1
|
Molecular Mechanisms of Nemorosone-Induced Ferroptosis in Cancer Cells. Cells 2023; 12:cells12050735. [PMID: 36899871 PMCID: PMC10000521 DOI: 10.3390/cells12050735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death-driven by excessive peroxidation of polyunsaturated fatty acids (PUFAs) of membranes. A growing body of evidence suggests the induction of ferroptosis as a cutting-edge strategy in cancer treatment research. Despite the essential role of mitochondria in cellular metabolism, bioenergetics, and cell death, their function in ferroptosis is still poorly understood. Recently, mitochondria were elucidated as an important component in cysteine-deprivation-induced (CDI) ferroptosis, which provides novel targets in the search for new ferroptosis-inducing compounds (FINs). Here, we identified the natural mitochondrial uncoupler nemorosone as a ferroptosis inducer in cancer cells. Interestingly, nemorosone triggers ferroptosis by a double-edged mechanism. In addition to decreasing the glutathione (GSH) levels by blocking the System xc cystine/glutamate antiporter (SLC7A11), nemorosone increases the intracellular labile Fe2+ pool via heme oxygenase-1 (HMOX1) induction. Interestingly, a structural variant of nemorosone (O-methylated nemorosone), having lost the capacity to uncouple mitochondrial respiration, does not trigger cell death anymore, suggesting that the mitochondrial bioenergetic disruption via mitochondrial uncoupling is necessary for nemorosone-induced ferroptosis. Our results open novel opportunities for cancer cell killing by mitochondrial uncoupling-induced ferroptosis.
Collapse
|
2
|
Pérez Reyes DJ, Lardoeyt Ferrer R, Robaina Castellanos MS. Contribution of genetic factors in the occurrence of breast cancer in cuban women. DATA AND METADATA 2022; 1:75. [DOI: 10.56294/dm202275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Introduction: breast cancer is a disease of multifactorial etiology, where genetic factors and environmental factors are involved, in Cuba it constitutes the second cause of mortality in women "however" it is not known what the risk of a woman is developing it attributable to genetic predisposition, limiting an effective genetic counseling. Objective: to identify the preferential clustering of breast cancer in relatives of cases with respect to the population and to analyze the genetic contribution in people with breast cancer attended at the National Institute of Oncology and Radiobiology (INOR). Methods: we conducted an analytical study of cases and nested neighborhood controls in a dynamic cohort. The sample consisted of 66 cases and 132 controls. The genetic contribution was studied through the tools of genetic epidemiology. Results: there was a preferential clustering of this disease in families that, in the population, genetic factors defined the familial prevalence of breast cancer in the relatives of the cases and there was an increasing tendency to suffer the disease as the proportion of genes to be shared increases. Conclusion: the preferential aggregation of breast cancer is identified and the contribution of genetic factors in the appearance of this disease in women attended at INOR is analyzed, showing that a person has three times more risk of suffering breast cancer attributable to the history of this disease in second-degree relatives
Collapse
|
3
|
Magnavacca A, Sangiovanni E, Racagni G, Dell'Agli M. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases. Med Res Rev 2022; 42:897-945. [PMID: 34725836 PMCID: PMC9298305 DOI: 10.1002/med.21866] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Propolis is a complex natural product that possesses antioxidant, anti-inflammatory, immunomodulatory, antibacterial, and antiviral properties mainly attributed to the high content in flavonoids, phenolic acids, and their derivatives. The chemical composition of propolis is multifarious, as it depends on the botanical sources from which honeybees collect resins and exudates. Nevertheless, despite this variability propolis may have a general pharmacological value, and this review systematically compiles, for the first time, the existing preclinical and clinical evidence of propolis activities as an antiviral and immunomodulatory agent, focusing on the possible application in respiratory diseases. In vitro and in vivo assays have demonstrated propolis broad-spectrum effects on viral infectivity and replication, as well as the modulatory actions on cytokine production and immune cell activation as part of both innate and adaptive immune responses. Clinical trials confirmed propolis undeniable potential as an effective therapeutic agent; however, the lack of rigorous randomized clinical trials in the context of respiratory diseases is tangible. Since propolis is available as a dietary supplement, possible use for the prevention of respiratory diseases and their deleterious inflammatory drawbacks on the respiratory tract in humans is considered and discussed. This review opens up new perspectives on the clinical investigation of neglected propolis biological properties which, now more than ever, are particularly relevant with respect to the recent outbreaks of pandemic respiratory infections.
