1
|
Alves SAS, Teixeira DE, Peruchetti DB, Silva LS, Brandão LFP, Caruso-Neves C, Pinheiro AAS. Bradykinin produced during Plasmodium falciparum erythrocytic cycle drives monocyte adhesion to human brain microvascular endothelial cells. Brain Res 2024; 1822:148669. [PMID: 37951562 DOI: 10.1016/j.brainres.2023.148669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.
Collapse
Affiliation(s)
- Sarah A S Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Felipe P Brandão
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Motta G, Juliano L, Chagas JR. Human plasma kallikrein: roles in coagulation, fibrinolysis, inflammation pathways, and beyond. Front Physiol 2023; 14:1188816. [PMID: 37711466 PMCID: PMC10499198 DOI: 10.3389/fphys.2023.1188816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Human plasma kallikrein (PKa) is obtained by activating its precursor, prekallikrein (PK), historically named the Fletcher factor. Human PKa and tissue kallikreins are serine proteases from the same family, having high- and low-molecular weight kininogens (HKs and LKs) as substrates, releasing bradykinin (Bk) and Lys-bradykinin (Lys-Bk), respectively. This review presents a brief history of human PKa with details and recent observations of its evolution among the vertebrate coagulation proteins, including the relations with Factor XI. We explored the role of Factor XII in activating the plasma kallikrein-kinin system (KKS), the mechanism of activity and control in the KKS, and the function of HK on contact activation proteins on cell membranes. The role of human PKa in cell biology regarding the contact system and KSS, particularly the endothelial cells, and neutrophils, in inflammatory processes and infectious diseases, was also approached. We examined the natural plasma protein inhibitors, including a detailed survey of human PKa inhibitors' development and their potential market.
Collapse
Affiliation(s)
- Guacyara Motta
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Departamento de Biofisica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jair Ribeiro Chagas
- Departamento de Biofisica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Pinheiro ADS, Kazura JW, Pinheiro AA, Schmaier AH. Is there a role for bradykinin in cerebral malaria pathogenesis? Front Cell Infect Microbiol 2023; 13:1184896. [PMID: 37637466 PMCID: PMC10448822 DOI: 10.3389/fcimb.2023.1184896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Malaria is a parasitic disease of global health significance and a leading cause of death in children living in endemic regions. Although various Plasmodium species are responsible for the disease, Plasmodium falciparum infection accounts for most severe cases of the disease in humans. The mechanisms of cerebral malaria pathogenesis have been studied extensively in humans and animal malaria models; however, it is far from being fully understood. Recent discoveries indicate a potential role of bradykinin and the kallikrein kinin system in the pathogenesis of cerebral malaria. The aim of this review is to highlight how bradykinin is formed in cerebral malaria and how it may impact cerebral blood-brain barrier function. Areas of interest in this context include Plasmodium parasite enzymes that directly generate bradykinin from plasma protein precursors, cytoadhesion of P. falciparum infected red blood cells to brain endothelial cells, and endothelial cell blood-brain barrier disruption.
Collapse
Affiliation(s)
- Alessandro de Sa Pinheiro
- Department of Medicine, Hematology and Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - James W. Kazura
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Ana Acacia Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alvin H. Schmaier
- Department of Medicine, Hematology and Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Dhangadamajhi G, Singh S. Malaria link of hypertension: a hidden syndicate of angiotensin II, bradykinin and sphingosine 1-phosphate. Hum Cell 2021; 34:734-744. [PMID: 33683655 DOI: 10.1007/s13577-021-00513-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/22/2023]
Abstract
In malaria-endemic countries, the burden of hypertension is on the rise. Although malaria and hypertension seem to have no direct link, several studies in recent years support their possible link. Three bioactive molecules such as angiotensin II (Ang II), bradykinin (BK) and sphingosine 1-phosphate (S1P) are crucial in regulating blood pressure. While the increased level of Ang II and S1P are responsible for inducing hypertension, BK is arthero-protective and anti-hypertensive. Therefore, in the present review, based on available literatures we highlight the present knowledge on the production and bioavailability of these molecules, the mechanism of their regulation of hypertension, and patho-physiological role in malaria. Further, a possible link between malaria and hypertension is hypothesized through various arguments based on experimental evidence. Understanding of their mechanisms of blood pressure regulation during malaria infection may open up avenues for drug therapeutics and management of malaria in co-morbidity with hypertension.
