1
|
Haron NA, Ishak MF, Yazid MD, Vijakumaran U, Ibrahim R, Raja Sabudin RZA, Alauddin H, Md Ali NA, Haron H, Ismail MI, Abdul Rahman MR, Sulaiman N. Exploring the Potential of Saphenous Vein Grafts Ex Vivo: A Model for Intimal Hyperplasia and Re-Endothelialization. J Clin Med 2024; 13:4774. [PMID: 39200916 PMCID: PMC11355503 DOI: 10.3390/jcm13164774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Coronary artery bypass grafting (CABG) utilizing saphenous vein grafts (SVGs) stands as a fundamental approach to surgically treating coronary artery disease. However, the long-term success of CABG is often compromised by the development of intimal hyperplasia (IH) and subsequent graft failure. Understanding the mechanisms underlying this pathophysiology is crucial for improving graft patency and patient outcomes. Objectives: This study aims to explore the potential of an ex vivo model utilizing SVG to investigate IH and re-endothelialization. Methods: A thorough histological examination of 15 surplus SVG procured from CABG procedures at Hospital Canselor Tuanku Muhriz, Malaysia, was conducted to establish their baseline characteristics. Results: SVGs exhibited a mean diameter of 2.65 ± 0.93 mm with pre-existing IH averaging 0.42 ± 0.13 mm in thickness, alongside an observable lack of luminal endothelial cell lining. Analysis of extracellular matrix components, including collagen, elastin, and glycosaminoglycans, at baseline and after 7 days of ex vivo culture revealed no significant changes in collagen but demonstrated increased percentages of elastin and glycosaminoglycans. Despite unsuccessful attempts at re-endothelialization with blood outgrowth endothelial cells, the established ex vivo SVG IH model underscores the multifaceted nature of graft functionality and patency, characterized by IH presence, endothelial impairment, and extracellular matrix alterations post-CABG. Conclusions: The optimized ex vivo IH model provides a valuable platform for delving into the underlying mechanisms of IH formation and re-endothelialization of SVG. Further refinements are warranted, yet this model holds promise for future research aimed at enhancing graft durability and outcomes for CAD patients undergoing CABG.
Collapse
Affiliation(s)
- Nur A’tiqah Haron
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| | - Mohamad Fikeri Ishak
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| | - Ubashini Vijakumaran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| | - Roszita Ibrahim
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Raja Zahratul Azma Raja Sabudin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hafiza Alauddin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Ayub Md Ali
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Heart and Lung Centre, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Hairulfaizi Haron
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Heart and Lung Centre, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Muhammad Ishamuddin Ismail
- Heart and Lung Centre, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohd Ramzisham Abdul Rahman
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Heart and Lung Centre, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (U.V.)
| |
Collapse
|
2
|
Rizzi S, Mantero S, Boschetti F, Pesce M. Luminal endothelialization of small caliber silk tubular graft for vascular constructs engineering. Front Cardiovasc Med 2022; 9:1013183. [PMID: 36465472 PMCID: PMC9708712 DOI: 10.3389/fcvm.2022.1013183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
The constantly increasing incidence of coronary artery disease worldwide makes necessary to set advanced therapies and tools such as tissue engineered vessel grafts (TEVGs) to surpass the autologous grafts [(i.e., mammary and internal thoracic arteries, saphenous vein (SV)] currently employed in coronary artery and vascular surgery. To this aim, in vitro cellularization of artificial tubular scaffolds still holds a good potential to overcome the unresolved problem of vessel conduits availability and the issues resulting from thrombosis, intima hyperplasia and matrix remodeling, occurring in autologous grafts especially with small caliber (<6 mm). The employment of silk-based tubular scaffolds has been proposed as a promising approach to engineer small caliber cellularized vascular constructs. The advantage of the silk material is the excellent manufacturability and the easiness of fiber deposition, mechanical properties, low immunogenicity and the extremely high in vivo biocompatibility. In the present work, we propose a method to optimize coverage of the luminal surface of silk electrospun tubular scaffold with endothelial cells. Our strategy is based on seeding endothelial cells (ECs) on the luminal surface of the scaffolds using a low-speed rolling. We show that this procedure allows the formation of a nearly complete EC monolayer suitable for flow-dependent studies and vascular maturation, as a step toward derivation of complete vascular constructs for transplantation and disease modeling.
