1
|
Moro C, Phelps C. Urothelium removal does not impact mucosal activity in response to muscarinic or adrenergic receptor stimulation. Tissue Barriers 2022:2099214. [PMID: 35803762 PMCID: PMC10364648 DOI: 10.1080/21688370.2022.2099214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The inner lining of the urinary bladder (urothelium and lamina propria, or bladder mucosa) has an important role as a tissue barrier between stored urine and the underlying smooth muscle, as well as in the modulation and regulation of bladder contractility. However, the individual influence of the apical urothelial layer on the contractile activity of this tissue is uncertain. The aim of this experiment was to identify the contractile activity of the lamina propria after removal of the urothelium. Several methods were used to mechanically disrupt the urothelium, including dabbing the tissue with a paper towel, longitudinal swipes with a cotton bud, or a longitudinal scrape with the edge of a scalpel. Hematoxylin-eosin staining was utilized to determine the level of removal of the apical urothelial cells. Spontaneous contractile activity was measured in organ baths, and responses to the agonists carbachol and isoprenaline were obtained. Three longitudinal swipes with a cotton bud was found to be the optimal method to remove the majority of the urothelium without damaging the lamina propria. Upon removal of the urothelium, the spontaneous activity of the tissue was unaltered. Similarly, responses to carbachol (1 µM) and isoprenaline (1 µM) were not affected after removal of the urothelium. The urothelium can be effectively removed without damaging the lamina propria. This apical tissue layer is not responsible for mediating the increases to spontaneous phasic activity or tonic contractions of the bladder mucosa (urothelium with lamina propria) when muscarinic or adrenergic receptors are stimulated. This research presents the lamina propria as the important cell layer mediating the overall contractile activity of the bladder wall.
Collapse
Affiliation(s)
- Christian Moro
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Charlotte Phelps
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| |
Collapse
|
2
|
Towner RA, Smith N, Saunders D, Lerner M, Greenwood-Van Meerveld B, Hurst RE. Assessing bladder hyper-permeability biomarkers in vivo using molecularly-targeted MRI. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2020; 10:57-65. [PMID: 32211219 PMCID: PMC7076299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
The objective was to investigate if some of the key molecular players associated with bladder hyper-permeability in interstitial cystitis/bladder pain syndrome (IC/BPS) could be visualized with molecularly-targeted magnetic resonance imaging (mt-MRI) in vivo. IC/BPS is a chronic, painful condition of the bladder that affects primarily women. It has been demonstrated over the past several decades that permeability plays a substantial role in IC/BPS. There are several key molecular markers that have been associated with permeability, including glycolsaminoglycan (GAG), biglycan, chondroitin sulfate, decorin, E-cadherin, keratin 20, uroplakin, vascular endothelial growth factor receptor 1 (VEGF-R1), claudin-2 and zonula occludens-1 (ZO-1). We used in vivo molecularly-targeted MRI (mt-MRI) to assess specific urothelial biomarkers (decorin, VEGF-R1, and claudin-2) associated with bladder hyper-permeability in a protamine sulfate (PS)-induced rat model. The mt-MRI probes consisted of an antibody against either VEGF-R1, decorin or claudin-2 conjugated to albumin that had also Gd-DTPA (gadolinium diethylene triamine penta acetic acid) and biotin attached. mt-MRI- and histologically-detectable levels of decorin and VEGF-R1 were both found to decrease following PS-induced bladder urothelial hyper-permeability, whereas claudin-2, was found to increase in the rat PS model. Verification of the presence of the mt-MRI probes were done by targeting the biotin moiety for each respective probe with streptavidin-hose radish peroxidase (HRP). Levels of protein expression for VEGF-R1, decorin and claudin-2 were confirmed with immunohistochemistry. In vivo molecularly-targeted MRI (mt-MRI) was found to successfully detect alterations in the expression of decorin, VEGFR1 and claudin-2 in a PS-induced rat bladder permeability model. This in vivo molecularly-targeted imaging approach has the potential to provide invaluable information to enhance our understanding of bladder urothelium hyper-permeability in IC/BPS patients, and perhaps be used to assist in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma, OK, USA
| | - Megan Lerner
- Department of Surgery Research Laboratory, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| | | | - Robert E Hurst
- Department of Urology, University of Oklahoma Health Sciences CenterOklahoma, OK, USA
| |
Collapse
|
3
|
Liu J, Zheng L, Ma L, Wang B, Zhao Y, Wu N, Liu G, Lin X. Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy. J Nutr Biochem 2014; 25:1154-1160. [PMID: 25172632 DOI: 10.1016/j.jnutbio.2014.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/06/2014] [Accepted: 06/30/2014] [Indexed: 01/11/2023]
Abstract
Oleanolic acid (OA) has been widely studied because of its pleiotropic therapeutic and preventive effect on various diseases. However, the mechanisms of OA's action are still not clear yet, especially its suppressing effect on transformed cells. In this work, we found that OA induced autophagy in normal tissue-derived cells without cytotoxicity. OA-induced autophagy was shown to decrease the proliferation of KRAS-transformed normal cells and to impair their invasion and anchorage-independent growth. Interrupting autophagy rescued OA's effect on the transformed cells. Mouse model experiments also demonstrated that OA suppressed the growth of KRAS-transformed breast epithelial cell MCF10A-derived tumor xenograft by inducing autophagy. Finally, we identified that OA induced autophagy in normal cells by inhibiting the activation of Akt/mTOR/S6K signaling. In conclusions, we found that OA treatment permitted normal cells to undergo autophagy. The induced autophagy was required for OA to prevent or delay the growth of transformed normal cells.
