care Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ulrike Auer
- Department of Anaesthesiology and Perioperative Intensive Care Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ulrike Bleul
- Clinic of Reproductive Medicine, Department of Farm Animals, Vetsuisse-Faculty University Zurich, Zurich, Switzerland
| | - Nicolas Herteman
- Clinic for Equine Internal Medicine, Equine Hospital, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Cristy J. Secombe
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Angelika Schoster
- Clinic for Equine Internal Medicine, Equine Hospital, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Joao Soares
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Shannon Beazley
- Department of Small Animal Clinical Sciences, Western College Veterinary Medicine, Saskatoon, SK, Canada
| | - Carolina Meira
- Department of Clinical Diagnostics and Services, Anaesthesiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Andy Adler
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Martina Mosing
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| |
Collapse
|
4
|
Secombe C, Adler A, Hosgood G, Raisis A, Mosing M. Can bronchoconstriction and bronchodilatation in horses be detected using electrical impedance tomography? J Vet Intern Med 2021; 35:2035-2044. [PMID: 33977584 PMCID: PMC8295671 DOI: 10.1111/jvim.16152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Electrical impedance tomography (EIT) generates images of the lungs based on impedance change and was able to detect changes in airflow after histamine challenge in horses. OBJECTIVES To confirm that EIT can detect histamine-provoked changes in airflow and subsequent drug-induced bronchodilatation. Novel EIT flow variables were developed and examined for changes in airflow. METHODS Bronchoconstriction was induced using stepwise histamine bronchoprovocation in 17 healthy sedated horses. The EIT variables were recorded at baseline, after saline nebulization (control), at the histamine concentration causing bronchoconstriction (Cmax ) and 2 and 10 minutes after albuterol (salbutamol) administration. Peak global inspiratory (PIFEIT ) and peak expiratory EIT (PEFEIT ) flow, slope of the global expiratory flow-volume curve (FVslope ), steepest FVslope over all pixels in the lung field, total impedance change (surrogate for tidal volume; VTEIT ) and intercept on the expiratory FV curve normalized to VTEIT (FVintercept /VTEIT ) were indexed to baseline and analyzed for a difference from the control, at Cmax , 2 and 10 minutes after albuterol. Multiple linear regression explored the explanation of the variance of Δflow, a validated variable to evaluate bronchoconstriction using all EIT variables. RESULTS At Cmax , PIFEIT , PEFEIT , and FVslope significantly increased whereas FVintercept /VT decreased. All variables returned to baseline 10 minutes after albuterol. The VTEIT did not change. Multivariable investigation suggested 51% of Δflow variance was explained by a combination of PIFEIT and PEFEIT . CONCLUSIONS AND CLINICAL IMPORTANCE Changes in airflow during histamine challenge and subsequent albuterol administration could be detected by various EIT flow volume variables.
Collapse
Affiliation(s)
- Cristy Secombe
- School of Veterinary Medicine, Murdoch UniversityPerthAustralia
| | - Andy Adler
- Systems and Computer Engineering, Carleton UniversityOttawaCanada
| | - Giselle Hosgood
- School of Veterinary Medicine, Murdoch UniversityPerthAustralia
| | - Anthea Raisis
- School of Veterinary Medicine, Murdoch UniversityPerthAustralia
| | - Martina Mosing
- School of Veterinary Medicine, Murdoch UniversityPerthAustralia
| |
Collapse
|
5
|
Secombe C, Waldmann AD, Hosgood G, Mosing M. Evaluation of histamine-provoked changes in airflow using electrical impedance tomography in horses. Equine Vet J 2020; 52:556-563. [PMID: 31793056 DOI: 10.1111/evj.13216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/23/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Electrical impedance tomography (EIT) generates thoracic impedance images of the lungs and has been used to assess ventilation in horses. This technique may have application in the detection of changes in airflow associated with equine asthma. OBJECTIVES The objective was to determine if histamine-induced airflow changes observed with flowmetric plethysmography (Δflow) could also be explained using global and regional respiratory gas flow signals calculated from EIT signals. STUDY DESIGN Experimental in vivo study. METHODS Six horses, sedated using detomidine were fitted with a thoracic EIT belt and flowmetric plethysmography hardware. Saline (baseline = BL) and increasing concentrations of histamine (C1-4) were nebulised into the face mask until a change in breathing pattern was clinically confirmed and Δflow increased greater or equal to 50%. After nebulisation Δflow and EIT images were recorded over 3 minutes and peak global inspiratory (InFglobal ) and expiratory (ExFglobal ) flow as well as peak regional expiratory and inspiratory flow for the dorsal and the ventral area of the right and left lungs were evaluated. Delta flow, InFglobal and ExFglobal at subsequent concentrations were indexed to baseline (yi = Ci /BL-1). Indexed and nonindexed variables were evaluated for a difference from baseline at sequential histamine doses (time). Multiple linear regression assessment of variance in delta flow was also investigated. RESULTS Consistent with histamine-provoked increases in Δflow, the global flow indices increased significantly. A significant increase in regional inspiratory flow was seen in the right and left ventral lung and dorsal right lung. Multiple regression revealed that the variance in ExFglobal , and right and left ventral expiratory flow best explained the variance in Δflow (r2 = .82). MAIN LIMITATIONS Low number of horses and horses were healthy. CONCLUSIONS Standardised changes in airflow during histamine challenge could be detected using EIT gas flow variables.
