1
|
Li Y, Zhu J, Yu Z, Li H, Jin X. The role of Lamin B2 in human diseases. Gene 2023; 870:147423. [PMID: 37044185 DOI: 10.1016/j.gene.2023.147423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
Lamin B2 (LMNB2), on the inner side of the nuclear envelope, constitutes the nuclear skeleton by connecting with other nuclear proteins. LMNB2 is involved in a wide range of nuclear functions, including DNA replication and stability, regulation of chromatin, and nuclear stiffness. Moreover, LMNB2 regulates several cellular processes, such as tissue development, cell cycle, cellular proliferation and apoptosis, chromatin localization and stability, and DNA methylation. Besides, the influence of abnormal expression and mutations of LMNB2 has been gradually discovered in cancers and laminopathies. Therefore, this review summarizes the recent advances of LMNB2-associated biological roles in physiological or pathological conditions, with a particular emphasis on cancers and laminopathies, as well as the potential mechanism of LMNB2 in related cancers.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China.
| |
Collapse
|
2
|
Mahmoodi A, Shoqafi A, Sun P, Giannakeas V, Cybulski C, Nofech-Mozes S, Masson JY, Sharma S, Samani AA, Madhusudan S, Narod SA, Akbari MR. High Expression of RECQL Protein in ER-Positive Breast Tumours Is Associated With a Better Survival. Front Oncol 2022; 12:877617. [PMID: 35712517 PMCID: PMC9195420 DOI: 10.3389/fonc.2022.877617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background RECQL (also known as RECQ1 and RECQL1) is a gene of recent interest in breast cancer and an association between high levels of RECQL protein in breast cancer tumour cells and good survival of patients has been reported. Methods To validate this association, we measured the RECQL protein levels in tumours of 933 breast cancer patients using immunohistochemistry analysis and followed the patients for death from breast cancer. Results Women with a level of RECQL protein above the 75th percentile had better 15-year disease-specific survival among ER-positive patients (62.5% vs. 48.7%, HR= 0.72, 95%CI= 0.52-0.98, p-value = 0.04), but not among ER- patients (48.9% vs. 48.0%, HR= 1.07, 95%CI= 0.67-1.69, p-value= 0.79). Among the ER-negative patients, high RECQL protein levels were associated with better survival among women who received tamoxifen treatment (67.0% vs. 51.5%, HR= 0.64, 95%CI= 0.41-0.99, p-value= 0.04). Conclusion RECQL might be a new predictive marker for tamoxifen treatment among ER-positive patients.
Collapse
Affiliation(s)
- Ardalan Mahmoodi
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ping Sun
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Vasily Giannakeas
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Sharon Nofech-Mozes
- Sunnybrook Health Science Centre, University of Toronto, Toronto, ON, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Oncology Axis, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec, QC, Canada
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC, United States
- National Human Genome Center, College of Medicine, Howard University, Washington, DC, United States
| | - Amir Abbas Samani
- Department of Laboratory Medicine and Pathology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Humber River Hospital, University of Toronto, Toronto, ON, Canada
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Steven A. Narod
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Mohammad R. Akbari
- Women’s College Research Institute, Women’s College Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- *Correspondence: Mohammad R. Akbari,
| |
Collapse
|
3
|
Transcriptional regulation by a RecQ helicase. Methods Enzymol 2022; 673:227-249. [PMID: 35965009 PMCID: PMC9379128 DOI: 10.1016/bs.mie.2022.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
RecQ helicases participate in a variety of DNA metabolic processes through their multiple biochemical activities. In vitro characterization and cellular studies have suggested that RECQ1 (also known as RECQL or RECQL1) performs its diverse functions through specific interactions with DNA and protein partners. We have taken an unbiased approach to determine the contribution of RECQ1 in genome maintenance and as a putative susceptibility factor in breast cancer. Here, we provide methodology to map the genome-wide binding sites of RECQ1 together with the profiling of RECQ1-dependent transcriptome to investigate its role in gene regulation. The described approach will be helpful to develop a mechanistic framework for elucidating critical functions of RECQ1 and other RecQ homologs in distinct chromatin and biological contexts.
Collapse
|
4
|
Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13153755. [PMID: 34359660 PMCID: PMC8345052 DOI: 10.3390/cancers13153755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Multiple myeloma is a hematologic cancer characterized by the accumulation of malignant plasma cells in the bone marrow. It remains a mostly incurable disease due to the inability to overcome refractory disease and drug-resistant relapse. Oncogenic transformation of PC in multiple myeloma is thought to occur within the secondary lymphoid organs. However, the precise molecular events leading to myelomagenesis remain obscure. Here, we identified genes involved in the prevention and the resolution of conflicts between the replication and transcription significantly overexpressed during the plasma cell differentiation process and in multiple myeloma cells. We discussed the potential role of these factors in myelomagenesis and myeloma biology. The specific targeting of these factors might constitute a new therapeutic strategy in multiple myeloma. Abstract Plasma cells (PCs) have an essential role in humoral immune response by secretion of antibodies, and represent the final stage of B lymphocytes differentiation. During this differentiation, the pre-plasmablastic stage is characterized by highly proliferative cells that start to secrete immunoglobulins (Igs). Thus, replication and transcription must be tightly regulated in these cells to avoid transcription/replication conflicts (TRCs), which could increase replication stress and lead to genomic instability. In this review, we analyzed expression of genes involved in TRCs resolution during B to PC differentiation and identified 41 genes significantly overexpressed in the pre-plasmablastic stage. This illustrates the importance of mechanisms required for adequate processing of TRCs during PCs differentiation. Furthermore, we identified that several of these factors were also found overexpressed in purified PCs from patients with multiple myeloma (MM) compared to normal PCs. Malignant PCs produce high levels of Igs concomitantly with cell cycle deregulation. Therefore, increasing the TRCs occurring in MM cells could represent a potent therapeutic strategy for MM patients. Here, we describe the potential roles of TRCs resolution factors in myelomagenesis and discuss the therapeutic interest of targeting the TRCs resolution machinery in MM.