Collapse
Affiliation(s)
- Gunanidhi Dhangadamajhi
- Department of Biotechnology, Maharaja Sriramchandra Bhanjadeo University, Takatpur, Baripada, Odisha, 75003, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
5
|
Dagnino APA, Campos MM, Silva RBM. Kinins and Their Receptors in Infectious Diseases. Pharmaceuticals (Basel) 2020; 13:ph13090215. [PMID: 32867272 PMCID: PMC7558425 DOI: 10.3390/ph13090215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Kinins and their receptors have been implicated in a series of pathological alterations, representing attractive pharmacological targets for several diseases. The present review article aims to discuss the role of the kinin system in infectious diseases. Literature data provides compelling evidence about the participation of kinins in infections caused by diverse agents, including viral, bacterial, fungal, protozoan, and helminth-related ills. It is tempting to propose that modulation of kinin actions and production might be an adjuvant strategy for management of infection-related complications.
Collapse
|
6
|
El Chamy Maluf S, Icimoto MY, Melo PMS, Budu A, Coimbra R, Gazarini ML, Carmona AK. Human plasma plasminogen internalization route in Plasmodium falciparum-infected erythrocytes. Malar J 2020; 19:302. [PMID: 32847585 PMCID: PMC7449074 DOI: 10.1186/s12936-020-03377-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/14/2020] [Indexed: 02/03/2023] Open
Abstract
Background The intra-erythrocytic development of the malaria parasite Plasmodium falciparum depends on the uptake of a number of essential nutrients from the host cell and blood plasma. It is widely recognized that the parasite imports low molecular weight solutes from the plasma and the consumption of these nutrients by P. falciparum has been extensively analysed. However, although it was already shown that the parasite also imports functional proteins from the vertebrate host, the internalization route through the different infected erythrocyte membranes has not yet been elucidated. In order to further understand the uptake mechanism, the study examined the trafficking of human plasminogen from the extracellular medium into P. falciparum-infected red blood cells. Methods Plasmodium falciparum clone 3D7 was cultured in standard HEPES-buffered RPMI 1640 medium supplemented with 0.5% AlbuMAX. Exogenous human plasminogen was added to the P. falciparum culture and the uptake of this protein by the parasites was analysed by electron microscopy and Western blotting. Immunoprecipitation and mass spectrometry were performed to investigate possible protein interactions that may assist plasminogen import into infected erythrocytes. The effect of pharmacological inhibitors of different cellular physiological processes in plasminogen uptake was also tested. Results It was observed that plasminogen was selectively internalized by P. falciparum-infected erythrocytes, with localization in plasma membrane erythrocyte and parasite’s cytosol. The protein was not detected in parasitic food vacuole and haemoglobin-containing vesicles. Furthermore, in erythrocyte cytoplasm, plasminogen was associated with the parasite-derived membranous structures tubovesicular network (TVN) and Maurer’s clefts. Several proteins were identified in immunoprecipitation assay and may be involved in the delivery of plasminogen across the P. falciparum multiple compartments. Conclusion The findings here reported reveal new features regarding the acquisition of plasma proteins of the host by P. falciparum-infected erythrocytes, a mechanism that involves the exomembrane system, which is distinct from the haemoglobin uptake, clarifying a route that may be potentially targeted for inhibition studies.