Collapse
Affiliation(s)
- Cristy Secombe
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Andreas D Waldmann
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Giselle Hosgood
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| | - Martina Mosing
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Australia
| |
Collapse
|
6
|
Chen GQ, Sun XM, Wang YM, Zhou YM, Chen JR, Cheng KM, Yang YL, Zhou JX. Additional Expiratory Resistance Elevates Airway Pressure and Lung Volume during High-Flow Tracheal Oxygen via Tracheostomy. Sci Rep 2019; 9:14542. [PMID: 31601935 PMCID: PMC6787229 DOI: 10.1038/s41598-019-51158-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/25/2019] [Indexed: 11/26/2022] Open
Abstract
The standard high-flow tracheal (HFT) interface was modified by adding a 5-cm H2O/L/s resistor to the expiratory port. First, in a test lung simulating spontaneous breathing, we found that the modified HFT caused an elevation in airway pressure as a power function of flow. Then, three tracheal oxygen treatments (T-piece oxygen at 10 L/min, HFT and modified HFT at 40 L/min) were delivered in a random crossover fashion to six tracheostomized pigs before and after the induction of lung injury. The modified HFT induced a significantly higher airway pressure compared with that in either T-piece or HFT (p < 0.001). Expiratory resistance significantly increased during modified HFT (p < 0.05) to a mean value of 4.9 to 6.7 cm H2O/L/s. The modified HFT induced significant augmentation in end-expiratory lung volume (p < 0.05) and improved oxygenation for lung injury model (p = 0.038) compared with the HFT and T-piece. There was no significant difference in esophageal pressure swings, transpulmonary driving pressure or pressure time product among the three treatments (p > 0.05). In conclusion, the modified HFT with additional expiratory resistance generated a clinically relevant elevation in airway pressure and lung volume. Although expiratory resistance increased, inspiratory effort, lung stress and work of breathing remained within an acceptable range.
Collapse
Affiliation(s)
- Guang-Qiang Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu-Mei Sun
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Mei Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi-Min Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing-Ran Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kun-Ming Cheng
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Mauri T, Spinelli E, Dalla Corte F, Scotti E, Turrini C, Lazzeri M, Alban L, Albanese M, Tortolani D, Wang YM, Spadaro S, Zhou JX, Pesenti A, Grasselli G. Noninvasive assessment of airflows by electrical impedance tomography in intubated hypoxemic patients: an exploratory study. Ann Intensive Care 2019; 9:83. [PMID: 31332551 PMCID: PMC6646434 DOI: 10.1186/s13613-019-0560-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/17/2019] [Indexed: 11/05/2022] Open
Abstract
Background Noninvasive monitoring of maximal inspiratory and expiratory flows (MIF and MEF, respectively) by electrical impedance tomography (EIT) might enable early recognition of changes in the mechanical properties of the respiratory system due to new conditions or in response to treatments. We aimed to validate EIT-based measures of MIF and MEF against spirometry in intubated hypoxemic patients during controlled ventilation and spontaneous breathing. Moreover, regional distribution of maximal airflows might interact with lung pathology and increase the risk of additional ventilation injury. Thus, we also aimed to describe the effects of mechanical ventilation settings on regional MIF and MEF. Methods We performed a new analysis of data from two prospective, randomized, crossover studies. We included intubated patients admitted to the intensive care unit with acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS) undergoing pressure support ventilation (PSV, n = 10) and volume-controlled ventilation (VCV, n = 20). We measured MIF and MEF by spirometry and EIT during six different combinations of ventilation settings: higher vs. lower support during PSV and higher vs. lower positive end-expiratory pressure (PEEP) during both PSV and VCV. Regional airflows were assessed by EIT in dependent and non-dependent lung regions, too. Results MIF and MEF measured by EIT were tightly correlated with those measured by spirometry during all conditions (range of R2 0.629–0.776 and R2 0.606–0.772, respectively, p < 0.05 for all), with clinically acceptable limits of