1
|
Maleitzke T, Wiebe E, Huscher D, Spies CM, Tu J, Gaber T, Zheng Y, Buttgereit F, Seibel MJ, Zhou H. Transgenic disruption of endogenous glucocorticoid signaling in osteoblasts does not alter long-term K/BxN serum transfer-induced arthritis. Arthritis Res Ther 2023; 25:140. [PMID: 37542341 PMCID: PMC10401869 DOI: 10.1186/s13075-023-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Disruption of glucocorticoid (GC) signaling in osteoblasts results in a marked attenuation of acute antibody-induced arthritis. The role of endogenous GCs in chronic inflammatory arthritis is however not fully understood. Here, we investigated the impact of endogenous GC signaling in osteoblasts on inflammation and bone integrity under chronic inflammatory arthritis by inactivating osteoblastic GC signaling in a long-term K/BxN serum transfer-induced induced arthritis (STIA) model. METHODS Intracellular GC signaling in osteoblasts was disrupted by transgenic (tg) overexpression of 11beta-hydroxysteroid dehydrogenase type 2 (11ß-HSD2). Inflammatory arthritis was induced in 5-week-old male tg mice and their wild type (WT) littermates by intraperitoneal (i.p.) injection of K/BxN serum while controls (CTRLs) received phosphate-buffered saline (PBS). In a first cohort, K/BxN STIA was allowed to abate until the endpoint of 42 days (STIA). To mimic rheumatic flares, a second cohort was additionally injected on days 14 and 28 with K/BxN serum (STIA boost). Arthritis severity was assessed daily by clinical scoring and ankle size measurements. Ankle joints were assessed histopathologically. Systemic effects of inflammation on long bone metabolism were analyzed in proximal tibiae by micro-computed tomography (μCT) and histomorphometry. RESULTS Acute arthritis developed in both tg and WT mice (STIA and STIA boost) and peaked around day 8. While WT STIA and tg STIA mice showed a steady decline of inflammation until day 42, WT STIA boost and tg STIA boost mice exhibited an arthritic phenotype over a period of 42 days. Clinical arthritis severity did not differ significantly between WT and tg mice, neither in the STIA nor in the STIA boost cohorts. Correspondingly, histological indices of inflammation, cartilage damage, and bone erosion showed no significant difference between WT and tg mice on day 42. Histomorphometry revealed an increased bone turnover in tg CTRL and tg STIA boost compared to WT CTRL and WT STIA boost animals, respectively. CONCLUSIONS In contrast to the previously reported modulating effects of endogenous GC signaling in osteoblasts during acute K/BxN STIA, this effect seems to perish during the chronic inflammatory and resolution phase. These findings indicate that endogenous GC signaling in osteoblasts may mainly be relevant during acute and subacute inflammatory processes.
Collapse
Affiliation(s)
- Tazio Maleitzke
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Edgar Wiebe
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia.
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany.
| | - Dörte Huscher
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Cornelia M Spies
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Jinwen Tu
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Yu Zheng
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology and Metabolism, Concord Repatriation Hospital, University of Sydney, Sydney, NSW, Australia
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Maleitzke T, Weber J, Hildebrandt A, Dietrich T, Zhou S, Tsitsilonis S, Keller J. Standardized protocol and outcome measurements for the collagen antibody-induced arthritis mouse model. STAR Protoc 2022; 3:101718. [PMID: 36152302 PMCID: PMC9519592 DOI: 10.1016/j.xpro.2022.101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/01/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023] Open
Abstract
The murine collagen antibody-induced arthritis (CAIA) model resembles various features of human rheumatoid arthritis and is based on the intraperitoneal or intravenous injection of autoantibodies against type II collagen. Here, we present a standardized protocol for the intraperitoneal injection of arthritis-inducing autoantibodies in mice, followed by a description of daily arthritis assessments. We then detail the steps to harvest joint and bone tissues for histological, radiological, and molecular analyses. We highlight animal welfare and 3R considerations for experimental arthritis studies. For complete details on the use and execution of this protocol, please refer to Maleitzke et al. (2021, 2022).