Collapse
|
5
|
Zhang J, Lian H, Chen K, Pang Y, Chen M, Huang B, Zhu L, Xu S, Liu M, Zhong C. RECQ1 Promotes Stress Resistance and DNA Replication Progression Through PARP1 Signaling Pathway in Glioblastoma. Front Cell Dev Biol 2021; 9:714868. [PMID: 34381789 PMCID: PMC8350743 DOI: 10.3389/fcell.2021.714868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common aggressive primary malignant brain tumor, and patients with GBM have a median survival of 20 months. Clinical therapy resistance is a challenging barrier to overcome. Tumor genome stability maintenance during DNA replication, especially the ability to respond to replication stress, is highly correlated with drug resistance. Recently, we identified a protective role for RECQ1 under replication stress conditions. RECQ1 acts at replication forks, binds PCNA, inhibits single-strand DNA formation and nascent strand degradation in GBM cells. It is associated with the function of the PARP1 protein, promoting PARP1 recruitment to replication sites. RECQ1 is essential for DNA replication fork protection and tumor cell proliferation under replication stress conditions, and as a target of RECQ1, PARP1 effectively protects and restarts stalled replication forks, providing new insights into genomic stability maintenance and replication stress resistance. These findings indicate that tumor genome stability targeting RECQ1-PARP1 signaling may be a promising therapeutic intervention to overcome therapy resistance in GBM.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute for Advanced Study, Tongji University, Shanghai, China
| | - Hao Lian
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kui Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Pang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mu Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingsong Huang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Zhu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Siyi Xu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
RecQ helicases in DNA repair and cancer targets. Essays Biochem 2021; 64:819-830. [PMID: 33095241 PMCID: PMC7588665 DOI: 10.1042/ebc20200012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Helicases are enzymes that use the energy derived from ATP hydrolysis to catalyze the unwinding of DNA or RNA. The RecQ family of helicases is conserved through evolution from prokaryotes to higher eukaryotes and plays important roles in various DNA repair pathways, contributing to the maintenance of genome integrity. Despite their roles as general tumor suppressors, there is now considerable interest in exploiting RecQ helicases as synthetic lethal targets for the development of new cancer therapeutics. In this review, we summarize the latest developments in the structural and mechanistic study of RecQ helicases and discuss their roles in various DNA repair pathways. Finally, we consider the potential to exploit RecQ helicases as therapeutic targets and review the recent progress towards the development of small molecules targeting RecQ helicases as cancer therapeutics.
Collapse
|
7
|
Genome-Wide Analysis Unveils DNA Helicase RECQ1 as a Regulator of Estrogen Response Pathway in Breast Cancer Cells. Mol Cell Biol 2021; 41:MCB.00515-20. [PMID: 33468559 DOI: 10.1128/mcb.00515-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Susceptibility to breast cancer is significantly increased in individuals with germ line mutations in RECQ1 (also known as RECQL or RECQL1), a gene encoding a DNA helicase essential for genome maintenance. We previously reported that RECQ1 expression predicts clinical outcomes for sporadic breast cancer patients stratified by estrogen receptor (ER) status. Here, we utilized an unbiased integrative genomics approach to delineate a cross talk between RECQ1 and ERα, a known master regulatory transcription factor in breast cancer. We found that expression of ESR1, the gene encoding ERα, is directly activated by RECQ1. More than 35% of RECQ1 binding sites were cobound by ERα genome-wide. Mechanistically, RECQ1 cooperates with FOXA1, the pioneer transcription factor for ERα, to enhance chromatin accessibility at the ESR1 regulatory regions in a helicase activity-dependent manner. In clinical ERα-positive breast cancers treated with endocrine therapy, high RECQ1 and high FOXA1 coexpressing tumors were associated with better survival. Collectively, these results identify RECQ1 as a novel cofactor for ERα and uncover a previously unknown mechanism by which RECQ1 regulates disease-driving gene expression in ER-positive breast cancer cells.
Collapse
|
8
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
9
|
Szlachta K, Manukyan A, Raimer HM, Singh S, Salamon A, Guo W, Lobachev KS, Wang YH. Topoisomerase II contributes to DNA secondary structure-mediated double-stranded breaks. Nucleic Acids Res 2020; 48:6654-6671. [PMID: 32501506 PMCID: PMC7337936 DOI: 10.1093/nar/gkaa483] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
DNA double-stranded breaks (DSBs) trigger human genome instability, therefore identifying what factors contribute to DSB induction is critical for our understanding of human disease etiology. Using an unbiased, genome-wide approach, we found that genomic regions with the ability to form highly stable DNA secondary structures are enriched for endogenous DSBs in human cells. Human genomic regions predicted to form non-B-form DNA induced gross chromosomal rearrangements in yeast and displayed high indel frequency in human genomes. The extent of instability in both analyses is in concordance with the structure forming ability of these regions. We also observed an enrichment of DNA secondary structure-prone sites overlapping transcription start sites (TSSs) and CCCTC-binding factor (CTCF) binding sites, and uncovered an increase in DSBs at highly stable DNA secondary structure regions, in response to etoposide, an inhibitor of topoisomerase II (TOP2) re-ligation activity. Importantly, we found that TOP2 deficiency in both yeast and human leads to a significant reduction in DSBs at structure-prone loci, and that sites of TOP2 cleavage have a greater ability to form highly stable DNA secondary structures. This study reveals a direct role for TOP2 in generating secondary structure-mediated DNA fragility, advancing our understanding of mechanisms underlying human genome instability.
Collapse
Affiliation(s)
- Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Sandeep Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Anita Salamon
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Wenying Guo
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kirill S Lobachev
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| |
Collapse
|
10
|
Debnath S, Sharma S. RECQ1 Helicase in Genomic Stability and Cancer. Genes (Basel) 2020; 11:E622. [PMID: 32517021 PMCID: PMC7348745 DOI: 10.3390/genes11060622] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
RECQ1 (also known as RECQL or RECQL1) belongs to the RecQ family of DNA helicases, members of which are linked with rare genetic diseases of cancer predisposition in humans. RECQ1 is implicated in several cellular processes, including DNA repair, cell cycle and growth, telomere maintenance, and transcription. Earlier studies have demonstrated a unique requirement of RECQ1 in ensuring chromosomal stability and suggested its potential involvement in tumorigenesis. Recent reports have suggested that RECQ1 is a potential breast cancer susceptibility gene, and missense mutations in this gene contribute to familial breast cancer development. Here, we provide a framework for understanding how the genetic or functional loss of RECQ1 might contribute to genomic instability and cancer.