Collapse
Affiliation(s)
- Stefano Rizzi
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Ph.D. Program in Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - Sara Mantero
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Federica Boschetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | | |
Collapse
|
3
|
Prim DA, Lane BA, Ferruzzi J, Shazly T, Eberth JF. Evaluation of the Stress-Growth Hypothesis in Saphenous Vein Perfusion Culture. Ann Biomed Eng 2020; 49:487-501. [PMID: 32728831 DOI: 10.1007/s10439-020-02582-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/22/2020] [Indexed: 01/02/2023]
Abstract
The great saphenous vein (GSV) has served as a coronary artery bypass graft (CABG) conduit for over 50 years. Despite prevalent use, first-year failure rates remain high compared to arterial autograft options. Amongst other factors, vein graft failure can be attributed to material and mechanical mismatching that lead to apoptosis, inflammation, and intimal-medial hyperplasia. Through the implementation of the continuum mechanical-based theory of "stress-mediated growth and remodeling," we hypothesize that the mechanical properties of porcine GSV grafts can be favorably tuned for CABG applications prior to implantation using a prolonged but gradual transition from venous to arterial loading conditions in an inflammatory and thrombogenic deficient environment. To test this hypothesis, we used a hemodynamic-mimetic perfusion bioreactor to guide remodeling through stepwise incremental changes in pressure and flow over the course of 21-day cultures. Biaxial mechanical testing of vessels pre- and post-remodeling was performed, with results fit to structurally-motivated constitutive models using non-parametric bootstrapping. The theory of "small-on-large" was used to describe appropriate stiffness moduli, while histology and viability assays confirmed microstructural adaptations and vessel viability. Results suggest that stepwise transition from venous-to-arterial conditions results in a partial restoration of circumferential stretch and circumferential, but not axial, stress through vessel dilation and wall thickening in a primarily outward remodeling process. These remodeled tissues also exhibited decreased mechanical isotropy and circumferential, but not axial, stiffening. In contrast, only increases in axial stiffness were observed using culture under venous perfusion conditions and those tissues experienced moderate intimal resorption.
Collapse
Affiliation(s)
- David A Prim
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
| | - Brooks A Lane
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
| | - Jacopo Ferruzzi
- Biomedical Engineering Department, Boston University, Boston, MA, USA
| | - Tarek Shazly
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA.,Mechanical Engineering Department, University of South Carolina, Columbia, SC, USA
| | - John F Eberth
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA. .,Cell Biology and Anatomy Department (CBA), SOM, University of South Carolina (USC), Bldg.1, Rm. C-36, Columbia, SC, 29208, USA.
| |
Collapse
|
4
|
Prim DA, Menon V, Hasanian S, Carter L, Shazly T, Potts JD, Eberth JF. Perfusion Tissue Culture Initiates Differential Remodeling of Internal Thoracic Arteries, Radial Arteries, and Saphenous Veins. J Vasc Res 2018; 55:255-267. [PMID: 30179877 DOI: 10.1159/000492484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/23/2018] [Indexed: 01/26/2023] Open
Abstract
Adaptive remodeling processes are essential to the maintenance and viability of coronary artery bypass grafts where clinical outcomes depend strongly on the tissue source. In this investigation, we utilized an ex vivo perfusion bioreactor to culture porcine analogs of common human bypass grafts: the internal thoracic artery (ITA), the radial artery (RA), and the great saphenous vein (GSV), and then evaluated samples acutely (6 h) and chronically (7 days) under in situ or coronary-like perfusion conditions. Although morphologically similar, primary cells harvested from the ITA illustrated lower intimal and medial, but not adventitial, cell proliferation rates than those from the RA or GSV. Basal gene expression levels were similar in all vessels, with only COL3A1, SERPINE1, FN1, and TGFB1 being differentially expressed prior to culture; however, over half of all genes were affected nominally by the culturing process. When exposed to coronary-like conditions, RAs and GSVs experienced pathological remodeling not present in ITAs or when vessels were studied in situ. Many of the remodeling genes perturbed at 6 h were restored after 7 days (COL3A1, FN1, MMP2, and TIMP1) while others (SERPINE1, TGFB1, and VCAM1) were not. The findings elucidate the potential mechanisms of graft failure and highlight strategies to encourage healthy ex vivo pregraft conditioning.