Collapse
Affiliation(s)
- Sarah El Chamy Maluf
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 7°andar, Vila Clementino, São Paulo, 04039032, Brazil
| | - Marcelo Yudi Icimoto
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 7°andar, Vila Clementino, São Paulo, 04039032, Brazil
| | - Pollyana Maria Saud Melo
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 7°andar, Vila Clementino, São Paulo, 04039032, Brazil
| | - Alexandre Budu
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 7°andar, Vila Clementino, São Paulo, 04039032, Brazil
| | - Rita Coimbra
- Centro de Microscopia Eletrônica (CEME), Universidade Federal de São Paulo, Rua Botucatu 862, Vila Clementino, São Paulo, Brazil
| | - Marcos Leoni Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab. 329, 3°andar, Vila Mathias, Santos, São Paulo, 11015020, Brazil.
| | - Adriana Karaoglanovic Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 7°andar, Vila Clementino, São Paulo, 04039032, Brazil.
| |
Collapse
|
7
|
Nicolau LAD, Magalhães PJC, Vale ML. What would Sérgio Ferreira say to your physician in this war against COVID-19: How about kallikrein/kinin system? Med Hypotheses 2020; 143:109886. [PMID: 32504925 PMCID: PMC7261103 DOI: 10.1016/j.mehy.2020.109886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease with fast spreading all over the world caused by the SARS-CoV-2 virus which can culminate in a severe acute respiratory syndrome by the injury caused in the lungs. However, other organs can be also damaged. SARS-CoV-2 enter into the host cells using the angiotensin-converting enzyme 2 (ACE2) as receptor, like its ancestor SARS-CoV. ACE2 is then downregulated in lung tissues with augmented serum levels of ACE2 in SARS-CoV-2 patients. Interestingly, ACE2+ organs reveal the symptomatic repercussions, which are signals of the infection such as dry cough, shortness of breath, heart failure, liver and kidney damage, anosmia or hyposmia, and diarrhea. ACE2 exerts a chief role in the renin-angiotensin system (RAS) by converting angiotensin II to angiotensin-(1-7) that activates Mas receptor, inhibits ACE1, and modulates bradykinin (BK) receptor sensitivity, especially the BK type 2 receptor (BKB2R). ACE2 also hydrolizes des-Arg9-bradykinin (DABK), an active BK metabolite, agonist at BK type 1 receptors (BKB1R), which is upregulated by inflammation. In this opinion article, we conjecture a dialogue by the figure of Sérgio Ferreira which brought together basic science of classical pharmacology and clinical repercussions in COVID-19, then we propose that in the course of SARS-CoV-2 infection: i) downregulation of ACE2 impairs the angiotensin II and DABK inactivation; ii) BK and its metabolite DABK seems to be in elevated levels in tissues by interferences in kallikrein/kinin system; iii) BK1 receptor contributes to the outbreak and maintenance of the inflammatory response; iv) kallikrein/kinin system crosstalks to RAS and coagulation system, linking inflammation to thrombosis and organ injury. We hypothesize that targeting the kallikrein/kinin system and BKB1R pathway may be beneficial in SARS-CoV-2 infection, especially on early stages. This route of inference should be experimentally verified by SARS-CoV-2 infected mice.