Collapse
Affiliation(s)
- Subrata Debnath
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA;
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA;
- National Human Genome Center, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA
| |
Collapse
|
11
|
Lyu X, Chastain M, Chai W. Genome-wide mapping and profiling of γH2AX binding hotspots in response to different replication stress inducers. BMC Genomics 2019; 20:579. [PMID: 31299901 PMCID: PMC6625122 DOI: 10.1186/s12864-019-5934-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Replication stress (RS) gives rise to DNA damage that threatens genome stability. RS can originate from different sources that stall replication by diverse mechanisms. However, the mechanism underlying how different types of RS contribute to genome instability is unclear, in part due to the poor understanding of the distribution and characteristics of damage sites induced by different RS mechanisms. RESULTS We use ChIP-seq to map γH2AX binding sites genome-wide caused by aphidicolin (APH), hydroxyurea (HU), and methyl methanesulfonate (MMS) treatments in human lymphocyte cells. Mapping of γH2AX ChIP-seq reveals that APH, HU, and MMS treatments induce non-random γH2AX chromatin binding at discrete regions, suggesting that there are γH2AX binding hotspots in the genome. Characterization of the distribution and sequence/epigenetic features of γH2AX binding sites reveals that the three treatments induce γH2AX binding at largely non-overlapping regions, suggesting that RS may cause damage at specific genomic loci in a manner dependent on the fork stalling mechanism. Nonetheless, γH2AX binding sites induced by the three treatments share common features including compact chromatin, coinciding with larger-than-average genes, and depletion of CpG islands and transcription start sites. Moreover, we observe significant enrichment of SINEs in γH2AX sites in all treatments, indicating that SINEs may be a common barrier for replication polymerases. CONCLUSIONS Our results identify the location and common features of genome instability hotspots induced by different types of RS, and help in deciphering the mechanisms underlying RS-induced genetic diseases and carcinogenesis.
Collapse
Affiliation(s)
- Xinxing Lyu
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Megan Chastain
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Weihang Chai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA.
| |
Collapse
|
12
|
Kaushal S, Freudenreich CH. The role of fork stalling and DNA structures in causing chromosome fragility. Genes Chromosomes Cancer 2019; 58:270-283. [PMID: 30536896 DOI: 10.1002/gcc.22721] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Alternative non-B form DNA structures, also called secondary structures, can form in certain DNA sequences under conditions that produce single-stranded DNA, such as during replication, transcription, and repair. Direct links between secondary structure formation, replication fork stalling, and genomic instability have been found for many repeated DNA sequences that cause disease when they expand. Common fragile sites (CFSs) are known to be AT-rich and break under replication stress, yet the molecular basis for their fragility is still being investigated. Over the past several years, new evidence has linked both the formation of secondary structures and transcription to fork stalling and fragility of CFSs. How these two events may synergize to cause fragility and the role of nuclease cleavage at secondary structures in rare and CFSs are discussed here. We also highlight evidence for a new hypothesis that secondary structures at CFSs not only initiate fragility but also inhibit healing, resulting in their characteristic appearance.
Collapse
Affiliation(s)
- Simran Kaushal
- Department of Biology, Tufts University, Medford, Massachusetts
| | - Catherine H Freudenreich
- Department of Biology, Tufts University, Medford, Massachusetts.,Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
13
|
Xu H, Xu Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xie Y. Low expression of RECQL is associated with poor prognosis in Chinese breast cancer patients. BMC Cancer 2018; 18:662. [PMID: 29914420 PMCID: PMC6007067 DOI: 10.1186/s12885-018-4585-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background RECQL is a number of the RecQ DNA helicase family and plays an important role in maintaining genome stability. Although several studies have reported that RECQL mutations were correlated with the susceptibility to breast cancer, the effect on prognosis in breast cancer was not yet clarified. Here, we explored the association between RECQL expression level and survival in patients with breast cancer. Methods In the first cohort, the RECQL mRNA expression level was evaluated in 774 primary breast cancer patients using a quantitative real-time PCR assay. Then, in the second independent cohort, the level of RECQL protein expression was detected in 322 patients with breast cancer using immunohistochemistry assay. Survival curves of patients with RECQL expression were compared using the Kaplan-Meier method with log-rank test. Results In the first cohort of 774 breast cancer patients, the low expression level of RECQL mRNA was significantly correlated with aggressive clinicopathological characteristics, including the positive lymph node status (P = 0.026), HER2 overexpression (P < 0.001), ER negative status (P = 0.047) and high tumor grade (P = 0.041). Moreover, the low expression level of RECQL mRNA was significantly associated with poor distant recurrence-free survival (DRFS, unadjusted hazard ratio (HR): 2.77, 95% confidence interval (CI): 1.88–4.09, P < 0.001) and disease-specific survival (DSS, unadjusted HR: 3.10, 95% CI: 1.84–5.20,P < 0.001), and it remained an independent unfavorable factor for DRFS and DSS (DRFS: adjusted HR: 3.04, 95% CI: 1.89–4.87, P < 0.001; DSS: adjusted HR: 4.25, 95% CI: 2.12–8.46, P < 0.001). In the second cohort of 322 breast cancer patients, low expression of RECQL protein was also subject to poor survival in breast cancer, and it was an independent prognosis factor of poor DRFS by multivariate analysis (DRFS: adjusted HR: 2.12, 95% CI: 1.16–3.88, P = 0.015). Conclusions Breast cancer patients with low RECQL expression had a worse survival. The expression level of RECQL may be a potential prognosis factor for breast cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4585-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huiying Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Ye Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Tao Ouyang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Jinfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Tianfeng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Zhaoqing Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Tie Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Benyao Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Yuntao Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China.
| |
Collapse
|
14
|
Parvathaneni S, Lu X, Chaudhary R, Lal A, Madhusudan S, Sharma S. RECQ1 expression is upregulated in response to DNA damage and in a p53-dependent manner. Oncotarget 2017; 8:75924-75942. [PMID: 29100281 PMCID: PMC5652675 DOI: 10.18632/oncotarget.18237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
Sensitivity of cancer cells to DNA damaging chemotherapeutics is determined by DNA repair processes. Consequently, cancer cells may upregulate the expression of certain DNA repair genes as a mechanism to promote chemoresistance. Here, we report that RECQ1, a breast cancer susceptibility gene that encodes the most abundant RecQ helicase in humans, is a p53-regulated gene, potentially acting as a defense against DNA damaging agents. We show that RECQ1 mRNA and protein levels are upregulated upon treatment of cancer cells with a variety of DNA damaging agents including the DNA-alkylating agent methylmethanesulfonate (MMS). The MMS-induced upregulation of RECQ1 expression is p53-dependent as it was observed in p53-proficient but not in isogenic p53-deficient cells. The RECQ1 promoter is bound by endogenous p53 and is responsive to p53 in luciferase reporter assays suggesting that RECQ1 is a direct target of p53. Treatment with the chemotherapeutic drugs temozolomide and fotemustine also increased RECQ1 mRNA levels whereas depletion of RECQ1 enhanced cellular sensitivity to these agents. These results identify a previously unrecognized p53-mediated upregulation of RECQ1 expression in response to DNA damage and implicate RECQ1 in the repair of DNA lesions including those induced by alkylating and other chemotherapeutic agents.
