1
|
Weng Y, Shi Y, Xia X, Zhou W, Wang H, Wang C. A multi-shRNA vector enhances the silencing efficiency of exogenous and endogenous genes in human cells. Oncol Lett 2017; 13:1553-1562. [PMID: 28454290 PMCID: PMC5403481 DOI: 10.3892/ol.2017.5672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/27/2016] [Indexed: 01/10/2023] Open
Abstract
RNA interference (RNAi) is a powerful technology for suppressing gene function. In most studies, small interfering RNAs (siRNAs) consist of one short hairpin RNA (shRNA) and, therefore, are often unable to achieve loss-of-function of their target genes. In the current study, an RNAi vector containing three shRNAs under the control of three RNA polymerase III U6 promoters was constructed. RNAi vectors containing one or two shRNAs were generated for comparisons. A pilot study targeting exogenously expressed DsRed in the HEK293 cell line revealed promising effects and a high selectivity for the multi-shRNA RNAi vector. Akt2 is constitutively expressed in cultured SKOV3 human ovarian cancer cells, and the multi-shRNA RNAi vector showed a strong efficiency for downregulating the expression of Akt2 in these cells, with no apparent interferon response. In addition, the Akt2-3shRNA vector, containing three shRNAs targeting Akt2, showed the best effect of all the shRNA vectors in reversing paclitaxel-induced resistance in SKOV3 cells. This study developed a widely applicable resource for enhancing the efficiency of gene silencing and a novel technique for performing complex loss-of-function screens in mammalian cells.
Collapse
Affiliation(s)
- Yanjie Weng
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying Shi
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xi Xia
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.,Department of Gynecology and Obstetrics, Affiliated Shenzhen Nanshan Hospital, Guangdong Medical College, Shenzhen, Guangdong 518052, P.R. China
| | - Wenjuan Zhou
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hongyan Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Changyu Wang
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
2
|
Tchurikov NA, Fedoseeva DM, Gashnikova NM, Sosin DV, Gorbacheva MA, Alembekov IR, Chechetkin VR, Kravatsky YV, Kretova OV. Conserved sequences in the current strains of HIV-1 subtype A in Russia are effectively targeted by artificial RNAi in vitro. Gene 2016; 583:78-83. [PMID: 26947394 DOI: 10.1016/j.gene.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 10/25/2022]
Abstract
Highly active antiretroviral therapy has greatly reduced the morbidity and mortality of AIDS. However, many of the antiretroviral drugs are toxic with long-term use, and all currently used anti-HIV agents generate drug-resistant mutants. Therefore, there is a great need for new approaches to AIDS therapy. RNAi is a powerful means of inhibiting HIV-1 production in human cells. We propose to use RNAi for gene therapy of HIV/AIDS. Previously we identified a number of new biologically active siRNAs targeting several moderately conserved regions in HIV-1 transcripts. Here we analyze the heterogeneity of nucleotide sequences in three RNAi targets in sequences encoding the reverse transcriptase and integrase domains of current isolates of HIV-1 subtype A in Russia. These data were used to generate genetic constructs expressing short hairpin RNAs 28-30-bp in length that could be processed in cells into siRNAs. After transfection of the constructs we observed siRNAs that efficiently attacked the selected targets. We expect that targeting several viral genes important for HIV-1 reproduction will help overcome the problem of viral adaptation and will prevent the appearance of RNAi escape mutants in current virus strains, an important feature of gene therapy of HIV/AIDS.
Collapse
Affiliation(s)
| | | | | | - Dmitri V Sosin
- Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | | | | | | | - Yuri V Kravatsky
- Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Olga V Kretova
- Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| |
Collapse
|
3
|
Li T, Zhu YY, Chen L, Sun Y, Yuan J, Graham M, French P. Size unbiased representative enzymatically generated RNAi (SURER) library and application for RNAi therapeutic screens. Nucleic Acid Ther 2014; 25:35-46. [PMID: 25493330 DOI: 10.1089/nat.2014.0514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RNA interference (RNAi) libraries screens have become widely used for small RNA (sRNA) therapeutic targets development. However, conventional enzymatically libraries, typically prepared using the type 2 restriction enzyme MmeI, produce sRNAs between 18 and 20 bp, much shorter than the usual lengths of 19-23 bp. Here we develop a size unbiased representative enzymatically generated RNAi (SURER) library, which employs type 3 restriction modification enzyme EcoP15I to produce sRNAs ranging from 19 to 23 bp using a group of rationally designed linkers, which can completely mimic the length of sRNAs naturally generated by Dicer enzyme in living cells, and the screening results of SURER libraries showed high recombination rate and knockdown efficiency. SURER library provides a useful tool for RNAi therapeutics screening in a fast and simple way.