Collapse
Affiliation(s)
- Tazio Maleitzke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 10178 Berlin, Germany
| | - Jérôme Weber
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Alexander Hildebrandt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Tamara Dietrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Sijia Zhou
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Serafeim Tsitsilonis
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, 13353 Berlin, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
3
|
Arthritis and the role of endogenous glucocorticoids. Bone Res 2020; 8:33. [PMID: 32963891 PMCID: PMC7478967 DOI: 10.1038/s41413-020-00112-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis and osteoarthritis, the most common forms of arthritis, are chronic, painful, and disabling conditions. Although both diseases differ in etiology, they manifest in progressive joint destruction characterized by pathological changes in the articular cartilage, bone, and synovium. While the potent anti-inflammatory properties of therapeutic (i.e., exogenous) glucocorticoids have been heavily researched and are widely used in clinical practice, the role of endogenous glucocorticoids in arthritis susceptibility and disease progression remains poorly understood. Current evidence from mouse models suggests that local endogenous glucocorticoid signaling is upregulated by the pro-inflammatory microenvironment in rheumatoid arthritis and by aging-related mechanisms in osteoarthritis. Furthermore, these models indicate that endogenous glucocorticoid signaling in macrophages, mast cells, and chondrocytes has anti-inflammatory effects, while signaling in fibroblast-like synoviocytes, myocytes, osteoblasts, and osteocytes has pro-inflammatory actions in rheumatoid arthritis. Conversely, in osteoarthritis, endogenous glucocorticoid signaling in both osteoblasts and chondrocytes has destructive actions. Together these studies provide insights into the role of endogenous glucocorticoids in the pathogenesis of both inflammatory and degenerative joint disease.
Collapse
|
4
|
|
5
|
Tu J, Stoner S, Fromm PD, Wang T, Chen D, Tuckermann J, Cooper MS, Seibel MJ, Zhou H. Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage. FASEB J 2017; 32:478-487. [PMID: 28928247 DOI: 10.1096/fj.201700659r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/05/2017] [Indexed: 01/10/2023]
Abstract
Previous studies demonstrated that endogenous glucocorticoid signaling in osteoblasts promotes inflammation in murine immune arthritis. The current study determined whether disruption of endogenous glucocorticoid signaling in chondrocytes also modulates the course and severity of arthritis. Tamoxifen-inducible chondrocyte-targeted glucocorticoid receptor-knockout (chGRKO) mice were generated by breeding GRflox/flox mice with tamoxifen-inducible collagen 2a1 Cre (Col2a1-CreERT2) mice. Antigen-induced arthritis (AIA) and K/BxN serum transfer-induced arthritis (STIA) were induced in both chGRKO mice and their Cre-negative GRflox/flox littermates [wild type (WT)]. Arthritis was assessed by measurement of joint swelling and histology of joints collected at d 14. Neutrophil activity and gene expression patterns associated with cartilage damage were also evaluated. In both arthritis models clinical (joint swelling) and histologic indices of inflammatory activity were significantly greater in chGRKO than in WT mice. The STIA model was characterized by early up-regulation of CXCR2/CXCR2 ligand gene expression in ankle tissues, and significant and selective expansion of splenic CXCR2+ neutrophils in chGRKO arthritic compared to WT arthritic mice. At later stages, gene expression of enzymes involved in cartilage degradation was up-regulated in chGRKO but not WT arthritic mice. Therefore, we summarize that chondrocytes actively mitigate local joint inflammation, cartilage degradation and systemic neutrophil activity via a glucocorticoid-dependent pathway.-Tu, J., Stoner, S., Fromm, P. D., Wang, T., Chen, D., Tuckermann, J., Cooper, M. S., Seibel, M. J., Zhou, H. Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage.
Collapse
Affiliation(s)
- Jinwen Tu
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia; .,Adrenal Steroid Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Shihani Stoner
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia
| | - Phillip D Fromm
- Dendritic Cell Research, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia
| | - Tingyu Wang
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and
| | - Mark S Cooper
- Adrenal Steroid Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Hospital, Sydney, New South Wales, Australia
| | - Markus J Seibel
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia.,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Hospital, Sydney, New South Wales, Australia
| | - Hong Zhou
- Bone Research Program, Australian and New Zealand Army Corps (ANZAC) Research Institute, Sydney, New South Wales, Australia; .,Concord Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Endocrinology and Metabolism, Concord Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Zhou M, Li J, Wu J, Yang Y, Zeng X, Lv X, Cui L, Yao W, Liu Y. Preventive effects of Polygonum multiflorum on glucocorticoid-induced osteoporosis in rats. Exp Ther Med 2017; 14:2445-2460. [PMID: 28962180 PMCID: PMC5609219 DOI: 10.3892/etm.2017.4802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 03/10/2017] [Indexed: 11/29/2022] Open
Abstract