Collapse
Affiliation(s)
- Swetha Parvathaneni
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, 20059, USA
| | - Xing Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, 20059, USA
| | - Ritu Chaudhary
- Regulatory RNAs and Cancer Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Srinivasan Madhusudan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG51PB, UK
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, 20059, USA
| |
Collapse
|
15
|
RECQ1 helicase is involved in replication stress survival and drug resistance in multiple myeloma. Leukemia 2017; 31:2104-2113. [PMID: 28186131 PMCID: PMC5629372 DOI: 10.1038/leu.2017.54] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/29/2016] [Accepted: 01/27/2017] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a plasma cell cancer with poor survival, characterized by the expansion of multiple myeloma cells (MMCs) in the bone marrow. Using a microarray-based genome-wide screen for genes responding to DNA methyltransferases (DNMT) inhibition in MM cells, we identified RECQ1 among the most downregulated genes. RecQ helicases are DNA unwinding enzymes involved in the maintenance of chromosome stability. Here we show that RECQ1 is significantly overexpressed in MMCs compared to normal plasma cells and that increased RECQ1 expression is associated with poor prognosis in three independent cohorts of patients. Interestingly, RECQ1 knockdown inhibits cells growth and induces apoptosis in MMCs. Moreover, RECQ1 depletion promotes the development of DNA double-strand breaks, as evidenced by the formation of 53BP1 foci and the phosphorylation of ataxia-telangiectasia mutated (ATM) and histone variant H2A.X (H2AX). In contrast, RECQ1 overexpression protects MMCs from melphalan and bortezomib cytotoxicity. RECQ1 interacts with PARP1 in MMCs exposed to treatment and RECQ1 depletion sensitizes MMCs to poly(ADP-ribose) polymerase (PARP) inhibitor. DNMT inhibitor treatment results in RECQ1 downregulation through miR-203 deregulation in MMC. Altogether, these data suggest that association of DNA damaging agents and/or PARP inhibitors with DNMT inhibitors may represent a therapeutic approach in patients with high RECQ1 expression associated with a poor prognosis.
Collapse
|
16
|
Beresova L, Vesela E, Chamrad I, Voller J, Yamada M, Furst T, Lenobel R, Chroma K, Gursky J, Krizova K, Mistrik M, Bartek J. Role of DNA Repair Factor Xeroderma Pigmentosum Protein Group C in Response to Replication Stress As Revealed by DNA Fragile Site Affinity Chromatography and Quantitative Proteomics. J Proteome Res 2016; 15:4505-4517. [PMID: 27794614 DOI: 10.1021/acs.jproteome.6b00622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Replication stress (RS) fuels genomic instability and cancer development and may contribute to aging, raising the need to identify factors involved in cellular responses to such stress. Here, we present a strategy for identification of factors affecting the maintenance of common fragile sites (CFSs), which are genomic loci that are particularly sensitive to RS and suffer from increased breakage and rearrangements in tumors. A DNA probe designed to match the high flexibility island sequence typical for the commonly expressed CFS (FRA16D) was used as specific DNA affinity bait. Proteins significantly enriched at the FRA16D fragment under normal and replication stress conditions were identified using stable isotope labeling of amino acids in cell culture-based quantitative mass spectrometry. The identified proteins interacting with the FRA16D fragment included some known CFS stabilizers, thereby validating this screening approach. Among the hits from our screen so far not implicated in CFS maintenance, we chose Xeroderma pigmentosum protein group C (XPC) for further characterization. XPC is a key factor in the DNA repair pathway known as global genomic nucleotide excision repair (GG-NER), a mechanism whose several components were enriched at the FRA16D fragment in our screen. Functional experiments revealed defective checkpoint signaling and escape of DNA replication intermediates into mitosis and the next generation of XPC-depleted cells exposed to RS. Overall, our results provide insights into an unexpected biological role of XPC in response to replication stress and document the power of proteomics-based screening strategies to elucidate mechanisms of pathophysiological significance.
Collapse
Affiliation(s)
- Lucie Beresova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic.,Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University , Olomouc, Czech Republic
| | - Eva Vesela
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Ivo Chamrad
- Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University , Olomouc, Czech Republic
| | - Jiri Voller
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Masayuki Yamada
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Tomas Furst
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Rene Lenobel
- Department of Protein Biochemistry and Proteomics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University , Olomouc, Czech Republic
| | - Katarina Chroma
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Jan Gursky
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Katerina Krizova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic.,Danish Cancer Society Research Center , Copenhagen, Denmark.,Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Biochemistry and Biophysics, Karolinska Institute , Stockholm, Sweden
| |
Collapse
|
17
|
Arora A, Parvathaneni S, Aleskandarany MA, Agarwal D, Ali R, Abdel-Fatah T, Green AR, Ball GR, Rakha EA, Ellis IO, Sharma S, Madhusudan S. Clinicopathological and Functional Significance of RECQL1 Helicase in Sporadic Breast Cancers. Mol Cancer Ther 2016; 16:239-250. [PMID: 27837030 DOI: 10.1158/1535-7163.mct-16-0290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/14/2016] [Accepted: 11/01/2016] [Indexed: 01/16/2023]
Abstract
RECQL1, a key member of the RecQ family of DNA helicases, is required for DNA replication and DNA repair. Two recent studies have shown that germline RECQL1 mutations are associated with increased breast cancer susceptibility. Whether altered RECQL1 expression has clinicopathologic significance in sporadic breast cancers is unknown. We evaluated RECQL1 at the transcriptomic level (METABRIC cohort, n = 1,977) and at the protein level [cohort 1, n = 897; cohort 2, n = 252; cohort 3 (BRCA germline deficient), n = 74]. In RECQL1-depleted breast cancer cells, we investigated anthracycline sensitivity. High RECQL1 mRNA was associated with intClust.3 (P = 0.026), which is characterized by low genomic instability. On the other hand, low RECQL1 mRNA was linked to intClust.8 [luminal A estrogen receptor-positive (ER+) subgroup; P = 0.0455] and intClust.9 (luminal B ER+ subgroup; P = 0.0346) molecular phenotypes. Low RECQL1 expression was associated with shorter breast cancer-specific survival (P = 0.001). At the protein level, low nuclear RECQL1 level was associated with larger tumor size, lymph node positivity, high tumor grade, high mitotic index, pleomorphism, dedifferentiation, ER negativity, and HER-2 overexpression (P < 0.05). In ER+ tumors that received endocrine therapy, low RECQL1 was associated with poor survival (P = 0.008). However, in ER- tumors that received anthracycline-based chemotherapy, high RECQL1 was associated with poor survival (P = 0.048). In RECQL1-depleted breast cancer cell lines, we confirmed doxorubicin sensitivity, which was associated with DNA double-strand breaks accumulation, S-phase cell-cycle arrest, and apoptosis. We conclude that RECQL1 has prognostic and predictive significance in breast cancers. Mol Cancer Ther; 16(1); 239-50. ©2016 AACR.