Collapse
Affiliation(s)
- Lucas A D Nicolau
- Biotechnology and Biodiversity Center Research, Federal University of Parnaíba Delta, Parnaíba, Brazil
| | - Pedro J C Magalhães
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Mariana L Vale
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
8
|
Tougan T, Edula JR, Morita M, Takashima E, Honma H, Tsuboi T, Horii T. The malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum proteins that affect host pathogenicity. Malar J 2020; 19:155. [PMID: 32295584 PMCID: PMC7161009 DOI: 10.1186/s12936-020-03229-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 11/12/2022] Open
Abstract
Background The malaria parasite Plasmodium falciparum is a protozoan that develops in red blood cells (RBCs) and requires various host factors. For its development in RBCs, nutrients not only from the RBC cytosol but also from the extracellular milieu must be acquired. Although the utilization of host nutrients by P. falciparum has been extensively analysed, only a few studies have reported its utilization of host serum proteins. Hence, the aim of the current study was to comprehensively identify host serum proteins taken up by P. falciparum parasites and to elucidate their role in pathogenesis. Methods Plasmodium falciparum was cultured with human serum in vitro. Uptake of serum proteins by parasites was comprehensively determined via shotgun liquid chromatography–mass spectrometry/mass spectrometry and western blotting. The calcium ion concentration in serum was also evaluated, and coagulation activity of the parasite lysate was assessed. Results Three proteins, vitamin K-dependent protein S, prothrombin, and vitronectin, were selectively internalized under sufficient Ca2+ levels in the culture medium. The uptake of these proteins was initiated before DNA replication, and increased during the trophozoite and schizont stages, irrespective of the assembly/disassembly of actin filaments. Coagulation assay revealed that prothrombin was activated and thereby induced blood coagulation. Conclusions Serum proteins were taken up by parasites under culture conditions with sufficient Ca2+ levels. This uptake phenomenon was associated with their pathogenicity.
Collapse
Affiliation(s)
- Takahiro Tougan
- Research Centre for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Jyotheeswara R Edula
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Centre, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Centre, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Hajime Honma
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Centre, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Cianni L, Feldmann CW, Gilberg E, Gütschow M, Juliano L, Leitão A, Bajorath J, Montanari CA. Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity? J Med Chem 2019; 62:10497-10525. [DOI: 10.1021/acs.jmedchem.9b00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lorenzo Cianni
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Christian Wolfgang Feldmann
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Erik Gilberg
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Luiz Juliano
- A. C. Camargo Cancer Center and São Paulo Medical School of Federal University of São Paulo, Rua Professor Antônio Prudente, 211, 01509-010 São Paulo, SP, Brazil
| | - Andrei Leitão
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 19c, D-53115 Bonn, Germany
| | - Carlos A. Montanari
- Medicinal Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| |
Collapse
|
10
|
Ventura PDS, Carvalho CPF, Barros NMT, Martins-Silva L, Dantas EO, Martinez C, Melo PMS, Pesquero JB, Carmona AK, Nagaoka MR, Gazarini ML. Malaria infection promotes a selective expression of kinin receptors in murine liver. Malar J 2019; 18:213. [PMID: 31234939 PMCID: PMC6591901 DOI: 10.1186/s12936-019-2846-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Malaria represents a worldwide medical emergency affecting mainly poor areas. Plasmodium parasites during blood stages can release kinins to the extracellular space after internalization of host kininogen inside erythrocytes and these released peptides could represent an important mechanism in liver pathophysiology by activation of calcium signaling pathway in endothelial cells of vertebrate host. Receptors (B1 and B2) activated by kinins peptides are important elements for the control of haemodynamics in liver and its physiology. The aim of this study was to identify changes in the liver host responses (i.e. kinin receptors expression and localization) and the effect of ACE inhibition during malaria infection using a murine model. METHODS Balb/C mice infected by Plasmodium chabaudi were treated with captopril, an angiotensin I-converting enzyme (ACE) inhibitor, used alone or in association with the anti-malarial chloroquine in order to study the effect of ACE inhibition on mice survival and the activation of liver responses involving B1R and B2R signaling pathways. The kinin receptors (B1R and B2R) expression and localization was analysed in liver by western blotting and immunolocalization in different conditions. RESULTS It was verified that captopril treatment caused host death during the peak of malaria infection (parasitaemia about 45%). B1R expression was stimulated in endothelial cells of sinusoids and other blood vessels of mice liver infected by P. chabaudi. At the same time, it was also demonstrated that B1R knockout mice infected presented a significant reduction of survival. However, the infection did not alter the B2R levels and localization in liver blood vessels. CONCLUSIONS Thus, it was observed through in vivo studies that the vasodilation induced by plasma ACE inhibition increases mice mortality during P. chabaudi infection. Besides, it was also seen that the anti-malarial chloroquine causes changes in B1R expression in liver, even after days of parasite clearance. The differential expression of B1R and B2R in liver during malaria infection may have an important role in the disease pathophysiology and represents an issue for clinical treatments.