Collapse
Affiliation(s)
- Jia Liu
- College of Medicine, Qingdao University, Qingdao 266021, China; Institutes of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lanhong Zheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Leina Ma
- Department of Molecular Biology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bin Wang
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Youguang Zhao
- Department of Urology, General Hospital of Chengdu Military Area Command of Chinese PLA, Chengdu 610083, China
| | - Ning Wu
- Institutes of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ge Liu
- Institutes of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiukun Lin
- Institutes of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Capital Med. University, Dept. of Pharmacology, Beijing 100069, China.
| |
Collapse
|
4
|
McLatchie LM, Young JS, Fry CH. Regulation of ACh release from guinea pig bladder urothelial cells: potential role in bladder filling sensations. Br J Pharmacol 2014; 171:3394-403. [PMID: 24628015 PMCID: PMC4105928 DOI: 10.1111/bph.12682] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/25/2014] [Accepted: 03/01/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to quantify and characterize the mechanism of non-neuronal ACh release from bladder urothelial cells and to determine if urothelial cells could be a site of action of anti-muscarinic drugs. EXPERIMENTAL APPROACH A novel technique was developed whereby ACh could be measured from freshly isolated guinea pig urothelial cells in suspension following mechanical stimulation. Various agents were used to manipulate possible ACh release pathways in turn and to study the effects of muscarinic receptor activation and inhibition on urothelial ATP release. KEY RESULTS Minimal mechanical stimulus achieved full ACh release, indicating a small dynamic range and possible all-or-none signal. ACh release involved a mechanism dependent on the anion channel CFTR and intracellular calcium concentration, but was independent of extracellular calcium, vesicular trafficking, connexins or pannexins, organic cation transporters and was not affected by botulinum-A toxin. Stimulating ACh receptors increased ATP production and antagonizing them reduced ATP release, suggesting a link between ACh and ATP release. CONCLUSIONS AND IMPLICATIONS These results suggest that release of non-neuronal ACh from the urothelium is large enough and well located to act as a modulator of ATP release. It is hypothesized that this pathway may contribute to the actions of anti-muscarinic drugs in reducing the symptoms of lower urinary tract syndromes. Additionally the involvement of CFTR in ACh release suggests an exciting new direction for the treatment of these conditions.