Collapse
Affiliation(s)
- Arvind Arora
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Swetha Parvathaneni
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC
| | - Mohammed A Aleskandarany
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Devika Agarwal
- School of Science and Technology, Nottingham Trent University, Clifton campus, Nottingham, United Kingdom
| | - Reem Ali
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Tarek Abdel-Fatah
- Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Andrew R Green
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Graham R Ball
- School of Science and Technology, Nottingham Trent University, Clifton campus, Nottingham, United Kingdom
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ian O Ellis
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC.
| | - Srinivasan Madhusudan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom. .,Department of Oncology, Nottingham University Hospitals, Nottingham, United Kingdom
| |
Collapse
|
18
|
Effects of RECQ1 helicase silencing on non-small cell lung cancer cells. Biomed Pharmacother 2016; 83:1227-1232. [PMID: 27565844 DOI: 10.1016/j.biopha.2016.07.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/04/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022] Open
Abstract
RECQ1, the most abundant one of the human RecQ helicases family, has been identified as a prometastasis gene in breast and cervical cancers. However, the effects of RECQ1 on non-small cell lung cancer (NSCLC) and the underlying molecular mechanisms are still unclear. In the present study, RECQ1 expression (in three NSCLC cell lines and one bronchial epithelial cell line) was detected by real-time quantitative PCR (RT-qPCR). Expression of RECQ1 in A549 cells was knocked down by lentivirus-mediated RNA interference technique (RNAi). The effects of RECQ1 knockdown on cell proliferation, migration and invasion were assessed by Cell Counting Kit-8 (CCK-8) assay and transwell assays. Epithelial-mesenchymal transition (EMT)-associated proteins (E-cadherin, N-cadherin as well as vimentin) were detected by RT-qPCR and western blotting analyses. We found that RECQ1 expression was significantly higher in three NSCLC cell lines than that in a normal human bronchial epithelial cell line. Knocking down RECQ1 significantly suppressed A549 cell proliferation, migration and invasion. The expressions of the epithelial marker, E-cadherin were elevated in both mRNA and protein levels, whereas the expressions of the mesenchymal markers, N-cadherin and vimentin were decreased. Taken together, our findings suggest that RECQ1 may act as an important mediator in promoting lung cancer progression via modulation of the EMT. RECQ1 might represent a potential therapeutic target in NSCLC.
Collapse
|
19
|
Sami F, Gary RK, Fang Y, Sharma S. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain. Mutat Res 2016; 790:8-18. [PMID: 27248010 DOI: 10.1016/j.mrfmmm.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/16/2016] [Accepted: 05/13/2016] [Indexed: 01/05/2023]
Abstract
RecQ helicases are a highly conserved family of ATP-dependent DNA-unwinding enzymes with key roles in DNA replication and repair in all kingdoms of life. The RECQ1 gene encodes the most abundant RecQ homolog in humans. We engineered full-length RECQ1 harboring point mutations in the zinc-binding motif (amino acids 419-480) within the conserved RecQ-specific-C-terminal (RQC) domain known to be critical for diverse biochemical and cellular functions of RecQ helicases. Wild-type RECQ1 contains a zinc ion. Substitution of three of the four conserved cysteine residues that coordinate zinc severely impaired the ATPase and DNA unwinding activities but retained DNA binding and single strand DNA annealing activities. Furthermore, alteration of these residues attenuated zinc binding and significantly changed the overall conformation of full-length RECQ1 protein. In contrast, substitution of cysteine residue at position 471 resulted in a wild-type like RECQ1 protein. Differential contribution of the conserved cysteine residues to the structure and functions of the RECQ1 protein is also inferred by homology modeling. Overall, our results indicate that the zinc binding motif in the RQC domain of RECQ1 is a key structural element that is essential for the structure-functions of RECQ1. Given the recent association of RECQ1 mutations with breast cancer, these results will contribute to understanding the molecular basis of RECQ1 functions in cancer etiology.
Collapse
Affiliation(s)
- Furqan Sami
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street NW, Washington DC 20059, USA
| | - Ronald K Gary
- Department of Chemistry and Biochemistry, University of Nevada, 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| | - Yayin Fang
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street NW, Washington DC 20059, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street NW, Washington DC 20059, USA.
| |
Collapse
|
20
|
Choe KN, Nicolae CM, Constantin D, Imamura Kawasawa Y, Delgado-Diaz MR, De S, Freire R, Smits VA, Moldovan GL. HUWE1 interacts with PCNA to alleviate replication stress. EMBO Rep 2016; 17:874-86. [PMID: 27146073 DOI: 10.15252/embr.201541685] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/05/2016] [Indexed: 02/01/2023] Open
Abstract
Defects in DNA replication, DNA damage response, and DNA repair compromise genomic stability and promote cancer development. In particular, unrepaired DNA lesions can arrest the progression of the DNA replication machinery during S-phase, causing replication stress, mutations, and DNA breaks. HUWE1 is a HECT-type ubiquitin ligase that targets proteins involved in cell fate, survival, and differentiation. Here, we report that HUWE1 is essential for genomic stability, by promoting replication of damaged DNA We show that HUWE1-knockout cells are unable to mitigate replication stress, resulting in replication defects and DNA breakage. Importantly, we find that this novel role of HUWE1 requires its interaction with the replication factor PCNA, a master regulator of replication fork restart, at stalled replication forks. Finally, we provide evidence that HUWE1 mono-ubiquitinates H2AX to promote signaling at stalled forks. Altogether, our work identifies HUWE1 as a novel regulator of the replication stress response.