Collapse
Affiliation(s)
- Priscilla D S Ventura
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil
| | - Carolina P F Carvalho
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil
| | - Nilana M T Barros
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil
| | | | - Edilson O Dantas
- Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina Martinez
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil
| | - Pollyana M S Melo
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João B Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcia R Nagaoka
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Rua Silva Jardim 136, Lab 329, 3ºandar, Vila Mathias, Santos, 11015020, Brazil.
| |
Collapse
|
11
|
Silva LS, Pinheiro AS, Teixeira DE, Silva-Aguiar RP, Peruchetti DB, Scharfstein J, Caruso-Neves C, Pinheiro AAS. Kinins Released by Erythrocytic Stages of Plasmodium falciparum Enhance Adhesion of Infected Erythrocytes to Endothelial Cells and Increase Blood Brain Barrier Permeability via Activation of Bradykinin Receptors. Front Med (Lausanne) 2019; 6:75. [PMID: 31058153 PMCID: PMC6478011 DOI: 10.3389/fmed.2019.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
Background:Plasmodium falciparum, the etiologic agent of malaria, is a major cause of infant death in Africa. Although research on the contact system has been revitalized by recent discoveries in the field of thrombosis, limited efforts were done to investigate the role of its proinflammatory arm, the kallikrein kinin system (KKS), in the pathogenesis of neglected parasitic diseases, such as malaria. Owing to the lack of animal models, the dynamics of central nervous system (CNS) pathology caused by the sequestration of erythrocytic stages of P. falciparum is not fully understood. Given the precedent that kinins destabilize the blood brain barrier (BBB) in ischemic stroke, here we sought to determine whether Plasmodium falciparum infected erythrocytes (Pf-iRBC) conditioned medium enhances parasite sequestration and impairs BBB integrity via activation of the kallikrein kinin system (KKS). Methods: Monolayers of human brain endothelial cell line (BMECs) are preincubated with the conditioned medium from Pf-iRBCs or RBCs (controls) in the presence or absence of HOE-140 or DALBK, antagonists of bradykinin receptor B2 (B2R) and bradykinin receptor B1 (B1R), respectively. Following washing, the treated monolayers are incubated with erythrocytes, infected or not with P. falciparum mature forms, to examine whether the above treatment (i) has impact on the adhesion of Pf-iRBC to BMEC monolayer, (ii) increases the macromolecular permeability of the tracer BSA-FITC, and (iii) modifies the staining pattern of junctional proteins (ZO-1 and β-catenin). Results: We found that kinins generated in the parasite conditioned medium, acting via bradykinin B2 and/or B1 receptors (i) enhanced Pf-iRBC adhesion to the endothelium monolayer and (ii) impaired the endothelial junctions formed by ZO-1 and β-catenin, consequently disrupting the integrity of the BBB. Conclusions: Our studies raise the possibility that therapeutic targeting of kinin forming enzymes and/or endothelial bradykinin receptors might reduce extent of Pf-iRBC sequestration and help to preserve BBB integrity in cerebral malaria (CM).