Collapse
Affiliation(s)
- Tiejun Li
- 1 Small RNA Technology and Application Institute, Nantong University , Nantong, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Tianpei X, Zhu Y, Li S. Optimized scorpion polypeptide LMX: a pest control protein effective against rice leaf folder. PLoS One 2014; 9:e100232. [PMID: 24964088 PMCID: PMC4070919 DOI: 10.1371/journal.pone.0100232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/24/2014] [Indexed: 11/25/2022] Open
Abstract
Lepidopteran insect pests are the main class of pests causing significant damage to crop plant yields. Insecticidal scorpion peptides exhibit toxicity specific for insects. Here, we report that a peptide LMX, optimized from the insect-specific scorpion neurotoxin LqhIT2, showed high levels of activity against rice leaf folder in vitro and in planta. Oral ingestion of LMX protein led to a significant decrease in feeding on rice leaves, repression of larval growth and development, delay in molting, and increase in larval lethality. Compared with LqhIT2 protein, the stability and insecticidal efficacy of LMX was better. Meanwhile, biochemical analysis showed that LMX protein ingestion dramatically decreased ecdysone content in rice leaf folder larvae, and down-regulated enzymatic activities of the detoxification system (α-naphthyl acetate esterase and glutathione S-transferase), the digestive system (tryptase and chymotrypsin), and the antioxidant system (catalase). These changes were tightly correlated with the dosage of LMX protein. Transgene analysis showed that the rate of leaf damage, and the number of damaged tillers and leaves in the transgenic line were greatly reduced relative to wild type plants and empty vector plants. Based on these observations, we propose that the insect-specific scorpion neurotoxin peptide LMX is an attractive and effective alternative molecule for the protection of rice from rice leaf folder.
Collapse
Affiliation(s)
- Xiuzi Tianpei
- State Key Laboratory of Hybrid Rice; Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture; Engineering Research Center for Plant Biotechology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice; Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture; Engineering Research Center for Plant Biotechology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice; Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture; Engineering Research Center for Plant Biotechology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Levanets O, Reinecke F, Louw R, Pretorius PJ, du Plessis LH, Nijtmans L, Smeitink JA, van der Westhuizen FH. Mitochondrial DNA replication and OXPHOS gene transcription show varied responsiveness to Rieske protein knockdown in 143B cells. Biochimie 2011; 93:758-65. [DOI: 10.1016/j.biochi.2011.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 01/10/2011] [Indexed: 01/10/2023]
|
6
|
Du C, Zhang C, Hassan S, Biswas MHU, Balaji KC. Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res 2010; 70:7810-9. [PMID: 20940406 DOI: 10.1158/0008-5472.can-09-4481] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cells undergo epithelial-mesenchymal transition (EMT) as a program of increased invasion and metastasis during cancer progression. Here, we report that a novel regulator of EMT in cancer cells is protein kinase D1 (PKD1), which is downregulated in advanced prostate, breast, and gastric cancers. Ectopic reexpression of PKD1 in metastatic prostate cancer cells reversibly suppressed expression of mesenchyme-specific genes and increased epithelial markers such as E-cadherin, whereas small interfering RNA-mediated knockdown of PKD1 increased expression of mesenchyme markers. Further, PKD1 inhibited tumor growth and metastasis in a tumor xenograft model. PKD1 phosphorylates Ser(11) (S11) on transcription factor Snail, a master EMT regulator and repressor of E-cadherin expression, triggering nuclear export of Snail via 14-3-3σ binding. Snail S11 mutation causes acquisition of mesenchymal traits and expression of stem cell markers. Together, our results suggest that PKD1 functions as a tumor and metastasis suppressor, at least partly by regulating Snail-mediated EMT, and that loss of PKD1 may contribute to acquisition of an aggressive malignant phenotype.
