1
|
Park KH, Gu DR, Kim MS, Lee SH. Inhibitory Effect of Rosae Multiflorae Fructus Extracts on the Receptor Activator of NF-κB Ligand-Induced Osteoclastogenesis through Modulation of P38- and Ca 2+-Mediated Nuclear Factor of Activated T-Cells Cytoplasmic 1 Expression. J Bone Metab 2020; 27:53-63. [PMID: 32190609 PMCID: PMC7064362 DOI: 10.11005/jbm.2020.27.1.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Background Rosae Multiflorae fructus (RMF), known to have anti-inflammatory and antioxidant properties, has been used as a traditional remedy for inflammatory diseases such as arthritis in Eastern Asia. However, its effect on osteoclasts, which play a crucial role in resorptive inflammatory bone diseases, is yet to be elucidated. Methods The effect of extract of RMF (RMF-E) on receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclastogenesis was examined by tartrate-resistant acid phosphatase (TRAP) staining, real-time polymerase chain reaction and western blot analysis. In addition, RANKL-induced Ca2+-oscillation was also investigated. Results RMF-E remarkably inhibited TRAP+-osteoclast and resorptive pit formation in a dose-dependent manner. In addition, the expression of c-Fos and nuclear factor of activated T-cells cytoplasmic, known as pivotal transcription factors for osteoclast formation in vitro and in vivo, and that of the osteoclast differentiation markers such as Acp5, Oscar, CtsK, Atp6v0d2, Tm7sf4, and Nfatc1 were significantly decreased by RMF-E treatment during osteoclastogenesis. The inhibitory effect of RMF-E on RANKL-induced osteoclastogenesis was caused by the suppression of p38 mitogen-activated protein kinase activation, and RANKL-induced Ca2+-oscillation removal via inactivation of Bruton's tyrosine kinase (BTK), and subsequently phospholipase C-γ2. Conclusions RMF-E negatively regulates osteoclast differentiation and formation. These findings suggest the possibility of RMF-E as a traditional therapeutic agent against osteoclast-related bone disorders such as osteoporosis, rheumatoid arthritis, and periodontitis.
Collapse
Affiliation(s)
- Keun Ha Park
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Korea
| | - Dong Ryun Gu
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Korea
| | - Min Seuk Kim
- Department of Oral Physiology, College of Dentistry, Wonkwang University, Iksan, Korea.,Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, Iksan, Korea
| | - Seoung Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Iksan, Korea.,Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, Iksan, Korea
| |
Collapse
|
2
|
Wen Q, Li HL, Mai SY, Tan YF, Chen F. Tissue Distribution of Active Principles from Alpiniae Oxyphyllae Fructus Extract: An Experimental Study in Rats. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180910102909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Alpiniae Oxyphyllae Fructus (Yizhi in Chinese) have been widely used as an
herbal medicine for the treatment of diuresis, enuresis and diarrhea in China. Many studies have deciphered
some potential underlying mechanisms for its anti-diarrheal effects. However, tissue distribution
of Yizhi constituents is warranted because pharmacological receptors are frequently located in tissues.
Moreover, it is also interesting to know about the potential correlation between behavior in drug distribution
and the observed pharmacological response. The aim of this study is to investigate tissue distribution
behaviors of Yizhi constituents after oral administration of Yizhi extract to rats, focusing on 10
active principles.
Methods:
Twenty four male Sprague Dawley rats were given orally the Yizhi extract and fourteen tissue
samples were collected after being killed by bleeding from the abdominal aorta under ether anesthesia
at different time-points. The resulting tissues were excised and homogenized. Based on our previous
reports, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to quantify
the target analytes, as well as phase II metabolites, in the various biosamples.
Results:
Almost all the targeted Yizhi active principles and some glucuronidated metabolites were
qualitatively measured in rat stomach, small intestine, large intestine, as well as liver. Nootkatone,
yakuchinone A and tectochrysin were observed in the rat brain. In other rat tissues, these analytes had
lower exposure or could not be detected. Consistently, quantitative analysis revealed that the Yizhi active
principles dominantly distributed into gastrointestinal tissues followed by liver, the overall exposure
levels ranking as follows: stomach > small intestine > large intestine > liver. Tissue concentrationtime
profiles of the test active principles in rat stomach, small intestine, and large intestine were bimodal
with two concentration peaks occurring at 0.5 and 4h after oral administration, respectively. The
exposure levels in rat kidney and bladder were quite low.
Conclusion:
The active principles of Yizhi were specially distributed into gastrointestinal tissues after
oral administration of its ethanol extract to rats. The tissue distribution behaviors partly supported its
anti-diarrheal effects from a pharmacokinetic opinion. This paper will be useful as the starting point for
studying the pharmacological activities of this traditional herb.