Collapse
Affiliation(s)
- David A Prim
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Vinal Menon
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Shahd Hasanian
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Laurel Carter
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Tarek Shazly
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA.,Mechanical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Jay D Potts
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA.,Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - John F Eberth
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, .,Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina,
| |
Collapse
|
5
|
Hargreaves A, Bigley A, Price S, Kendrew J, Barry ST. Automated image analysis of intra-tumoral and peripheral endocrine organ vascular bed regression using 'Fibrelength' as a novel structural biomarker. J Appl Toxicol 2017; 37:902-912. [PMID: 28186326 DOI: 10.1002/jat.3438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022]
Abstract
The study of vascular modulation has received a great deal of attention in recent years as knowledge has increased around the role of angiogenesis within disease contexts such as cancer. Despite rapidly expanding insights into the molecular processes involved and the concomitant generation of a number of anticancer vascular modulating chemotherapeutics, techniques used in the measurement of structural vascular change have advanced more modestly, particularly with regard to the preclinical quantification of off-target vascular regression within systemic, notably endocrine, blood vessels. Such changes translate into a number of major clinical side effects and there remains a need for improved preclinical screening and analysis. Here we present the generation of a novel structural biomarker, which can be incorporated into a number of contemporary image analysis platforms and used to compare tumour versus systemic host tissue vascularity. By contrasting the measurements obtained, the preclinical efficacy of vascular modulating chemotherapies can be evaluated in light of the predicted therapeutic window. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Adam Hargreaves
- PathCelerate Ltd, The BioHub, Alderley Park, Mereside, Alderley Edge, Cheshire, UK
| | - Alison Bigley
- Oraclebio Ltd, BioCity Scotland, North Lanarkshire, Scotland, UK
| | - Shirley Price
- University of Surrey, 3660 Office of the Vice-Provost, Guildford, Surrey, UK
| | - Jane Kendrew
- AstraZeneca PLC, Oncology iMED, Alderley Edge, Cheshire, UK
| | - Simon T Barry
- AstraZeneca PLC, Oncology iMED, Alderley Edge, Cheshire, UK
| |
Collapse
|
6
|
Prim DA, Zhou B, Hartstone-Rose A, Uline MJ, Shazly T, Eberth JF. A mechanical argument for the differential performance of coronary artery grafts. J Mech Behav Biomed Mater 2015; 54:93-105. [PMID: 26437296 DOI: 10.1016/j.jmbbm.2015.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022]
Abstract
Coronary artery bypass grafting (CABG) acutely disturbs the homeostatic state of the transplanted vessel making retention of graft patency dependent on chronic remodeling processes. The time course and extent to which remodeling restores vessel homeostasis will depend, in part, on the nature and magnitude of the mechanical disturbances induced upon transplantation. In this investigation, biaxial mechanical testing and histology were performed on the porcine left anterior descending artery (LAD) and analogs of common autografts, including the internal thoracic artery (ITA), radial artery (RA), great saphenous vein (GSV) and lateral saphenous vein (LSV). Experimental data were used to quantify the parameters of a structure-based constitutive model enabling prediction of the acute vessel mechanical response pre-transplantation and under coronary loading conditions. A novel metric Ξ was developed to quantify mechanical differences between each graft vessel in situ and the LAD in situ, while a second metric Ω compares the graft vessels in situ to their state under coronary loading. The relative values of these metrics among candidate autograft sources are consistent with vessel-specific variations in CABG clinical success rates with the ITA as the superior and GSV the inferior graft choices based on mechanical performance. This approach can be used to evaluate other candidate tissues for grafting or to aid in the development of synthetic and tissue engineered alternatives.
Collapse
Affiliation(s)
- David A Prim
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA
| | - Boran Zhou
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA
| | - Adam Hartstone-Rose
- University of South Carolina School of Medicine, Department of Cell Biology and Anatomy, Columbia, SC, USA; University of South Carolina, Department of Anthropology, Columbia, SC, USA
| | - Mark J Uline
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA; University of South Carolina, Department of Chemical Engineering, Columbia, SC, USA
| | - Tarek Shazly
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA; University of South Carolina, Department of Mechanical Engineering, Columbia, SC, USA
| | - John F Eberth
- University of South Carolina, Biomedical Engineering Program, Columbia, SC, USA; University of South Carolina School of Medicine, Department of Cell Biology and Anatomy, Columbia, SC, USA.