Collapse
Affiliation(s)
- Katherine N Choe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Daniel Constantin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yuka Imamura Kawasawa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Maria Rocio Delgado-Diaz
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna Tenerife, Spain
| | - Subhajyoti De
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA Molecular Oncology Program, University of Colorado Cancer Center, Aurora, CO, USA
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna Tenerife, Spain
| | - Veronique Aj Smits
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna Tenerife, Spain
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
21
|
Lu X, Parvathaneni S, Li XL, Lal A, Sharma S. Transcriptome guided identification of novel functions of RECQ1 helicase. Methods 2016; 108:111-7. [PMID: 27102625 DOI: 10.1016/j.ymeth.2016.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/22/2023] Open
Abstract
Gene expression changes in the functional absence of a specific RecQ protein, and how that relates to disease outcomes including cancer predisposition and premature aging in RecQ helicase associated syndromes, are poorly understood. Here we describe detailed experimental strategy for identification of RECQ1-regulated transcriptome that led us to uncover a novel association of RECQ1 in regulation of cancer cell migration and invasion. We initiated a focused study to determine whether RECQ1, the most abundant RecQ protein in humans, alters gene expression and also investigated whether RECQ1 binds with G4 motifs predicted to form G-quadruplex structures in the target gene promoters. Rescue of mRNA expression of select RECQ1-downregulated genes harboring G4 motifs required wild-type RECQ1 helicase. However, some RECQ1-regulated genes are also regulated by BLM and WRN proteins regardless of the presence or absence of G4 motifs. The approach described here is applicable for systematic comparison of gene expression signatures of individual RecQ proteins in isogenic background, and to elucidate their participation in transcription regulation through G-quadruplex recognition and/or resolution. Such strategies might also reveal molecular pathways that drive the pathogenesis of cancer and other diseases in specific RecQ deficiency.
Collapse
Affiliation(s)
- Xing Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA
| | - Swetha Parvathaneni
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA.
| |
Collapse
|
22
|
Viziteu E, Kassambara A, Pasero P, Klein B, Moreaux J. RECQ helicases are deregulated in hematological malignancies in association with a prognostic value. Biomark Res 2016; 4:3. [PMID: 26877874 PMCID: PMC4752763 DOI: 10.1186/s40364-016-0057-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/08/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND RECQ helicase family members act as guardians of the genome to assure proper DNA metabolism in response to genotoxic stress. Hematological malignancies are characterized by genomic instability that is possibly related to underlying defects in DNA repair of genomic stability maintenance. METHODS We have investigated the expression of RECQ helicases in different hematological malignancies and in their normal counterparts using publicly available gene expression data. Furthermore, we explored whether RECQ helicases expression could be associated with tumor progression and prognosis. RESULTS Expression of at least one RECQ helicase family member was found significantly deregulated in all hematological malignancies investigated when compared to their normal counterparts. In addition, RECQ helicase expression was associated with a prognostic value in acute myeloid leukemia, chronic lymphocytic leukemia, lymphoma and multiple myeloma. CONCLUSION RECQ helicase expression is deregulated in hematological malignancies compared to their normal counterparts in association with a prognostic value. Deregulation of RECQ helicases appears to play a role in tumorigenesis and represent potent therapeutic targets for synthetic lethal approaches in hematological malignancies.
Collapse
Affiliation(s)
- Elena Viziteu
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
| | - Alboukadel Kassambara
- />Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier, Cedex 5 France
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
| | - Philippe Pasero
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
| | - Bernard Klein
- />Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier, Cedex 5 France
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
- />University of Montpellier 1, UFR de Médecine, Montpellier, France
| | - Jerome Moreaux
- />Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier, Cedex 5 France
- />Institute of Human Genetics, CNRS-UPR1142, Montpellier, F-34396 France
- />University of Montpellier 1, UFR de Médecine, Montpellier, France
| |
Collapse
|
23
|
Catalytic strand separation by RECQ1 is required for RPA-mediated response to replication stress. Curr Biol 2015; 25:2830-2838. [PMID: 26455304 DOI: 10.1016/j.cub.2015.09.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/19/2015] [Accepted: 09/09/2015] [Indexed: 11/21/2022]
Abstract
Three (BLM, WRN, and RECQ4) of the five human RecQ helicases are linked to genetic disorders characterized by genomic instability, cancer, and accelerated aging [1]. RECQ1, the first human RecQ helicase discovered [2-4] and the most abundant [5], was recently implicated in breast cancer [6, 7]. RECQ1 is an ATP-dependent DNA-unwinding enzyme (helicase) [8, 9] with roles in replication [10-12] and DNA repair [13-16]. RECQ1 is highly expressed in various tumors and cancer cell lines (for review, see [17]), and its suppression reduces cancer cell proliferation [14], suggesting a target for anti-cancer drugs. RECQ1's assembly state plays a critical role in modulating its helicase, branch migration (BM), or strand annealing [18, 19]. The crystal structure of truncated RECQ1 [20, 21] resembles that of E. coli RecQ [22] with two RecA-like domains, a RecQ-specific zinc-binding domain and a winged-helix domain, the latter implicated in DNA strand separation and oligomer formation. In addition, a conserved aromatic loop (AL) is important for DNA unwinding by bacterial RecQ [23, 24] and truncated RECQ1 helicases [21]. To better understand the roles of RECQ1, two AL mutants (W227A and F231A) in full-length RECQ1 were characterized biochemically and genetically. The RECQ1 mutants were defective in helicase or BM but retained DNA binding, oligomerization, ATPase, and strand annealing. RECQ1-depleted HeLa cells expressing either AL mutant displayed reduced replication tract length, elevated dormant origin firing, and increased double-strand breaks that could be suppressed by exogenously expressed replication protein A (RPA). Thus, RECQ1 governs RPA's availability in order to maintain normal replication dynamics, suppress DNA damage, and preserve genome homeostasis.
Collapse
|
24
|
Somyajit K, Saxena S, Babu S, Mishra A, Nagaraju G. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Nucleic Acids Res 2015; 43:9835-55. [PMID: 26354865 PMCID: PMC4787763 DOI: 10.1093/nar/gkv880] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/23/2015] [Indexed: 12/22/2022] Open
Abstract
Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sneha Saxena
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sharath Babu
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Anup Mishra
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
25
|
Li XL, Lu X, Parvathaneni S, Bilke S, Zhang H, Thangavel S, Vindigni A, Hara T, Zhu Y, Meltzer PS, Lal A, Sharma S. Identification of RECQ1-regulated transcriptome uncovers a role of RECQ1 in regulation of cancer cell migration and invasion. Cell Cycle 2015; 13:2431-45. [PMID: 25483193 DOI: 10.4161/cc.29419] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The RECQ protein family of helicases has critical roles in protecting and stabilizing the genome. Three of the 5 known members of the human RecQ family are genetically linked with cancer susceptibility syndromes, but the association of the most abundant human RecQ homolog, RECQ1, with cellular transformation is yet unclear. RECQ1 is overexpressed in a variety of human cancers, indicating oncogenic functions. Here, we assessed genome-wide changes in gene expression upon knockdown of RECQ1 in HeLa and MDA-MB-231 cells. Pathway analysis suggested that RECQ1 enhances the expression of multiple genes that play key roles in cell migration, invasion, and metastasis, including EZR, ITGA2, ITGA3, ITGB4, SMAD3, and TGFBR2. Consistent with these results, silencing RECQ1 significantly reduced cell migration and invasion. In comparison to genome-wide annotated promoter regions, the promoters of genes downregulated upon RECQ1 silencing were significantly enriched for a potential G4 DNA forming sequence motif. Chromatin immunoprecipitation assays demonstrated binding of RECQ1 to the G4 motifs in the promoters of select genes downregulated upon RECQ1 silencing. In breast cancer patients, the expression of a subset of RECQ1-activated genes positively correlated with RECQ1 expression. Moreover, high RECQ1 expression was associated with poor prognosis in breast cancer. Collectively, our findings identify a novel function of RECQ1 in gene regulation and indicate that RECQ1 contributes to tumor development and progression, in part, by regulating the expression of key genes that promote cancer cell migration, invasion and metastasis.