Collapse
Affiliation(s)
- Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Melo PM, El Chamy Maluf S, Azevedo MF, Paschoalin T, Budu A, Bagnaresi P, Henrique-Silva F, Soares-Costa A, Gazarini ML, Carmona AK. Inhibition of Plasmodium falciparum cysteine proteases by the sugarcane cystatin CaneCPI-4. Parasitol Int 2018; 67:233-236. [DOI: 10.1016/j.parint.2017.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/03/2017] [Accepted: 12/25/2017] [Indexed: 10/18/2022]
|
13
|
Molecular Camouflage of Plasmodium falciparum Merozoites by Binding of Host Vitronectin to P47 Fragment of SERA5. Sci Rep 2018; 8:5052. [PMID: 29567995 PMCID: PMC5864917 DOI: 10.1038/s41598-018-23194-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/07/2018] [Indexed: 12/31/2022] Open
Abstract
The malaria parasite Plasmodium falciparum proliferates in the blood stream where the host immune system is most active. To escape from host immunity, P. falciparum has developed a number of evasion mechanisms. Serine repeat antigen 5 (SERA5) is a blood stage antigen highly expressed at late trophozoite and schizont stages. The P47 N-terminal domain of SERA5, the basis of SE36 antigen of the blood stage vaccine candidate under clinical trials, covers the merozoite surface. Exploring the role of the P47 domain, screening of serum proteins showed that vitronectin (VTN) directly binds to 20 residues in the C-terminal region of SE36. VTN co-localized with P47 domain in the schizont and merozoite stages. Phagocytosis assay using THP-1 cells demonstrated that VTN bound to SE36 prevented engulfment of SE36-beads. In addition, several serum proteins localized on the merozoite surface, suggesting that host proteins camouflage merozoites against host immunity via binding to VTN.
Collapse
|
14
|
Abstract
The name human contact system is related to its mode of action, as "contact" with artificial negatively charged surfaces triggers its activation. Today, it is generally believed that the contact system is an inflammatory response mechanism not only against artificial material but also against misfolded proteins and foreign organisms. Upon activation, the contact system is involved in at least two distinct (patho)physiologic processes:i. the trigger of the intrinsic coagulation via factor XI and ii. the cleavage of high molecular weight kininogen with release of bradykinin and antimicrobial peptides (AMPs). Bradykinin is involved in the regulation of inflammatory processes, vascular permeability, and blood pressure. Due to the release of AMPs, the contact system is regarded as a branch of the innate immune defense against microorganisms. There is an increasing list of pathogens that interact with contact factors, in addition to bacteria also fungi and viruses bind and activate the system. In spite of that, pathogens have developed their own mechanisms to activate the contact system, resulting in manipulation of this host immune response. In this up-to-date review, we summarize present research on the interaction of pathogens with the human contact system, focusing particularly on bacterial and viral mechanisms that trigger inflammation via contact system activation.
Collapse
Affiliation(s)
- Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Juliane Köhler
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
15
|
Silva LDS, Peruchetti DDB, Silva CTFD, Ferreira-DaSilva AT, Perales J, Caruso-Neves C, Pinheiro AAS. Interaction between bradykinin B2 and Ang-(1-7) Mas receptors regulates erythrocyte invasion by Plasmodium falciparum. Biochim Biophys Acta Gen Subj 2016; 1860:2438-2444. [PMID: 27431603 DOI: 10.1016/j.bbagen.2016.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/05/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The molecular mechanisms involved in erythrocyte invasion by malaria parasite are well understood, but the contribution of host components is not. We recently reported that Ang-(1-7) impairs the erythrocytic cycle of P. falciparum through Mas receptor-mediated reduction of protein kinase A (PKA) activity. The effects of bradykinin (BK), a peptide of the kallikrein-kinin system (KKS), can be potentiated by Ang-(1-7), or angiotensin-converting enzyme (ACE) inhibitors, such as captopril. We investigated the coordinated action between renin-angiotensin system (RAS) and KKS peptides in the erythrocyte invasion by P. falciparum. METHODS We used human erythrocytes infected with P. falciparum to assess the influence of RAS and KKS peptides in the invasion of new erythrocytes. RESULTS The inhibitory effects of Ang-(1-7) were mimicked by captopril. 10(-8)M BK decreased new ring forms and this effect was sensitive to 10(-8)M HOE-140 and 10(-7)M A779, B2 and Mas receptor antagonists, respectively. However, DALBK, a B1 receptor blocker, had no effect. The inhibitory effect of Ang-(1-7) was reversed by HOE-140 and A779 at the same concentrations. Co-immunoprecipitation assay revealed an association between B2 and Mas receptors. BK also inhibited PKA activity, which was sensitive to both HOE-140 and A779. CONCLUSIONS The results suggest that B2 and Mas receptors are mediators of Ang-(1-7) and BK inhibitory effects, through a cross-signaling pathway, possibly by the formation of a heterodimer. GENERAL SIGNIFICANCE Our results describe new elements in host signaling that could be involved in parasite invasion during the erythrocyte cycle of P. falciparum.