Collapse
Affiliation(s)
- Cheng Du
- Division of Urology, Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | |
Collapse
|
7
|
Function-based gene identification using enzymatically generated normalized shRNA library and massive parallel sequencing. Proc Natl Acad Sci U S A 2010; 107:7377-82. [PMID: 20368428 DOI: 10.1073/pnas.1003055107] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a general strategy for function-based gene identification, an shRNA library containing approximately 150 shRNAs per gene was enzymatically generated from normalized (reduced-redundance) human cDNA. The library was constructed in an inducible lentiviral vector, enabling propagation of growth-inhibiting shRNAs and controlled activity measurements. RNAi activities were measured for 101 shRNA clones representing 100 human genes and for 201 shRNAs derived from a firefly luciferase gene. Structure-activity analysis of these two datasets yielded a set of structural criteria for shRNA efficacy, increasing the frequencies of active shRNAs up to 5-fold relative to random sampling. The same library was used to select shRNAs that inhibit breast carcinoma cell growth by targeting potential oncogenes. Genes targeted by the selected shRNAs were enriched for 10 pathways, 9 of which have been previously associated with various cancers, cell cycle progression, or apoptosis. One hundred nineteen genes, enriched through this selection and represented by two to six shRNAs each, were identified as potential cancer drug targets. Short interfering RNAs against 19 of 22 tested genes in this group inhibited cell growth, validating the efficiency of this strategy for high-throughput target gene identification.
Collapse
|
8
|
Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells. Oncogene 2009; 28:4386-96. [DOI: 10.1038/onc.2009.291] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Inhibitors of MyD88-dependent proinflammatory cytokine production identified utilizing a novel RNA interference screening approach. PLoS One 2009; 4:e7029. [PMID: 19753301 PMCID: PMC2737626 DOI: 10.1371/journal.pone.0007029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/11/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The events required to initiate host defenses against invading pathogens involve complex signaling cascades comprised of numerous adaptor molecules, kinases, and transcriptional elements, ultimately leading to the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-alpha). How these signaling cascades are regulated, and the proteins and regulatory elements participating are still poorly understood. RESULTS We report here the development a completely random short-hairpin RNA (shRNA) library coupled with a novel forward genetic screening strategy to identify inhibitors of Toll-like receptor (TLR) dependent proinflammatory responses. We developed a murine macrophage reporter cell line stably transfected with a construct expressing diphtheria toxin-A (DT-A) under the control of the TNF-alpha-promoter. Stimulation of the reporter cell line with the TLR ligand lipopolysaccharide (LPS) resulted in DT-A induced cell death, which could be prevented by the addition of an shRNA targeting the TLR adaptor molecule MyD88. Utilizing this cell line, we screened a completely random lentiviral short hairpin RNA (shRNA) library for sequences that inhibited TLR-mediated TNF-alpha production. Recovery of shRNA sequences from surviving cells led to the identification of unique shRNA sequences that significantly inhibited TLR4-dependent TNF-alpha gene expression. Furthermore, these shRNA sequences specifically blocked TLR2 but not TLR3-dependent TNF-alpha production. CONCLUSIONS Thus, we describe the generation of novel tools to facilitate large-scale forward genetic screens in mammalian cells and the identification of potent shRNA inhibitors of TLR2 and TLR4- dependent proinflammatory responses.
Collapse
|
10
|
Xu J, Zeng JQ, Wan G, Hu GB, Yan H, Ma LX. Construction of siRNA/miRNA expression vectors based on a one-step PCR process. BMC Biotechnol 2009; 9:53. [PMID: 19490634 PMCID: PMC2700792 DOI: 10.1186/1472-6750-9-53] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 06/02/2009] [Indexed: 11/20/2022] Open
Abstract
Background RNA interference (RNAi) has become a powerful means for silencing target gene expression in mammalian cells and is envisioned to be useful in therapeutic approaches to human disease. In recent years, high-throughput, genome-wide screening of siRNA/miRNA libraries has emerged as a desirable approach. Current methods for constructing siRNA/miRNA expression vectors require the synthesis of long oligonucleotides, which is costly and suffers from mutation problems. Results Here we report an ingenious method to solve traditional problems associated with construction of siRNA/miRNA expression vectors. We synthesized shorter primers (< 50 nucleotides) to generate a linear expression structure by PCR. The PCR products were directly transformed into chemically competent E. coli and converted to functional vectors in vivo via homologous recombination. The positive clones could be easily screened under UV light. Using this method we successfully constructed over 500 functional siRNA/miRNA expression vectors. Sequencing of the vectors confirmed a high accuracy rate. Conclusion This novel, convenient, low-cost and highly efficient approach may be useful for high-throughput assays of RNAi libraries.
Collapse
Affiliation(s)
- Jun Xu
- Institute of Molecular Biology, Biology Faculty of Hubei University, Wuhan, Hubei Province, PR China.
| | | | | | | | | | | |
Collapse
|
11
|
Chen M, Du Q, Zhang HY, Wang X, Liang Z. High-throughput screening using siRNA (RNAi) libraries. Expert Rev Mol Diagn 2009; 7:281-91. [PMID: 17489735 DOI: 10.1586/14737159.7.3.281] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) has become one of the most important research tools in functional genomics analysis ever since the discovery of the phenomenon. The robustness of the method has enabled construction of RNAi libraries in the forms of long double-stranded RNA or short-interfering RNA that can cover the whole or significant parts of the genomes of different organisms. Over the last few years, such libraries have been used in different high-throughput formats to establish functional links between genes and phenotypes. In this review, available RNAi library resources and application of these strategic tools will be discussed.