Collapse
Affiliation(s)
- Xiao Ling Li
- a Regulatory RNAs and Cancer Section; Genetics Branch; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in replication restart mechanisms. Cellular phenotypes of RECQ1 deficiency are indicative of aberrant repair of stalled replication forks, but the molecular functions of RECQ1, the most abundant of the five known human RecQ homologues, have remained poorly understood. We show that RECQ1 associates with FEN-1 (flap endonuclease-1) in nuclear extracts and exhibits direct protein interaction in vitro. Recombinant RECQ1 significantly stimulated FEN-1 endonucleolytic cleavage of 5'-flap DNA substrates containing non-telomeric or telomeric repeat sequence. RECQ1 and FEN-1 were constitutively present at telomeres and their binding to the telomeric chromatin was enhanced following DNA damage. Telomere residence of FEN-1 was dependent on RECQ1 since depletion of RECQ1 reduced FEN-1 binding to telomeres in unperturbed cycling cells. Our results confirm a conserved collaboration of human RecQ helicases with FEN-1 and suggest both overlapping and specialized roles of RECQ1 in the processing of DNA structure intermediates proposed to arise during replication, repair and recombination.
Collapse
|
27
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 2015; 16:60-70. [PMID: 25937814 PMCID: PMC4412965 DOI: 10.2174/1389202916666150114223205] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
28
|
Nicolae CM, Aho ER, Choe KN, Constantin D, Hu HJ, Lee D, Myung K, Moldovan GL. A novel role for the mono-ADP-ribosyltransferase PARP14/ARTD8 in promoting homologous recombination and protecting against replication stress. Nucleic Acids Res 2015; 43:3143-53. [PMID: 25753673 PMCID: PMC4381061 DOI: 10.1093/nar/gkv147] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/15/2015] [Indexed: 12/29/2022] Open
Abstract
Genomic instability, a major hallmark of cancer cells, is caused by incorrect or ineffective DNA repair. Many DNA repair mechanisms cooperate in cells to fight DNA damage, and are generally regulated by post-translational modification of key factors. Poly-ADP-ribosylation, catalyzed by PARP1, is a post-translational modification playing a prominent role in DNA repair, but much less is known about mono-ADP-ribosylation. Here we report that mono-ADP-ribosylation plays an important role in homologous recombination DNA repair, a mechanism essential for replication fork stability and double strand break repair. We show that the mono-ADP-ribosyltransferase PARP14 interacts with the DNA replication machinery component PCNA and promotes replication of DNA lesions and common fragile sites. PARP14 depletion results in reduced homologous recombination, persistent RAD51 foci, hypersensitivity to DNA damaging agents and accumulation of DNA strand breaks. Our work uncovered PARP14 as a novel factor required for mitigating replication stress and promoting genomic stability.
Collapse
Affiliation(s)
- Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Erin R Aho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Katherine N Choe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Daniel Constantin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - He-Juan Hu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA Suzhou Health College, Suzhou, Jiangsu 215009, P.R. China
| | - Deokjae Lee
- Genome Instability Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Kyungjae Myung
- Genome Instability Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
29
|
Sharma S. An appraisal of RECQ1 expression in cancer progression. Front Genet 2014; 5:426. [PMID: 25538733 PMCID: PMC4257099 DOI: 10.3389/fgene.2014.00426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
RECQ1 is the most abundant member of the human RecQ family of DNA helicases genetically linked with cancer predisposition syndromes and well known for their functions in genome stability maintenance through DNA repair. Despite being the first discovered RecQ homolog in humans, biological functions of RECQ1 have remained largely underappreciated and its relevance to cellular transformation is yet unclear. RECQ1 is overexpressed and amplified in many clinical cancer samples. In silico evaluation of RECQ1 mRNA expression across the NCI-60 cancer cell lines predicts an association of RECQ1 with cancer cell migration, invasion, and metastasis. Consistent with this, latest work implicates RECQ1 in regulation of gene expression, especially of those associated with cancer progression. Functionally, silencing RECQ1 expression significantly reduces cell proliferation, migration, and invasion. Collectively, these results propose that discerning the role of RECQ1 in conferring proliferative and invasive phenotype to cancer cells could be useful in developing therapeutic strategies to block primary tumor progression and metastasis.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University , Washington, DC, USA
| |
Collapse
|
30
|
Franchitto A, Pichierri P. Replication fork recovery and regulation of common fragile sites stability. Cell Mol Life Sci 2014; 71:4507-17. [PMID: 25216703 PMCID: PMC11113654 DOI: 10.1007/s00018-014-1718-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The acquisition of genomic instability is a triggering factor in cancer development, and common fragile sites (CFS) are the preferential target of chromosomal instability under conditions of replicative stress in the human genome. Although the mechanisms leading to CFS expression and the cellular factors required to suppress CFS instability remain largely undefined, it is clear that DNA becomes more susceptible to breakage when replication is impaired. The models proposed so far to explain how CFS instability arises imply that replication fork progression along these regions is perturbed due to intrinsic features of fragile sites and events that directly affect DNA replication. The observation that proteins implicated in the safe recovery of stalled forks or in engaging recombination at collapsed forks increase CFS expression when downregulated or mutated suggests that the stabilization and recovery of perturbed replication forks are crucial to guarantee CFS integrity.