| |
Collapse
|
7
|
Piola M, Prandi F, Fiore GB, Agrifoglio M, Polvani G, Pesce M, Soncini M. Human Saphenous Vein Response to Trans-wall Oxygen Gradients in a Novel Ex Vivo Conditioning Platform. Ann Biomed Eng 2015; 44:1449-61. [PMID: 26319011 DOI: 10.1007/s10439-015-1434-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/18/2015] [Indexed: 11/30/2022]
Abstract
Autologous saphenous veins are commonly used for the coronary artery bypass grafting even if they are liable to progressive patency reduction, known as 'vein graft disease'. Although several cellular and molecular causes for vein graft disease have been identified using in vivo models, the metabolic cues induced by sudden interruption of vasa vasorum blood supply have remained unexplored. In the present manuscript, we describe the design of an ex vivo culture system allowing the generation of an oxygen gradient between the luminal and the adventitial sides of the vein. This system featured a separation between the inner and the outer vessel culture circuits, and integrated a purpose-developed de-oxygenator module enabling the trans-wall oxygen distribution (high oxygen level at luminal side and low oxygen level at the adventitial side) existing in arterialized veins. Compared with standard cultures the bypass-specific conditions determined a significant increase in the proliferation of cells around adventitial vasa vasorum and an elevation in the length density of small and large caliber vasa vasorum. These results suggest, for the first time, a cause-effect relationship between the vein adventitial hypoxia and a neo-vascularization process, a factor known to predispose the arterialized vein conduits to restenosis.
Collapse
Affiliation(s)
- Marco Piola
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy.
| | - Francesca Prandi
- Unità di Ingegneria Tissutale, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Gianfranco Beniamino Fiore
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Marco Agrifoglio
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Via Parea 4, 20138, Milan, Italy
| | - Gianluca Polvani
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Via Parea 4, 20138, Milan, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale, Centro Cardiologico Monzino-IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Monica Soncini
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133, Milan, Italy
| |
Collapse
|
8
|
Sur S, Sugimoto JT, Agrawal DK. Coronary artery bypass graft: why is the saphenous vein prone to intimal hyperplasia? Can J Physiol Pharmacol 2014; 92:531-45. [PMID: 24933515 DOI: 10.1139/cjpp-2013-0445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proliferation and migration of smooth muscle cells and the resultant intimal hyperplasia cause coronary artery bypass graft failure. Both internal mammary artery and saphenous vein are the most commonly used bypass conduits. Although an internal mammary artery graft is immune to restenosis, a saphenous vein graft is prone to develop restenosis. We found significantly higher activity of phosphatase and tensin homolog (PTEN) in the smooth muscle cells of the internal mammary artery than in the saphenous vein. In this article, we critically review the pathophysiology of vein-graft failure with detailed discussion of the involvement of various factors, including PTEN, matrix metalloproteinases, and tissue inhibitor of metalloproteinases, in uncontrolled proliferation and migration of smooth muscle cells towards the lumen, and invasion of the graft conduit. We identified potential target sites that could be useful in preventing and (or) reversing unwanted consequences following coronary artery bypass graft using saphenous vein.
Collapse
Affiliation(s)
- Swastika Sur
- a Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | |
Collapse
|
9
|
Piola M, Prandi F, Bono N, Soncini M, Penza E, Agrifoglio M, Polvani G, Pesce M, Fiore GB. A compact and automated ex vivo vessel culture system for the pulsatile pressure conditioning of human saphenous veins. J Tissue Eng Regen Med 2013; 10:E204-15. [PMID: 23897837 DOI: 10.1002/term.1798] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/29/2013] [Accepted: 07/08/2013] [Indexed: 11/05/2022]
Abstract
Saphenous vein (SV) graft disease represents an unresolved problem in coronary artery bypass grafting (CABG). After CABG, a progressive remodelling of the SV wall occurs, possibly leading to occlusion of the lumen, a process termed 'intima hyperplasia' (IH). The investigation of cellular and molecular aspects of IH progression is a primary end-point toward the generation of occlusion-free vessels that may be used as 'life-long' grafts. While animal transplantation models have clarified some of the remodelling factors, the pathology of human SV is far from being understood. This is also due to the lack of devices able to reproduce the altered mechanical load encountered by the SV after CABG. This article describes the design of a novel ex vivo vein culture system (EVCS) capable of replicating the altered pressure pattern experienced by SV after CABG, and reports the results of a preliminary biomechanical conditioning experimental campaign on SV segments. The EVCS applied a CAGB-like pressure (80-120 mmHg) or a venous-like perfusion (3 ml/min, 5 mmHg) conditioning to the SVs, keeping the segments viable in a sterile environment during 7 day culture experiments. After CABG-like pressure conditioning, SVs exhibited a decay of the wall thickness, an enlargement of the luminal perimeter, a rearrangement of the muscle fibres and partial denudation of the endothelium. Considering these preliminary results, the EVCS is a suitable system to study the mechanical attributes of SV graft disease, and its use, combined with a well-designed biological protocol, may be of help in elucidating the cellular and molecular mechanisms involved in SV graft disease.