Collapse
Affiliation(s)
- L M McLatchie
- Department of Biochemistry and Physiology, FHMS, University of Surrey, Guildford, UK
| | | | | |
Collapse
|
5
|
Kanai A, Fry C, Hanna-Mitchell A, Birder L, Zabbarova I, Bijos D, Ikeda Y. Do we understand any more about bladder interstitial cells?-ICI-RS 2013. Neurourol Urodyn 2014; 33:573-6. [PMID: 24838179 DOI: 10.1002/nau.22591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/25/2014] [Indexed: 12/20/2022]
Abstract
AIMS To present a brief review on discussions from "Do we understand any more about lower urinary tract interstitial cells?" session at the 2013 International Consultation on Incontinence-Research Society (ICI-RS) meeting in Bristol, UK. METHODS Discussion focused on bladder interstitial cell (IC) subtypes, their localization and characterization, and communication between themselves, the urothelium, and detrusor smooth muscle. The role of ICs in bladder pathologies and new methods for studying ICs were also addressed. RESULTS ICs have been studied extensively in the lower urinary tract and have been characterized based on comparisons with ICs of Cajal in the gastro-intestinal tract. In fetal bladders it is believed that ICs drive intrinsic contractions to expel urine through the urachus. These contractions diminish postpartum as bladder innervation develops. Voiding in human neonates occurs when filling triggers a spinal cord reflex that contracts the detrusor; in rodents, maternal stimulation of the perineum triggers voiding. Following spinal cord injury, intrinsic contractions, and spinal micturition reflexes develop, similar to those seen during neonatal development. These enhanced contractions may stimulate nociceptive and mechanosensitive afferents contributing to neurogenic detrusor overactivity and incontinence. The IC-mediated activity is believed to be initiated in the lamina propria by responding to urothelial factors. These IC may act syncytially through gap junction coupling and modulate detrusor activity through unknown mechanisms. CONCLUSION There has been a great deal of information discovered regarding bladder ICs, however, many of their (patho)physiological functions and mechanisms are still unclear and necessitates further research. Neurourol. Urodynam. 33:573-576, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
|
6
|
Kloskowski T, Uzarska M, Gurtowska N, Olkowska J, Joachimiak R, Bajek A, Gagat M, Grzanka A, Bodnar M, Marszałek A, Drewa T. How to isolate urothelial cells? Comparison of four different methods and literature review. Hum Cell 2013; 27:85-93. [PMID: 24368576 DOI: 10.1007/s13577-013-0070-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/28/2013] [Indexed: 11/29/2022]
Abstract
The aim of this study is to present the comparison of four different methods for urothelial cell isolation and culture and compare them to methods cited in the literature. Four different techniques were examined for urothelium isolation from rat bladders. Isolation effectiveness was calculated using trypan blue assay. Confirmation of isolated cell phenotype and comparison with native bladder tissue was confirmed using immunohistochemical (IHC), immunocytochemical (ICC) and immunofluorescence (IF) analysis. The method with bladder inversion and collagenase P digestion resulted in the highest number of isolated cells. These cells showed positive expression of cytokeratin 7, 8, 18, α6-integrin and p63. Our results and the literature review showed that the best method for urothelium bladder isolation is dissection of the epithelium layer from other bladder parts and digestion of mechanically prepared tissue in a collagenase solution.
Collapse
Affiliation(s)
- T Kloskowski
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Karlowicza Str. 24, 85-092, Bydgoszcz, Poland,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhao Y, Li Y, Wang L, Yang H, Wang Q, Qi H, Li S, Zhou P, Liang P, Wang Q, Li X. microRNA response elements-regulated TRAIL expression shows specific survival-suppressing activity on bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:10. [PMID: 23442927 PMCID: PMC3764979 DOI: 10.1186/1756-9966-32-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/20/2013] [Indexed: 12/21/2022]
Abstract
Background Bladder transitional cell carcinoma greatly threatens human health all over
the world. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)
shows a strong apoptosis-inducing effect on a variety of cancer cells
including bladder cancer. However, adenovirus-mediated TRAIL expression
still showed cytotoxicity to normal cells mainly due to lack of tumor
specificity. Methods To solve the problem, we applied miRNA response elements (MREs) of
miR-1, miR-133 and
miR-218 to confer TRAIL expression with specificity to
bladder cancer cells. Results Expression of miR-1, miR-133 and
miR-218 was greatly decreased in bladder cancer than
normal bladder tissue. Luciferase assay showed that application of the 3
MREs was able to restrain exogenous gene expression to within bladder cancer
cells. Subsequently, we constructed a recombinant adenovirus with TRAIL
expression regulated by MREs of miR-1,
miR-133 and miR-218, namely
Ad-TRAIL-MRE-1-133-218. qPCR, immunoblotting and ELISA assays demonstrated
that Ad-TRAIL-MRE-1-133-218 expressed in bladder cancer cells, rather than
normal bladder cells. The differential TRAIL expression also led to
selective apoptosis-inducing and growth-inhibiting effect of
Ad-TRAIL-MRE-1-133-218 on bladder cancers. Finally, bladder cancer xenograft
in mouse models further confirmed that Ad-TRAIL-MRE-1-133-218 effectively
suppressed the growth of bladder cancers. Conclusions Collectively, we demonstrated that MREs-based TRAIL delivery into bladder
cancer cells was feasible and efficient for cancer gene therapy.