Collapse
Affiliation(s)
- Meihong Chen
- Chinese Human Genome Center Beijing, Institute of Basic Medical Sciences, Beijing, China.
| | | | | | | | | |
Collapse
|
12
|
Syed V, Mak P, Du C, Balaji KC. Beta-catenin mediates alteration in cell proliferation, motility and invasion of prostate cancer cells by differential expression of E-cadherin and protein kinase D1. J Cell Biochem 2008; 104:82-95. [PMID: 17979146 DOI: 10.1002/jcb.21603] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated that Protein Kinase D1 (PKD1) interacts with E-cadherin and is associated with altered cell aggregation and motility in prostate cancer (PC). Because both PKD1 and E-cadherin are known to be dysregulated in PC, in this study we investigated the functional consequences of combined dysregulation of PKD1 and E-cadherin using a panel of human PC cell lines. Gain and loss of function studies were carried out by either transfecting PC cells with full-length E-cadherin and/or PKD1 cDNA or by protein silencing by siRNAs, respectively. We studied major malignant phenotypic characteristics including cell proliferation, motility, and invasion at the cellular level, which were corroborated with appropriate changes in representative molecular markers. Down regulation or ectopic expression of either E-cadherin or PKD1 significantly increased or decreased cell proliferation, motility, and invasion, respectively, and combined down regulation cumulatively influenced the effects. Loss of PKD1 or E-cadherin expression was associated with increased expression of the pro-survival molecular markers survivin, beta-catenin, cyclin-D, and c-myc, whereas overexpression of PKD1 and/or E-cadherin resulted in an increase of caspases. The inhibitory effect of PKD1 and E-cadherin on cell proliferation was rescued by coexpression with beta-catenin, suggesting that beta-catenin mediates the effect of proliferation by PKD1 and E-cadherin. This study establishes the functional significance of combined dysregulation of PKD1 and E-cadherin in PC and that their effect on cell growth is mediated by beta-catenin.
Collapse
Affiliation(s)
- Viqar Syed
- Division of Urology, Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
13
|
Mak P, Jaggi M, Syed V, Chauhan SC, Hassan S, Biswas H, Balaji KC. Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells. Biochem Biophys Res Commun 2008; 373:618-23. [PMID: 18602367 DOI: 10.1016/j.bbrc.2008.06.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 01/02/2023]
Abstract
Protein kinase D1 (PKD1), founding member of PKD protein family, is down-regulated in advanced prostate cancer (PCa). We demonstrate that PKD1 and androgen receptor (AR) are present as a protein complex in PCa cells. PKD1 is associated with a transcriptional complex which contains AR and promoter sequence of the Prostate Specific Antigen (PSA) gene. Ectopic expression of wild type PKD1 and the kinase dead mutant PKD1 (K628W) attenuated the ligand-dependent transcriptional activation of AR in prostate cancer cells and yeast cells indicating that PKD1 can affect AR transcription activity, whereas knocking down PKD1 enhanced the ligand-dependent transcriptional activation of AR. Co-expression of kinase dead mutant with AR significantly inhibited androgen-mediated cell proliferation in both LNCaP and DU145 PC cells. Our data demonstrate for the first time that PKD1 can influence AR function in PCa cells.
Collapse
Affiliation(s)
- Paul Mak
- University of Massachusetts Medical School, Division of Urology, Department of Surgery, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Liu XH, Bai CG, Yuan Y, Gong DJ, Huang SD. Angiopoietin-1 targeted RNA interference suppresses angiogenesis and tumor growth of esophageal cancer. World J Gastroenterol 2008; 14:1575-81. [PMID: 18330951 PMCID: PMC2693755 DOI: 10.3748/wjg.14.1575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the inhibitory effect of the adenovirus-based angiopoietin-1 (Ang-1) targeted small interfering RNA expression system (Ad/Ang-1si) on the expression of the Ang-1 gene, cell growth and apoptosis in human esophageal cancer cell line Eca109.
METHODS: siRNA-expressing adenovirus targeting Ang-1 gene was constructed using the Ad Easy System. Cultured Eca109 cells were transfected with Ad/Ang-1si (Eca109/Ang-1si), and Ad/si was used to infect Eca109 cells as control (Eca109/si). Ang-1 gene expression and concentration was determined with RT-PCR and ELISA, respectively. Human umbilical vein endothelial cell (HUVEC) migration and proliferation were analyzed. After s.c. injection into athymic nu/nu mice, the tumor growth, vessel density and apoptosis of each group was also determined.