Collapse
Affiliation(s)
- Qi Wen
- Department of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Hai-Long Li
- Department of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Shi-Ying Mai
- Department of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Yin-Feng Tan
- Department of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Feng Chen
- Department of Pharmacy, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
3
|
Tamura H, Maekawa T, Domon H, Hiyoshi T, Yonezawa D, Nagai K, Ochiai A, Taniguchi M, Tabeta K, Maeda T, Terao Y. Peptides from rice endosperm protein restrain periodontal bone loss in mouse model of periodontitis. Arch Oral Biol 2018; 98:132-139. [PMID: 30485826 DOI: 10.1016/j.archoralbio.2018.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Food-derived peptides have been reported to exhibit antibacterial activity against periodontal pathogenic bacteria. However, no effect has been shown on inflammation and bone resorption in periodontal pathology. The overall objective of the current study was to investigate how rice peptides influence biological defense mechanisms against periodontitis-induced inflammatory bone loss, and identify their novel functions as a potential anti-inflammatory drug. DESIGN The expression of inflammatory and osteoclast-related molecules was examined in mouse macrophage-derived RAW 264.7 cell cultures using qPCR. Subsequently, the effect of these peptides on inflammatory bone loss in mouse periodontitis was examined using a mouse model of tooth ligation. Briefly, periodontal bone loss was induced for 7 days in mice by ligating the maxillary second molar and leaving the contralateral tooth un-ligated (baseline control). The mice were microinjected daily with the peptide in the gingiva until the day before euthanization. One week after the ligation, TRAP-positive multinucleated cells (MNCs) were enumerated from five random coronal sections of the ligated sites in each mouse. RESULTS Rice peptides REP9 and REP11 significantly inhibited transcription activity of inflammatory and osteoclast-related molecules. Local treatment with the rice peptides, in mice subjected to ligature-induced periodontitis, inhibited inflammatory bone loss, explaining the decreased numbers of osteoclasts in bone tissue sections. CONCLUSION Therefore, these data suggested that the rice peptides possess a protective effect against periodontitis.
Collapse
Affiliation(s)
- Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daisuke Yonezawa
- Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Division of Oral Science for Health Promotion, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kosuke Nagai
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeyasu Maeda
- Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| |
Collapse
|
4
|
Zhang Q, Zheng Y, Hu X, Hu X, Lv W, Lv D, Chen J, Wu M, Song Q, Shentu J. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Alpinia oxyphylla Miquel: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:149-168. [PMID: 29738847 DOI: 10.1016/j.jep.2018.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL USAGES Fructus Alpiniae oxyphyllae (A. oxyphylla) is an important medicinal plant that is used not only as an edible fruit, but also as an important traditional medicine for benefiting cognitive performance and alleviating a wide spectrum of diseases. Such as; warming kidney, securing essence and arresting polyuria, as well as warming the spleen and stopping diarrhea and saliva. AIMS The purpose of this review is to provide updated, comprehensive and categorized information on the traditional uses, phytochemistry and pharmacological research of A. oxyphylla in order to explore their therapeutic potential and establish a solid foundation for directing future research. MATERIALS AND METHODS All the available information on A. oxyphylla was collected via electronic search (using Pubmed, SciFinder, Scirus, Google Scholar and Web of Science) and additionally a number of unpublished resources, (e.g. books, Ph.D. and M.Sc. dissertations, government reports). RESULTS Phytochemical research on A. oxyphylla has led to the isolation of components such as essential oils, terpenes, diarylheptanoids, flavones, nucleobases and nucleosides, steroids and others. Crude extracts, fractions and phytochemical constituents isolated from A. oxyphylla showed a wide spectrum of in vitro and in vivo pharmacological activities like neuroprotective, anti-diarrheal, anti-diuretic, anti-neoplastic, anti-oxidant, anti-inflammatory, anti-allergic, viscera protective and anti-diabetic activities. Neuroprotective, anti-cancer, anti-diarrheal and anti-diuretic effects are major areas of research conducted on A. oxyphylla. CONCLUSIONS Modern pharmacological studies have supported many traditional uses of A. oxyphylla, including nervous system, urinary system and gastrointestinal system disease. There was convincing evidence in experimental animal models in support of its neuroprotection, secure essence, reduce urination, and anti-carcinogenic effects. However, all the reported pharmacological activities were carried out at pre-clinical level and the authors urge further investigation in clinical trials about these therapeutic fields of A. oxyphylla.