agreement. Higher PEEP significantly improved homogeneity in the regional distribution of MIF and MEF during volume-controlled ventilation, by increasing airflows in the dependent lung regions and lowering them in the non-dependent ones. Conclusions EIT provides accurate noninvasive monitoring of MIF and MEF. The present study also generates the hypothesis that EIT could guide PSV and PEEP settings aimed to increase homogeneity of distending and deflating regional airflows. Electronic supplementary material The online version of this article (10.1186/s13613-019-0560-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy. .,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Francesca Dalla Corte
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Eleonora Scotti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cecilia Turrini
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Marta Lazzeri
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Laura Alban
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Marco Albanese
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Donatella Tortolani
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Yu-Mei Wang
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Savino Spadaro
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Ferrara, Italy
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Bronzwaer ASGT, Verbree J, Stok WJ, Daemen MJAP, van Buchem MA, van Osch MJP, van Lieshout JJ. Aging modifies the effect of cardiac output on middle cerebral artery blood flow velocity. Physiol Rep 2018; 5:5/17/e13361. [PMID: 28912128 PMCID: PMC5599856 DOI: 10.14814/phy2.13361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022] Open
Abstract
An association between cerebral blood flow (CBF) and cardiac output (CO) has been established in young healthy subjects. As of yet it is unclear how this association evolves over the life span. To that purpose, we continuously recorded mean arterial pressure (MAP; finger plethysmography), CO (pulse contour; CO‐trek), mean blood flow velocity in the middle cerebral artery (MCAV; transcranial Doppler ultrasonography), and end‐tidal CO2 partial pressure (PetCO2) in healthy young (19–27 years), middle‐aged (51–61 years), and elderly subjects (70–79 years). Decreases and increases in CO were accomplished using lower body negative pressure and dynamic handgrip exercise, respectively. Aging in itself did not alter dynamic cerebral autoregulation or cerebrovascular CO2 reactivity. A linear relation between changes in CO and MCAVmean was observed in middle‐aged (P < 0.01) and elderly (P = 0.04) subjects but not in young (P = 0.45) subjects, taking concurrent changes in MAP and PetCO2 into account. These data imply that with aging, brain perfusion becomes increasingly dependent on CO.
Collapse
Affiliation(s)
- Anne-Sophie G T Bronzwaer
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jasper Verbree
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wim J Stok
- Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Johannes J van Lieshout
- Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands .,Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
9
|
Mauri T, Turrini C, Eronia N, Grasselli G, Volta CA, Bellani G, Pesenti A. Physiologic Effects of High-Flow Nasal Cannula in Acute Hypoxemic Respiratory Failure. Am J Respir Crit Care Med 2017; 195:1207-1215. [DOI: 10.1164/rccm.201605-0916oc] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, IRCCS (Institute for Treatment and Research) Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cecilia Turrini
- Department of Anesthesia, Critical Care and Emergency, IRCCS (Institute for Treatment and Research) Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
- Department of Morphology, Surgery and Experimental Medicine, Section of Anesthesia and Intensive Care, University of Ferrara, Ferrara, Italy
| | - Nilde Eronia
- Department of Emergency, San Gerardo Hospital, Monza, Italy; and
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, IRCCS (Institute for Treatment and Research) Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Carlo Alberto Volta
- Department of Morphology, Surgery and Experimental Medicine, Section of Anesthesia and Intensive Care, University of Ferrara, Ferrara, Italy
| | - Giacomo Bellani
- Department of Emergency, San Gerardo Hospital, Monza, Italy; and
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, IRCCS (Institute for Treatment and Research) Ca’ Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|