RESULTS: HUVEC migration induced by conditioned medium from Ang-1si-transfected Eca109 cells was significantly less than that induced by conditioned medium from Eca109 cells and control adenovirus-transfected Eca109 cells. Furthermore, after s.c. injection into athymic nu/nu mice, the tumor growth and cell apoptosis of Ad/Ang-1si -expressing Eca109 cells was significantly lower than that of parental or control adenovirus-transfected cells. Vessel density assessed by CD31 immunohistochemical analysis and Ang-1 expression by RT-PCR were also decreased.
CONCLUSION: The targeting Ang-1 may provide a therapeutic option for esophageal cancer.
Collapse
|
15
|
Harbers M. The current status of cDNA cloning. Genomics 2008; 91:232-42. [PMID: 18222633 DOI: 10.1016/j.ygeno.2007.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/10/2007] [Accepted: 11/17/2007] [Indexed: 11/19/2022]
Abstract
The cloning of cDNAs, copies of cellular RNA, is one of the classical technologies in molecular biology. Over the past 30 years cDNA cloning technologies have been improved to enable the cloning of large cDNA collections, which are fundamental to today's understanding of the utilization of genetic information. With the discovery of noncoding RNAs, additional new approaches to the cloning of short RNAs have been developed. However, with the realization that much larger portions of genomes are transcribed than anticipated from genome annotations, cDNA cloning faces new challenges to uncover rare transcripts and to make the corresponding cDNAs available for functional studies. This review provides an overview on the current status of cDNA cloning and possibilities for the discovery and characterization of new RNA families.
Collapse
Affiliation(s)
- Matthias Harbers
- DNAFORM, Inc., Leading Venture Plaza 2, 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan.
| |
Collapse
|
16
|
Bogdanova EA, Shagin DA, Lukyanov SA. Normalization of full-length enriched cDNA. MOLECULAR BIOSYSTEMS 2008; 4:205-12. [PMID: 18437263 DOI: 10.1039/b715110c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of rare messages in cDNA libraries is extremely difficult due to the substantial variations in the abundance of different transcripts in cells and tissues. Therefore, for rare transcript searches and analyses, the generation of equalized (normalized) cDNA is essential. Several cDNA normalization methods have been developed since 1990. A number of these methods have been optimized for the normalization of full-length enriched cDNA, and used in various applications, including transcriptome analysis and functional screening of cDNA libraries. One such procedure (named DSN-normalization) is based on the unique properties of duplex-specific nuclease (DSN) from kamchatka crab and allows the generation of normalized cDNA libraries with a high gene discovery rate.
Collapse
Affiliation(s)
- Ekaterina A Bogdanova
- Shemiakin and Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya, Moscow, Russia
| | | | | |
Collapse
|
17
|
Gou D, Zhang H, Baviskar PS, Liu L. Primer extension-based method for the generation of a siRNA/miRNA expression vector. Physiol Genomics 2007; 31:554-62. [PMID: 17804605 DOI: 10.1152/physiolgenomics.00005.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA interference (RNAi) has become a powerful technique for studying gene function, biological pathways, and the physiology of diseases. Typically, the RNAi response in mammalian cells is mediated by small interfering RNA (siRNA). The use of synthesized siRNA to silence gene is relatively quick and easy, but it is costly with transient effects. A short hairpin RNA (shRNA) with complementary sense and antisense sequences of a target gene separated by a loop structure results in gene silencing that is as effective as chemically synthesized siRNA with fewer limitations. However, current methods for constructing shRNA vectors require the synthesis of long oligonucleotides, which is costly and often suffers from mutation problems during synthesis. Here, we report an alternative approach to generate a shRNA expression vector with high efficacy. We utilized shorter (<or=50-nucleotide) primers to generate a shRNA insert by the primer extension method. Our new approach for the construction of shRNA expression vectors dramatically reduced the possibility of mutations. Using this method, we constructed a microRNA (miRNA) library, which facilitates the expression of 254 matured miRNAs. We also performed high-throughput screening of miRNAs involved in the regulation of human Survivin promoter activity in lung A549 cells. We found that the expression of miR-192, 199a, 19a, 20a, 213, and 371 caused the activation of the Survivin promoter whereas miR-302b*, 34a, 98, 381, 463 and 471 decreased the Survivin promoter activity.
Collapse
Affiliation(s)
- Deming Gou
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | |
Collapse
|