Collapse
Affiliation(s)
- Qiao Zhang
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yunliang Zheng
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xingjiang Hu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wenwen Lv
- Pharmacy Department, Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Duo Lv
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Jinjin Chen
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Minglan Wu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Qichao Song
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Jianzhong Shentu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.
| |
Collapse
|
5
|
The Natural Product 6-Gingerol Inhibits Inflammation-Associated Osteoclast Differentiation via Reduction of Prostaglandin E₂ Levels. Int J Mol Sci 2018; 19:ijms19072068. [PMID: 30013004 PMCID: PMC6073224 DOI: 10.3390/ijms19072068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 12/24/2022] Open
Abstract
The natural product 6-gingerol, a major bioactive component of the rhizome of ginger (Zingiber officinale), is known to have several beneficial effects on health, including anti-inflammatory activity. The present study aimed to investigate the effects of 6-gingerol on osteoclast differentiation associated with inflammation. 6-Gingerol inhibited osteoclast differentiation in co-cultures of osteoblasts and osteoclast precursor cells in response to the pro-inflammatory cytokine, interleukin (IL)-1. However, it did not affect osteoclast precursor differentiation into osteoclasts induced by the receptor activator of nuclear factor-κB ligand (RANKL), a key cytokine causing osteoclast differentiation. 6-Gingerol inhibited IL-1-induced RANKL expression in osteoblasts, and the addition of RANKL to the co-cultures overcame 6-gingerol-mediated inhibition of osteoclast differentiation. It also suppressed IL-1-induced prostaglandin E2 (PGE2) production in osteoblasts, and the addition of exogenous PGE2 reversed 6-gingerol-mediated inhibition of IL-induced RANKL expression in osteoblasts and osteoclast differentiation in the co-cultures. We found that 6-gingerol reduced PGE2 levels by suppressing enzymatic activities of cyclooxygenase and PGE synthase, which cooperatively catalyze the conversion of arachidonic acid to PGE2. Our findings demonstrate that 6-gingerol inhibits IL-1-induced osteoclast differentiation via suppression of RANKL expression in osteoblasts though reduction of PGE2 levels, suggesting its potential use in treating inflammatory bone destruction associated with excessive PGE2 production.
Collapse
|
6
|
Magnolol Inhibits Osteoclast Differentiation via Suppression of RANKL Expression. Molecules 2018; 23:molecules23071598. [PMID: 30004401 PMCID: PMC6100296 DOI: 10.3390/molecules23071598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 11/23/2022] Open
Abstract
Magnolol, a compound from the traditional Korean herb Magnolia sp., has been exhaustively investigated as a therapeutic agent against several diseases including systemic and local inflammation. We examined the effects of magnolol on osteoclastic differentiation associated with inflammation. Magnolol markedly reduced interleukin (IL)-1-induced osteoclast formation in co-cultures of murine osteoblasts and bone marrow cells, whereas it had no effect on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in bone marrow macrophage cultures. In osteoblasts, magnolol markedly inhibited both the up-regulation of RANKL expression and the production of prostaglandin E2 (PGE2) in response to IL-1 treatment. Addition of exogenous PGE2 reversed the inhibitory effects of magnolol on IL-1-induced RANKL expression in osteoblasts and osteoclast formation in co-cultures. Magnolol inhibited IL-1-induced PGE2 production, at least in part by suppressing cyclooxygenase-2 (COX-2) expression. Taken together, these results demonstrate that magnolol inhibits IL-1-induced RANKL expression in osteoblasts through suppression of COX-2 expression and PGE2 production, resulting in inhibition of osteoclast differentiation in co-cultures.
Collapse
|
7
|
Shim KS, Lee B, Ma JY. Water extract of Rumex crispus prevents bone loss by inhibiting osteoclastogenesis and inducing osteoblast mineralization. Altern Ther Health Med 2017; 17:483. [PMID: 29070038 PMCID: PMC5657118 DOI: 10.1186/s12906-017-1986-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
Background Rumex crispus root has traditionally been used in Asian medicine for the treatment of hemorrhage and dermatolosis. The aim of this study was to explore the pharmaceutical effects of water extract of Rumex crispus (WERC) on osteoblast and osteoclast differentiation. We also studied the effect of WERC on the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced trabecular bone destruction mice model. Methods High performance liquid chromatography analysis was used to identify three compounds (emodin, chrysophanol, and physcion) of WERC. The in vivo effect of WERC was examined using an administration of WERC or vehicle on the ICR mice with bone loss induced by intraperitoneal RANKL injection on day 0 and 1. All mice were sacrificed by cervical dislocation at day 7 and the femurs of mice were isolated for soft X-ray and Micro-CT analysis. The in vitro effect of WERC on osteoblast mineralization or osteoclast differentiation was examined by alizarin red S staining or by tartrate-resistant acid phosphatase staining and assay. To determine the transcription level of osteoblast or osteoclast-specific genes, real-time quantitative polymerase chain reaction was used. Western blot analysis was performed to study the effect of WERC on mitogen-activated protein kinases (MAPK) or nuclear factor-κB (NF-κB) signaling molecules. Results The presence of three compounds in WERC was determined. WERC significantly suppressed RANKL-induced trabecular bone loss by preventing microstructural deterioration. In vitro, WERC increased osteoblast mineralization by enhancing the transcription of runt-related transcription factor 2 and its transcriptional coactivators, and by stimulating extracellular signal–regulated kinase phosphorylation. Furthermore, WERC significantly inhibited osteoclast differentiation by suppressing the activation of the RANKL signalings (MAPK and NF-κB) and the increasing inhibitory factors of nuclear factor of activated T cells cytoplasmic 1. Conclusion This study showed that WERC could protect against osteoporosis and suggested that the possible mechanism of WERC might be related to increased osteoblast differentiation by activating Runx2 signaling and inhibition of osteoclast differentiation by suppression of RANKL signaling. Electronic supplementary material The online version of this article (10.1186/s12906-017-1986-7) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Ha H, Shim KS, Ma JY. Water extract of Uncaria sinensis suppresses RANKL-induced bone loss by attenuating osteoclast differentiation and bone resorption. Integr Med Res 2017; 6:434-442. [PMID: 29296571 PMCID: PMC5741393 DOI: 10.1016/j.imr.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 01/23/2023] Open
Abstract
Background The hooks and stems of Uncaria sinensis have been used to mitigate cardiovascular and central nervous system disorders in Asia traditional medicine. Regulation of osteoclast differentiation and activity is a major target for preventing and treating pathological bone diseases. Methods Tartrate-resistant acid phosphatase (TRAP) activity and the number of TRAP-stained multinucleated cells were used to examine receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. The activation of RANKL-induced signaling pathways and the expression of transcription factors were investigated by western blot analysis and quantitative real-time polymerase chain reaction. The bone resorption activity of osteoclast was studied using a plate coated with hydroxyl-apatite. Trabecular bone destruction was investigated using a RANKL-induced trabecular bone loss mouse model. Results We found that water extract of the hooks and stems of U. sinensis (WEUS) inhibits RANKL-induced differentiation of murine bone marrow macrophages and RAW264.7 cells into osteoclasts. WEUS inhibited the activation of NF-κB and the expression of nuclear factor of activated T-cells, cytoplasmic 1. In addition, WEUS suppressed the bone resorbing activity of mature osteoclasts without affecting their survival. Furthermore, oral administration of WEUS suppressed RANKL-induced bone loss with a significant amelioration of trabecular bone micro-structures. WEUS also reduced RANKL-induced increase in serum TRAP5b activity and C-terminal cross-linked telopeptide of type I collagen levels. Conclusion The present study demonstrates that WEUS has a pharmacological activity that inhibits osteoclast-mediated bone destruction by suppressing osteoclast differentiation and function. These results suggest that U. sinensis could be a promising herbal candidate for preventing and treating bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Hyunil Ha
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Ki-Shuk Shim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Dong-gu, Daegu 701-300, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Dong-gu, Daegu 701-300, Republic of Korea
| |
Collapse
|
9
|
Lee CJ, Shim KS, Ma JY. Artemisia capillaris Alleviates Bone Loss by Stimulating Osteoblast Mineralization and Suppressing Osteoclast Differentiation and Bone Resorption. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1675-1691. [PMID: 27852127 DOI: 10.1142/s0192415x16500944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Artemisia capillaris has been used to treat jaundice and relieve high liver-heat in traditional medicine. In this study, we found that the administration of a water extract from A. capillaris (WEAC) to the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced bone loss model significantly prevents osteoporotic bone loss, increasing bone volume/trabecular volume by 22% and trabecular number by 24%, and decreasing trabecular separation by 29%. WEAC stimulated in vitro osteoblast mineralization from primary osteoblasts in association with increasing expression of osterix, nuclear factor of activated T cells cytoplasmic 1, and activator protein-1, as well as phosphorylation of extracellular signal-regulated kinase. In contrast to the anabolic effect of WEAC, WEAC significantly suppressed in vitro osteoclast formation from bone marrow macrophages by inhibiting the RANKL signaling pathways and bone resorption by downregulating the expression of resorption markers. Therefore, this study demonstrated that WEAC has a beneficial effect on bone loss through the regulation of osteoblast mineralization, as well as osteoclast formation and bone resorption. These results suggest that A. capillaris may be a promising herbal candidate for therapeutic agents to treat or prevent osteoporotic bone diseases.
Collapse
Affiliation(s)
- Chung-Jo Lee
- 1 KM Application Center, Korea Institute of Oriental Medicine, Dong-gu, Daegu 701-300, Republic of Korea
| | - Ki-Shuk Shim
- 1 KM Application Center, Korea Institute of Oriental Medicine, Dong-gu, Daegu 701-300, Republic of Korea
| | - Jin Yeul Ma
- 1 KM Application Center, Korea Institute of Oriental Medicine, Dong-gu, Daegu 701-300, Republic of Korea
| |
Collapse
|