Collapse
Affiliation(s)
- Annapaola Franchitto
- Section of Molecular Epidemiology, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy,
| | | |
Collapse
|
31
|
Georgakilas AG, Tsantoulis P, Kotsinas A, Michalopoulos I, Townsend P, Gorgoulis VG. Are common fragile sites merely structural domains or highly organized "functional" units susceptible to oncogenic stress? Cell Mol Life Sci 2014; 71:4519-44. [PMID: 25238782 PMCID: PMC4232749 DOI: 10.1007/s00018-014-1717-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 01/07/2023]
Abstract
Common fragile sites (CFSs) are regions of the genome with a predisposition to DNA double-strand breaks in response to intrinsic (oncogenic) or extrinsic replication stress. CFS breakage is a common feature in carcinogenesis from its earliest stages. Given that a number of oncogenes and tumor suppressors are located within CFSs, a question that emerges is whether fragility in these regions is only a structural “passive” incident or an event with a profound biological effect. Furthermore, there is sparse evidence that other elements, like non-coding RNAs, are positioned with them. By analyzing data from various libraries, like miRbase and ENCODE, we show a prevalence of various cancer-related genes, miRNAs, and regulatory binding sites, such as CTCF within CFSs. We propose that CFSs are not only susceptible structural domains, but highly organized “functional” entities that when targeted, severe repercussion for cell homeostasis occurs.
Collapse
Affiliation(s)
- Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece
| | | | | | | | | | | |
Collapse
|
32
|
Garige M, Sharma S. Cellular deficiency of Werner syndrome protein or RECQ1 promotes genotoxic potential of hydroquinone and benzo[a]pyrene exposure. Int J Toxicol 2014; 33:373-81. [PMID: 25228686 DOI: 10.1177/1091581814547422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The 5 known RecQ helicases in humans (RECQ1, BLM, WRN, RECQL4, and RECQ5) have demonstrated roles in diverse genome maintenance mechanisms but their functions in safeguarding the genome from environmental toxicants are poorly understood. Here, we have evaluated a potential role of WRN (mutated in Werner syndrome) and RECQ1 (the most abundant homolog of WRN) in hydroquinone (HQ)- and benzo[a]pyrene (BaP)-induced genotoxicity. Silencing of WRN or RECQ1 expression in HeLa cells increased their sensitivity to HQ and BaP but elicited distinct DNA damage response. The RECQ1-depleted cells exhibited increased replication protein A phosphorylation, Chk1 activation, and DNA double-strand breaks (DSBs) as compared to control or WRN-depleted cells following exposure to BaP treatment. The BaP-induced DSBs in RECQ1-depleted cells were dependent on DNA-dependent protein kinase activity. Notably, loss of WRN in RECQ1-depleted cells ameliorated BaP toxicity. Collectively, our results provide first indication of nonredundant participation of WRN and RECQ1 in protection from the potentially carcinogenic effects of BaP and HQ.
Collapse
Affiliation(s)
- Mamatha Garige
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, USA
| |
Collapse
|
33
|
Popuri V, Hsu J, Khadka P, Horvath K, Liu Y, Croteau DL, Bohr VA. Human RECQL1 participates in telomere maintenance. Nucleic Acids Res 2014; 42:5671-88. [PMID: 24623817 PMCID: PMC4027191 DOI: 10.1093/nar/gku200] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A variety of human tumors employ alternative and recombination-mediated lengthening for telomere maintenance (ALT). Human RecQ helicases, such as BLM and WRN, can efficiently unwind alternate/secondary structures during telomere replication and/or recombination. Here, we report a novel role for RECQL1, the most abundant human RecQ helicase but functionally least studied, in telomere maintenance. RECQL1 associates with telomeres in ALT cells and actively resolves telomeric D-loops and Holliday junction substrates. RECQL1 physically and functionally interacts with telomere repeat-binding factor 2 that in turn regulates its helicase activity on telomeric substrates. The telomeric single-stranded binding protein, protection of telomeres 1 efficiently stimulates RECQL1 on telomeric substrates containing thymine glycol, a replicative blocking lesion. Loss of RECQL1 results in dysfunctional telomeres, telomere loss and telomere shortening, elevation of telomere sister-chromatid exchanges and increased aphidicolin-induced telomere fragility, indicating a role for RECQL1 in telomere maintenance. Further, our results indicate that RECQL1 may participate in the same pathway as WRN, probably in telomere replication.
Collapse
Affiliation(s)
- Venkateswarlu Popuri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Joseph Hsu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Prabhat Khadka
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Kent Horvath
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| |
Collapse
|
34
|
Croteau DL, Popuri V, Opresko PL, Bohr VA. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 2014; 83:519-52. [PMID: 24606147 DOI: 10.1146/annurev-biochem-060713-035428] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RecQ helicases are an important family of genome surveillance proteins conserved from bacteria to humans. Each of the five human RecQ helicases plays critical roles in genome maintenance and stability, and the RecQ protein family members are often referred to as guardians of the genome. The importance of these proteins in cellular homeostasis is underscored by the fact that defects in BLM, WRN, and RECQL4 are linked to distinct heritable human disease syndromes. Each human RecQ helicase has a unique set of protein-interacting partners, and these interactions dictate its specialized functions in genome maintenance, including DNA repair, recombination, replication, and transcription. Human RecQ helicases also interact with each other, and these interactions have significant impact on enzyme function. Future research goals in this field include a better understanding of the division of labor among the human RecQ helicases and learning how human RecQ helicases collaborate and cooperate to enhance genome stability.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, Maryland 21224;
| | | | | | | |
Collapse
|
35
|
Sami F, Sharma S. Probing Genome Maintenance Functions of human RECQ1. Comput Struct Biotechnol J 2013; 6:e201303014. [PMID: 24688722 PMCID: PMC3962141 DOI: 10.5936/csbj.201303014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/19/2013] [Accepted: 09/29/2013] [Indexed: 12/28/2022] Open
Abstract
The RecQ helicases are a highly conserved family of DNA-unwinding enzymes that play key roles in protecting the genome stability in all kingdoms of life. Human RecQ homologs include RECQ1, BLM, WRN, RECQ4, and RECQ5β. Although the individual RecQ-related diseases are characterized by a variety of clinical features encompassing growth defects (Bloom Syndrome and Rothmund Thomson Syndrome) to premature aging (Werner Syndrome), all these patients have a high risk of cancer predisposition. Here, we present an overview of recent progress towards elucidating functions of RECQ1 helicase, the most abundant but poorly characterized RecQ homolog in humans. Consistent with a conserved role in genome stability maintenance, deficiency of RECQ1 results in elevated frequency of spontaneous sister chromatid exchanges, chromosomal instability, increased DNA damage and greater sensitivity to certain genotoxic stress. Delineating what aspects of RECQ1 catalytic functions contribute to the observed cellular phenotypes, and how this is regulated is critical to establish its biological functions in DNA metabolism. Recent studies have identified functional specialization of RECQ1 in DNA repair; however, identification of fundamental similarities will be just as critical in developing a unifying theme for RecQ actions, allowing the functions revealed from studying one homolog to be extrapolated and generalized to other RecQ homologs.
Collapse
Affiliation(s)
- Furqan Sami
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA
| |
Collapse
|