Collapse
Affiliation(s)
- Andrea Magnavacca
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| |
Collapse
|
4
|
Kaya ST, Agan K, Fulden-Agan A, Agyar-Yoldas P, Ozarslan TO, Kekecoglu M, Kaya A. Protective effect of propolis on myocardial ischemia/reperfusion injury in males and ovariectomized females but not in intact females. J Food Biochem 2022; 46:e14109. [PMID: 35142377 DOI: 10.1111/jfbc.14109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/12/2021] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study is to investigate the effect of propolis, which may have estrogenic effects, on myocardial ischemia/reperfusion (mI/R) injury not only in male rats but also in intact and ovariectomized (ovx) female rats. Six groups were formed: untreated males (n = 8), treated males (n = 9), untreated intact females (n = 9), treated intact females (n = 10), untreated ovx females (n = 10), and treated ovx females (n = 8). An alcoholic extract of a single dose of propolis (200 mg/kg) was administered orally daily for 14 days. Thirty minutes of ischemia and 120 min of reperfusion were performed. Blood pressure, heart rate, arrhythmias (ventricular premature contraction [VPC], ventricular tachycardia [VT], ventricular fibrillation [VF]), and myocardial infarct size were evaluated. Total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and 17 beta-estradiol (E2) were measured. The untreated females showed more resistance to mI/R injury than the untreated males, as evidenced by lower duration, incidence, and score of arrhythmias, and smaller infarct size (p < .05). After ovx, this resistance disappeared. Propolis improved these values in treated males and treated ovx females (p < .05). Propolis increased TAS in treated males and decreased TOS in treated ovx females as well as elevated SOD in all treated groups (p < .05). Propolis decreased E2 level in treated intact females; however, it increased E2 level in treated ovx females (p < .05). The results revealed that propolis could protect the heart against mI/R injury in males and ovx females. PRACTICAL APPLICATIONS: It is known that the female heart has an increased sensitivity to myocardial ischemia/reperfusion (mI/R) injury due to estrogen deficiency and/or estrogen deprivation following menopause or surgical removal of the ovaries. Propolis has the potential to mimic estrogen under physiological and pathophysiological conditions, as well as its antioxidant property. The results indicated that propolis decreased myocardial infarct size, arrhythmia score, arrhythmia duration, and incidence in ovariectomized female rats and male rats. In addition, the present results demonstrated that an alcoholic extract of propolis as a natural product can effectively maintain the resistance of female heart to mI/R injury after estrogen deficiency.
Collapse
Affiliation(s)
- Salih Tunc Kaya
- Faculty of Arts and Science, Department of Biology, Duzce University, Duzce, Turkey
| | - Kagan Agan
- Coordination Unit of Healthy and Environmental, Duzce University, Duzce, Turkey
| | - Aydan Fulden-Agan
- Beekeeping Research, Development and Application Centre, Duzce University, Duzce, Turkey
| | - Pınar Agyar-Yoldas
- Coordination Unit of Healthy and Environmental, Duzce University, Duzce, Turkey
| | - Talat Ogulcan Ozarslan
- Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Meral Kekecoglu
- Faculty of Arts and Science, Department of Biology, Duzce University, Duzce, Turkey.,Beekeeping Research, Development and Application Centre, Duzce University, Duzce, Turkey
| | - Adnan Kaya
- Faculty of Medicine, Department of Internal Medicine, Cardiology Section, Duzce University, Duzce, Turkey
| |
Collapse
|
5
|
Hermansyah D, Zulhendri F, Perera CO, Firsty NN, Chandrasekaran K, Abdulah R, Herman H, Lesmana R. The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers. Integr Cancer Ther 2022; 21:15347354221096868. [PMID: 35593403 PMCID: PMC9127854 DOI: 10.1177/15347354221096868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 04/10/2022] [Indexed: 11/24/2022] Open
Abstract
Propolis is a resinous beehive product that has a wide range of biological activities, namely antimicrobial, antioxidant, and anti-inflammatory properties. Propolis is collected by the bees from plant resin and exudates to protect hives and maintain hive homeostasis. The aim of the present systematic scoping review is to explore the potential and suitability of propolis as an adjunctive treatment in breast cancers, based on the latest available experimental evidence (2012-2021). After applying the exclusion criteria, a total of 83 research publications were identified and retrieved from Scopus, Web of Science, and Pubmed. Several relevant key themes identified from the included studies were cytotoxicity, synergistic/combination treatment, improvement in bioavailability, human clinical trials, and others. A majority of the studies identified were still in the in vitro and in vivo stages. Nonetheless, we managed to identify 4 human clinical trials that demonstrated the successful use of propolis in alleviating side effects of chemotherapy and radiotherapy while increasing the quality of life of breast cancer patients, with minimal adverse effects. In conclusion, propolis, as an adjunctive treatment, may have therapeutic benefits in alleviating symptoms related to breast cancers. However, further clinical trials, preferably with higher number of participants/subjects/patients, are urgently needed.