In Traditional Chinese Medicine, Polygonum multiflorum (PM) is known for its anti-aging properties. A previous study by our group showed that extracts of PM were able to prevent and treat bone loss in vivo, and the active components emodin and 2,3,5,4,-tetrahydroxystilbene-2-O-β-glucoside (TSG) promoted the osteogenic differentiation of mesenchymal stem cells in vitro. The aim of the present study was to investigate the preventive effects of PM on glucocorticoid-induced osteoporosis (GIO) in rats. A crude extract of PM was prepared with 75% ethanol, purified and enriched using a D-101 macroresin column and elution with 30% ethanol, and the material obtained was assessed by high-performance liquid chromatography. Male or female Sprague Dawley rats (n=180) were randomly divided into nine groups: Control, prednisone, prednisone plus calcitriol (CAL), prednisone plus 30% ethanolic eluate of PM [high (H), medium (M) and low (L) dose] and prednisone plus crude extract of PM (H, M and L dose). Prednisone was orally administered to the osteoporosis model rats for 21 weeks, alongside which they received PM extracts. The weight of the viscera, anterior tibial muscle and other tissues was recorded at the end of the experiment. The femur and lumbar vertebra were collected for the measurement of three-dimensional microarchitecture by micro-computed tomography scanning, assessment of biomechanical properties and determination of bone mineral density (BMD). In the 30% ethanolic eluate of the PM extract, the content of TSG and combined anthraquinone was 9.20 and 0.15%, respectively, and that in the crude extract of PM was 2.23 and 0.03%, respectively. Over 6 weeks, the weight of the rats the in prednisone group decreased (P<0.05), while the weight of rats treated with M and H doses of 30% ethanolic eluate was increased compared with that in the prednisone group (P<0.05). Rats exposed to prednisone exhibited a deteriorated bone microarchitecture, low BMD, decreased bone volume/total volume and poor biomechanical properties. Furthermore, the weight of the adrenal gland and the anterior tibial muscle was decreased. 30% ethanolic eluate of PM at M and L doses and crude extract of PM at the H dose counteracted the alterations of skeletal and other characteristics induced by prednisone in rats, as did CAL. In conclusion, extracts of PM exerted a protective effect on bone tissue in GIO rats.
Collapse
Affiliation(s)
- Manru Zhou
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong 510520, P.R. China
| | - Jin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Jingkai Wu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaobing Zeng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiaohua Lv
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liao Cui
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Weimin Yao
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yuyu Liu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
7
|
Wu Q, Xiong X, Zhang X, Lu J, Zhang X, Chen W, Wu T, Cui L, Liu Y, Xu B. Secondary osteoporosis in collagen-induced arthritis rats. J Bone Miner Metab 2016. [PMID: 26210858 DOI: 10.1007/s00774-015-0700-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Numerous studies have demonstrated that rheumatoid arthritis (RA) is often associated with bone loss; however, few experiments have focused on cancellous and cortical bone changes in rats during the process of arthritis. We have investigated bone changes in rats with collagen-induced arthritis (CIA) and have explored the characteristics of how RA induces osteoporosis by means of bone histomorphometry, bone biomechanics studies, bone mineral density studies, micro computer tomography, enzyme-linked immunosorbant assay, immunohistochemistry, and Western blot analysis. Bone mineral density of the femur and lumbar vertebrae and biomechanical properties of the femur were decreased in CIA rats. Trabecular bone volume of the tibia and lumbar vertebrae was decreased whereas bone resorption was increased in CIA rats. Bone formation of the tibial shaft in periosteal surfaces was decreased in CIA rats. Furthermore, the trabecular bone loss in CIA rats was severer at 16 weeks than at 8 weeks, as was cortical bone loss. The serum level of tumor necrosis factor α in CIA rats was increased, and the expression of dickkopf 1 and that of receptor activator of nuclear factor κB (RANKL) ligand (RANKL) in the ankle joints were also increased, but the expression of osteoprotegerin (OPG) was decreased. We conclude that CIA rats developed systemic osteoporosis, and that osteoporosis became more serious with CIA development. The mechanism may be related to the increase of bone resorption in cancellous bone cause by upregulation of the expression of DKK-1 and regulation of the RANKL/RANK/OPG signaling pathway, and the decrease of bone formation in cortical bone caused by an increase in the expression of DKK-1.
Collapse
Affiliation(s)
- Qingyun Wu
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Xueting Xiong
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Xinle Zhang
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Jiaqi Lu
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Xuemei Zhang
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Wenshuang Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Tie Wu
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Liao Cui
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Yuyu Liu
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Medical University, No. 2, Wenming Donglu, Xiashan District, Zhanjiang, 524023, Guangdong, People's Republic of China.
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Tu J, Zhang Y, Kim S, Wiebe E, Spies CM, Buttgereit F, Cooper MS, Seibel MJ, Zhou H. Transgenic Disruption of Glucocorticoid Signaling in Osteoblasts Attenuates Joint Inflammation in Collagen Antibody–Induced Arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1293-301. [DOI: 10.1016/j.ajpath.2015.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/26/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
|
9
|
Kotake S, Nanke Y. Mouse Osteoblasts Play a Crucial Role in the Immune System. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1078-80. [PMID: 26993206 DOI: 10.1016/j.ajpath.2016.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
This commentary highlights the article by Tu et al describing mechanisms in immune-mediated arthritis that may propel strategies to treat diseases involving the bone and immune system.
Collapse
Affiliation(s)
- Shigeru Kotake
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan.
| | - Yuki Nanke
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|