Collapse
Affiliation(s)
- Leandro de Souza Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo de Barros Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Jonas Perales
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Rede Proteômica do Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia e Bioimagem, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Brazil
| | - Ana Acacia Sá Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Brazil.
| |
Collapse
|
16
|
El Chamy Maluf S, Dal Mas C, Oliveira EB, Melo PM, Carmona AK, Gazarini ML, Hayashi MAF. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides 2016; 78:11-6. [PMID: 26806200 DOI: 10.1016/j.peptides.2016.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 01/24/2023]
Abstract
We show here that crotamine, a polypeptide from the South American rattlesnake venom with cell penetrating and selective anti-fungal and anti-tumoral properties, presents a potent anti-plasmodial activity in culture. Crotamine inhibits the development of the Plasmodium falciparum parasites in a dose-dependent manner [IC50 value of 1.87 μM], and confocal microscopy analysis showed a selective internalization of fluorescent-labeled crotamine into P. falciparum infected erythrocytes, with no detectable fluorescence in uninfected healthy erythrocytes. In addition, similarly to the crotamine cytotoxic effects, the mechanism underlying the anti-plasmodial activity may involve the disruption of parasite acidic compartments H(+) homeostasis. In fact, crotamine promoted a reduction of parasites organelle fluorescence loaded with the lysosomotropic fluorochrome acridine orange, in the same way as previously observed mammalian tumoral cells. Taken together, we show for the first time crotamine not only compromised the metabolism of the P. falciparum, but this toxin also inhibited the parasite growth. Therefore, we suggest this snake polypeptide as a promising lead molecule for the development of potential new molecules, namely peptidomimetics, with selectivity for infected erythrocytes and ability to inhibit the malaria infection by its natural affinity for acid vesicles.
Collapse
Affiliation(s)
- S El Chamy Maluf
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - C Dal Mas
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - E B Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-RP), Ribeirão Preto, Brazil
| | - P M Melo
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - A K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - M L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil.
| | - M A F Hayashi
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
17
|
Gomes MM, Budu A, Ventura PDS, Bagnaresi P, Cotrin SS, Cunha RLOR, Carmona AK, Juliano L, Gazarini ML. Specific calpain activity evaluation in Plasmodium parasites. Anal Biochem 2014; 468:22-7. [PMID: 25281458 DOI: 10.1016/j.ab.2014.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/13/2014] [Accepted: 09/06/2014] [Indexed: 01/26/2023]
Abstract
In the intraerythrocytic trophozoite stages of Plasmodium falciparum, the calcium-dependent cysteine protease calpain (Pf-calpain) has an important role in the parasite calcium modulation and cell development. We established specific conditions to follow by confocal microscopy and spectrofluorimetry measurements the intracellular activity of Pf-calpain in live cells. The catalytic activity was measured using the fluorogenic Z-Phe-Arg-MCA (where Z is carbobenzoxy and MCA is 4-methylcoumaryl-7-amide). The calmodulin inhibitor calmidazolium and the sarcoplasmic reticulum calcium ATPase inhibitor thapsigargin were used for modifications in the cytosolic calcium concentrations that persisted in the absence of extracellular calcium. The observed calcium-dependent peptidase activity was greatly inhibited by specific cysteine protease inhibitor E-64 and by the selective calpain inhibitor ALLN (N-acetyl-l-leucyl-l-leucyl-l-norleucinal). Taken together, we observed that intracellular Pf-calpain can be selectively detected and is the main calcium-dependent protease in the intraerythrocytic stages of the parasite. The method described here can be helpful in cell metabolism studies and antimalarial drug screening.
