1
|
Li X, Paulson TG, Galipeau PC, Sanchez CA, Liu K, Kuhner MK, Maley CC, Self SG, Vaughan TL, Reid BJ, Blount PL. Assessment of Esophageal Adenocarcinoma Risk Using Somatic Chromosome Alterations in Longitudinal Samples in Barrett's Esophagus. Cancer Prev Res (Phila) 2015; 8:845-56. [PMID: 26130253 DOI: 10.1158/1940-6207.capr-15-0130] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022]
Abstract
Cancers detected at a late stage are often refractory to treatments and ultimately lethal. Early detection can significantly increase survival probability, but attempts to reduce mortality by early detection have frequently increased overdiagnosis of indolent conditions that do not progress over a lifetime. Study designs that incorporate biomarker trajectories in time and space are needed to distinguish patients who progress to an early cancer from those who follow an indolent course. Esophageal adenocarcinoma is characterized by evolution of punctuated and catastrophic somatic chromosomal alterations and high levels of overall mutations but few recurrently mutated genes aside from TP53. Endoscopic surveillance of Barrett's esophagus for early cancer detection provides an opportunity for assessment of alterations for cancer risk in patients who progress to esophageal adenocarcinoma compared with nonprogressors. We investigated 1,272 longitudinally collected esophageal biopsies in a 248 Barrett's patient case-cohort study with 20,425 person-months of follow-up, including 79 who progressed to early-stage esophageal adenocarcinoma. Cancer progression risk was assessed for total chromosomal alterations, diversity, and chromosomal region-specific alterations measured with single-nucleotide polymorphism arrays in biopsies obtained over esophageal space and time. A model using 29 chromosomal features was developed for cancer risk prediction (area under receiver operator curve, 0.94). The model prediction performance was robust in two independent esophageal adenocarcinoma sets and outperformed TP53 mutation, flow cytometric DNA content, and histopathologic diagnosis of dysplasia. This study offers a strategy to reduce overdiagnosis in Barrett's esophagus and improve early detection of esophageal adenocarcinoma and potentially other cancers characterized by punctuated and catastrophic chromosomal evolution.
Collapse
Affiliation(s)
- Xiaohong Li
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Thomas G Paulson
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Patricia C Galipeau
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Carissa A Sanchez
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Karen Liu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mary K Kuhner
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Carlo C Maley
- Center for Evolution and Cancer, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California. School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Steven G Self
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Thomas L Vaughan
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Epidemiology, University of Washington, Seattle, Washington
| | - Brian J Reid
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Genome Sciences, University of Washington, Seattle, Washington. Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Department of Medicine, University of Washington, Seattle, Washington.
| | - Patricia L Blount
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
2
|
McDonald SA, Graham TA, Lavery DL, Wright NA, Jansen M. The Barrett's Gland in Phenotype Space. Cell Mol Gastroenterol Hepatol 2015; 1:41-54. [PMID: 28247864 PMCID: PMC5301147 DOI: 10.1016/j.jcmgh.2014.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023]
Abstract
Barrett's esophagus is characterized by the erosive replacement of esophageal squamous epithelium by a range of metaplastic glandular phenotypes. These glandular phenotypes likely change over time, and their distribution varies along the Barrett's segment. Although much recent work has addressed Barrett's esophagus from the genomic viewpoint-its genotype space-the fact that the phenotype of Barrett's esophagus is nonstatic points to conversion between phenotypes and suggests that Barrett's esophagus also exists in phenotype space. Here we explore this latter concept, investigating the scope of glandular phenotypes in Barrett's esophagus and how they exist in physical and temporal space as well as their evolution and their life history. We conclude that individual Barrett's glands are clonal units; because of this important fact, we propose that it is the Barrett's gland that is the unit of selection in phenotypic and indeed neoplastic progression. Transition between metaplastic phenotypes may be governed by neutral drift akin to niche turnover in normal and dysplastic niches. In consequence, the phenotype of Barrett's glands assumes considerable importance, and we make a strong plea for the integration of the Barrett's gland in both genotype and phenotype space in future work.
Collapse
Affiliation(s)
- Stuart A.C. McDonald
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Trevor A. Graham
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Danielle L. Lavery
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicholas A. Wright
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Marnix Jansen
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Pathology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|