Collapse
Affiliation(s)
| | - Felix Zulhendri
- Universitas Padjadjaran, Bandung, Indonesia
- Kebun Efi, Kabanjahe, Indonesia
| | | | | | | | | | | | | |
Collapse
|
6
|
Lipovka Y, Alday E, Hernandez J, Velazquez C. Molecular Mechanisms of Biologically Active Compounds from Propolis in Breast Cancer: State of the Art and Future Directions. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2003380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yulia Lipovka
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Javier Hernandez
- Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Xalapa, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
7
|
Losada-Echeberría M, Herranz-López M, Micol V, Barrajón-Catalán E. Polyphenols as Promising Drugs against Main Breast Cancer Signatures. Antioxidants (Basel) 2017; 6:E88. [PMID: 29112149 PMCID: PMC5745498 DOI: 10.3390/antiox6040088] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs) and epidermal growth factor receptor 2 (HER2). Tumors with none of these receptors are classified as triple negative breast cancer (TNBC) and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation.
Collapse
Affiliation(s)
- María Losada-Echeberría
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - María Herranz-López
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Micol
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Palma de Mallorca 07122, Spain.
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| |
Collapse
|
8
|
Cruz M, Antunes P, Paulo L, Ferreira AM, Cunha A, Almeida-Aguiar C, Oliveira R. Antioxidant and dual dose-dependent antigenotoxic and genotoxic properties of an ethanol extract of propolis. RSC Adv 2016. [DOI: 10.1039/c6ra04856k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Propolis is a resinous product made by honeybees from plant-derived materials, with high content of polyphenols associated to beneficial bioactivities with potential use as a natural food additive for preservation and as a functional food ingredient.
Collapse
Affiliation(s)
- M. Cruz
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- Department of Biology
- University of Minho
- Campus de Gualtar
- 4710-057 Braga
| | - P. Antunes
- Centro de Apoio Tecnológico Agro Alimentar (CATAA)
- Zona Industrial de Castelo Branco
- 6000-459 Castelo Branco
- Portugal
| | - L. Paulo
- Centro de Apoio Tecnológico Agro Alimentar (CATAA)
- Zona Industrial de Castelo Branco
- 6000-459 Castelo Branco
- Portugal
| | - A. M. Ferreira
- Chemistry Research Center (CQVR)
- University of Trás-os-Montes e Alto Douro
- Quinta de Prados
- 5000-801 Vila Real
- Portugal
| | - A. Cunha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- Department of Biology
- University of Minho
- Campus de Gualtar
- 4710-057 Braga
| | - C. Almeida-Aguiar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- Department of Biology
- University of Minho
- Campus de Gualtar
- 4710-057 Braga
| | - R. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)
- Department of Biology
- University of Minho
- Campus de Gualtar
- 4710-057 Braga
| |
Collapse
|
9
|
|
10
|
Camargo MS, Oliveira MT, Santoni MM, Resende FA, Oliveira-Höhne AP, Espanha LG, Nogueira CH, Cuesta-Rubio O, Vilegas W, Varanda EA. Effects of nemorosone, isolated from the plant Clusia rosea, on the cell cycle and gene expression in MCF-7 BUS breast cancer cell lines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:153-157. [PMID: 25636884 DOI: 10.1016/j.phymed.2014.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/30/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Breast cancer is the cause of considerable morbidity and mortality in women. While estrogen receptor antagonists have been widely used in breast cancer treatment, patients have increasingly shown resistance to these agents and the identification of novel targeted therapies is therefore required. Nemorosone is the major constituent of the floral resin from Clusia rosea and belongs to the class of polycyclic polyisoprenylated benzophenones of the acylphloroglucinol group. The cytotoxicity of nemorosone in human cancer cell lines has been reported in recent years and has been related to estrogen receptors in breast cancer cells. METHODS Changes induced by nemorosone in the cell cycle and gene expression of the MCF-7 BUS (estrogen-dependent) breast cancer cell line were analyzed using flow cytometry and the RT(2) Profiler PCR array, respectively. RESULTS In comparison to breast cancer cells without treatment, nemorosone induced discrete cell cycle arrest in the G1 phase and significant depletion in the G2 phase. Moreover, the compound altered the expression of 19 genes related to different pathways, especially the cell cycle, apoptosis and hormone receptors. CONCLUSION These promising results justify further studies to clarify mechanisms of action of nemorosone, in view of evaluate the possible use of this benzophenone as adjuvant in the treatment of breast cancer.