Collapse
Affiliation(s)
- Mayrim M Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, São Paulo, SP, Brazil; Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Alexandre Budu
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Piero Bagnaresi
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Simone S Cotrin
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo L O R Cunha
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Adriana K Carmona
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcos L Gazarini
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP, Brazil.
| |
Collapse
|
18
|
Melo PM, Bagnaresi P, Paschoalin T, Hirata IY, Gazarini ML, Carmona AK. Plasmodium falciparum proteases hydrolyze plasminogen, generating angiostatin-like fragments. Mol Biochem Parasitol 2014; 193:45-54. [DOI: 10.1016/j.molbiopara.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 12/27/2022]
|
19
|
Evolutionary Analysis of the Contact System Indicates that Kininogen Evolved Adaptively in Mammals and in Human Populations. Mol Biol Evol 2013; 30:1397-408. [DOI: 10.1093/molbev/mst054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Substrate specificity studies of the cysteine peptidases falcipain-2 and falcipain-3 from Plasmodium falciparum and demonstration of their kininogenase activity. Mol Biochem Parasitol 2013; 187:111-6. [DOI: 10.1016/j.molbiopara.2013.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/20/2012] [Accepted: 01/16/2013] [Indexed: 01/19/2023]
|
21
|
Rosental B, Hadad U, Sinay R, Braiman A, Porgador A, Pollack Y. Dual fluorescent labelling of the human malaria parasite Plasmodium falciparum for the analysis of the ABC type transporter pfmdr2. Malar J 2012; 11:371. [PMID: 23137170 PMCID: PMC3546028 DOI: 10.1186/1475-2875-11-371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 11/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of the Plasmodium falciparum heavy metal transporter gene pfmdr2 employed radioactive labelled heavy metal. As the use of radioactive isotopes shrank considerably during the last few years, resulting in the cessation of the production of some isotopes, amongst them Cadmium109 which was used for that purpose, a different approach had to be developed. Herein, a dual fluorescent labelling of heavy metals accumulation in the P. falciparum parasite is proposed as an alternative to the use of radioactive labelled heavy metals. METHODS Plasmodium falciparum Cd resistant and sensitive strains at the trophozoite stage were used in this study. The cells were cultured at different CdCl2 concentrations and for different time periods followed by staining of the infected red blood cells with Fluo-3/AM for Cd detection and Hoechst 33342 for parasite DNA labelling. The fluorescent analysis was done by flow cytometry and confocal microscopy. RESULTS The results show that the sensitive strain has a higher Fluo-3/AM fluorescence in a Cd concentration and time dependent manner, whereas in the resistant strain Fluo-3/AM fluorescence levels were negligible and increased only at high concentrations of Cd and at long incubation periods, but to a much lesser extent than the sensitive strain. No Cd uptake is observed in uninfected red blood cells populations originating from cultures infected with either sensitive or resistant strain. In addition, confocal microscopy overlay of Fluo-3/AM and Hoechst staining shows that the Cd metal accumulates in the parasite itself. CONCLUSIONS The dual fluorescent labelling is a valid method for detecting heavy metal accumulation in P. falciparum. Furthermore, in contrast to the use of radioactive labelled heavy metal, the fluorescent labelling enables us to differentiate between the different populations existing in a P. falciparum infected red blood cells cultures and thus actually study a phenomenon at the level of a single cell.
Collapse
Affiliation(s)
- Benyamin Rosental
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P,O, Box 653, Beer-Sheva, 84105, Israel
| | | | | | | | | | | |
Collapse
|