Collapse
Affiliation(s)
- Youguang Zhao
- Department of Urology, General Hospital of Chengdu Military Area Command of Chinese PLA, Chengdu 610083, Sichuan Province, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Franck D, Gil ES, Adam RM, Kaplan DL, Chung YG, Estrada CR, Mauney JR. Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells. PLoS One 2013; 8:e56237. [PMID: 23409160 PMCID: PMC3567020 DOI: 10.1371/journal.pone.0056237] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 01/11/2013] [Indexed: 01/01/2023] Open
Abstract
Silk-based biomaterials in combination with extracellular matrix (ECM) coatings were assessed as templates for cell-seeded bladder tissue engineering approaches. Two structurally diverse groups of silk scaffolds were produced by a gel spinning process and consisted of either smooth, compact multi-laminates (Group 1) or rough, porous lamellar-like sheets (Group 2). Scaffolds alone or coated with collagen types I or IV or fibronectin were assessed independently for their ability to support attachment, proliferation, and differentiation of primary cell lines including human bladder smooth muscle cells (SMC) and urothelial cells as well as pluripotent cell populations, such as murine embryonic stem cells (ESC) and induced pluripotent stem (iPS) cells. AlamarBlue evaluations revealed that fibronectin-coated Group 2 scaffolds promoted the highest degree of primary SMC and urothelial cell attachment in comparison to uncoated Group 2 controls and all Group 1 scaffold variants. Real time RT-PCR and immunohistochemical (IHC) analyses demonstrated that both fibronectin-coated silk groups were permissive for SMC contractile differentiation as determined by significant upregulation of α-actin and SM22α mRNA and protein expression levels following TGFβ1 stimulation. Prominent expression of epithelial differentiation markers, cytokeratins, was observed in urothelial cells cultured on both control and fibronectin-coated groups following IHC analysis. Evaluation of silk matrices for ESC and iPS cell attachment by alamarBlue showed that fibronectin-coated Group 2 scaffolds promoted the highest levels in comparison to all other scaffold formulations. In addition, real time RT-PCR and IHC analyses showed that fibronectin-coated Group 2 scaffolds facilitated ESC and iPS cell differentiation toward both urothelial and smooth muscle lineages in response to all trans retinoic acid as assessed by induction of uroplakin and contractile gene and protein expression. These results demonstrate that silk scaffolds support primary and pluripotent cell responses pertinent to bladder tissue engineering and that scaffold morphology and fibronectin coatings influence these processes.
Collapse
Affiliation(s)
- Debra Franck
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Eun Seok Gil
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Rosalyn M. Adam
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Yeun Goo Chung
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Carlos R. Estrada
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joshua R. Mauney
- Department of Urology, Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Verma N, Bäuerlein C, Pink M, Rettenmeier AW, Schmitz-Spanke S. Proteome and phosphoproteome of primary cultured pig urothelial cells. Electrophoresis 2011; 32:3600-11. [DOI: 10.1002/elps.201100220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Yu W, Hill WG. Defining protein expression in the urothelium: a problem of more than transitional interest. Am J Physiol Renal Physiol 2011; 301:F932-42. [PMID: 21880838 DOI: 10.1152/ajprenal.00334.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The transitional epithelium of the bladder, the urothelium, is a challenging tissue to study due to its fragility, complex cellular makeup, stratified composition, and intimate connections to both neural and connective tissue elements. With the increasing focus on the urothelium as a mechanosensory tissue with complex autocrine and paracrine signaling activities, there have arisen a number of unresolved controversies in the urothelial literature regarding whether certain important sensory and signaling proteins are expressed by the urothelium. Prominent examples of this include the transient receptor potential (TRP) family member TRPV1 and the purinergic receptor P2X(3). The problem is more than one of scientific bookkeeping since studies utilizing genetic models (primarily knockout mice) claim additional credibility for urothelial functions when phenotypes are discovered. Furthermore, both of the above-mentioned receptors are important therapeutic targets for various bladder disorders including inflammatory and neuropathic pain. The reasons for the confusion about urothelial expression are manifold, but they likely include low expression levels in some cases, poor specificity of antibodies (sometimes lacking adequate controls), the presence of nonurothelial cells resident within the urothelium, and the fact that the urothelium is particularly prone to aspecific adsorption of antibodies. In this review, we attempt to summarize some of the pitfalls with currently accepted practices in this regard, as well as to describe a set of guidelines which will improve the reliability of conclusions related to urothelial expression. It is hoped that this will be of value to investigators studying the urothelium, to those attempting to interpret conflicts in the literature, and hopefully also those charged with reviewing unpublished work. These recommendations will outline a set of "baseline" and "best practice" guidelines by which both researchers and reviewers will be able to evaluate the evidence presented.
Collapse
Affiliation(s)
- Weiqun Yu
- Laboratory of Voiding Dysfunction, Division of Renal Research, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|