Collapse
Affiliation(s)
- M S Camargo
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil
| | - M T Oliveira
- UEL - Univ. Estadual Londrina, Londrina, Paraná, Brazil
| | - M M Santoni
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil
| | - F A Resende
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil.
| | - A P Oliveira-Höhne
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil
| | - L G Espanha
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil
| | - C H Nogueira
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil
| | - O Cuesta-Rubio
- Instituto de Farmacia y Alimentos (IFAL), Universidad de La Habana, La Habana, Cuba
| | - W Vilegas
- UNESP - Univ. Estadual Paulista, Instituto de Química, Campus Araraquara, c.p. 355, CEP 14800-900, Araraquara, São Paulo, Brazil
| | - E A Varanda
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil
| |
Collapse
|
11
|
Huang S, Zhang CP, Wang K, Li GQ, Hu FL. Recent advances in the chemical composition of propolis. Molecules 2014; 19:19610-32. [PMID: 25432012 PMCID: PMC6271758 DOI: 10.3390/molecules191219610] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 12/02/2022] Open
Abstract
Propolis is a honeybee product with broad clinical applications. Current literature describes that propolis is collected from plant resins. From a systematic database search, 241 compounds were identified in propolis for the first time between 2000 and 2012; and they belong to such diverse chemical classes as flavonoids, phenylpropanoids, terpenenes, stilbenes, lignans, coumarins, and their prenylated derivatives, showing a pattern consistent with around 300 previously reported compounds. The chemical characteristics of propolis are linked to the diversity of geographical location, plant sources and bee species.
Collapse
Affiliation(s)
- Shuai Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Cui-Ping Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Kai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - George Q Li
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Clusianone, a naturally occurring nemorosone regioisomer, uncouples rat liver mitochondria and induces HepG2 cell death. Chem Biol Interact 2014; 212:20-9. [PMID: 24491676 DOI: 10.1016/j.cbi.2014.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/15/2014] [Accepted: 01/23/2014] [Indexed: 12/22/2022]
Abstract
Clusianone is a member of the polycyclic polyprenylated acylphloroglucinol family of natural products; its cytotoxic mechanism is unknown. Clusianone is a structural isomer of nemorosone, which is a mitochondrial uncoupler and a well-known cytotoxic anti-cancer agent; thus, we addressed clusianone action at the mitochondria and its potential cytotoxic effects on cancer cells. In the HepG2 hepatocarcinoma cell line, clusianone induced mitochondrial membrane potential dissipation, ATP depletion and phosphatidyl serine externalization; this later event is indicative of apoptosis induction. In isolated mitochondria from rat liver, clusianone promoted protonophoric mitochondrial uncoupling. This was evidenced by the dissipation of mitochondrial membrane potential, an increase in resting respiration, an inhibition of Ca(2+) influx, stimulation of Ca(2+) efflux in Ca(2+)-loaded mitochondria, a decrease in ATP and NAD(P)H levels, generation of ROS, and swelling of valinomycin-treated organelles in hyposmotic potassium acetate media. The cytotoxic and uncoupling actions of clusianone were appreciably less than those of nemorosone, likely due to the presence of an intra-molecular hydrogen bond with the juxtaposed carbonyl group at the C15 position. Therefore, clusianone is capable of pharmacologically increasing the leakage of protons from the mitochondria and with favorable cytotoxicity in relation to nemorosone.
Collapse
|