Collapse
Affiliation(s)
- Marco Piola
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Francesca Prandi
- Laboratorio di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Nina Bono
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Monica Soncini
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Eleonora Penza
- II Divisione di Cardiochirurgia, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Marco Agrifoglio
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
| | - Gianluca Polvani
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
| | - Maurizio Pesce
- Laboratorio di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | | |
Collapse
|
10
|
Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm 2013; 2013:928315. [PMID: 23840100 PMCID: PMC3694547 DOI: 10.1155/2013/928315] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/15/2013] [Indexed: 12/21/2022] Open
Abstract
Abnormal angiogenesis and vascular remodeling contribute to pathogenesis of a number of disorders such as tumor, arthritis, atherosclerosis, restenosis, hypertension, and neurodegeneration. During angiogenesis and vascular remodeling, behaviors of stem/progenitor cells, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) and its interaction with extracellular matrix (ECM) play a critical role in the processes. Matrix metalloproteinases (MMPs), well-known inflammatory mediators are a family of zinc-dependent proteolytic enzymes that degrade various components of ECM and non-ECM molecules mediating tissue remodeling in both physiological and pathological processes. MMPs including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, and MT1-MMP, are stimulated and activated by various stimuli in vascular tissues. Once activated, MMPs degrade ECM proteins or other related signal molecules to promote recruitment of stem/progenitor cells and facilitate migration and invasion of ECs and VSMCs. Moreover, vascular cell proliferation and apoptosis can also be regulated by MMPs via proteolytically cleaving and modulating bioactive molecules and relevant signaling pathways. Regarding the importance of vascular cells in abnormal angiogenesis and vascular remodeling, regulation of vascular cell behaviors through modulating expression and activation of MMPs shows therapeutic potential.
Collapse
|
11
|
Berard X, Déglise S, Alonso F, Saucy F, Meda P, Bordenave L, Corpataux JM, Haefliger JA. Role of hemodynamic forces in the ex vivo arterialization of human saphenous veins. J Vasc Surg 2013; 57:1371-82. [PMID: 23351647 DOI: 10.1016/j.jvs.2012.09.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Human saphenous vein grafts are one of the salvage bypass conduits when endovascular procedures are not feasible or fail. Understanding the remodeling process that venous grafts undergo during exposure to arterial conditions is crucial to improve their patency, which is often compromised by intimal hyperplasia. The precise role of hemodynamic forces such as shear stress and arterial pressure in this remodeling is not fully characterized. The aim of this study was to determine the involvement of arterial shear stress and pressure on vein wall remodeling and to unravel the underlying molecular mechanisms. METHODS An ex vivo vein support system was modified for chronic (up to 1 week), pulsatile perfusion of human saphenous veins under controlled conditions that permitted the separate control of arterial shear stress and different arterial pressure (7 mm Hg or 70 mm Hg). RESULTS Veins perfused for 7 days under high pressure (70 mm Hg) underwent significant development of a neointima compared with veins exposed to low pressure (7 mm Hg). These structural changes were associated with altered expression of several molecular markers. Exposure to an arterial shear stress under low pressure increased the expression of matrix metalloproteinase (MMP)-2 and MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 at the transcript, protein, and activity levels. This increase was enhanced by high pressure, which also increased TIMP-2 protein expression despite decreased levels of the cognate transcript. In contrast, the expression of plasminogen activator inhibitor-1 increased with shear stress but was not modified by pressure. Levels of the venous marker Eph-B4 were decreased under arterial shear stress, and levels of the arterial marker Ephrin-B2 were downregulated under high-pressure conditions. CONCLUSIONS This model is a valuable tool to identify the role of hemodynamic forces and to decipher the molecular mechanisms leading to failure of human saphenous vein grafts. Under ex vivo conditions, arterial perfusion is sufficient to activate the remodeling of human veins, a change that is associated with the loss of specific vein markers. Elevation of pressure generates intimal hyperplasia, even though veins do not acquire arterial markers. CLINICAL RELEVANCE The pathological remodeling of the venous wall, which leads to stenosis and ultimately graft failure, is the main limiting factor of human saphenous vein graft bypass. This remodeling is due to the hemodynamic adaptation of the vein to the arterial environment and cannot be prevented by conventional therapy. To develop a more targeted therapy, a better understanding of the molecular mechanisms involved in intimal hyperplasia is essential, which requires the development of ex vivo models of chronic perfusion of human veins.
Collapse
Affiliation(s)
- Xavier Berard
- Department of Vascular Surgery, Pellegrin Hospital, University of Bordeaux, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|