1
|
Li Y, Zhao J, Gutgesell LM, Shen Z, Ratia K, Dye K, Dubrovskyi O, Zhao H, Huang F, Tonetti DA, Thatcher GRJ, Xiong R. Novel Pyrrolopyridone Bromodomain and Extra-Terminal Motif (BET) Inhibitors Effective in Endocrine-Resistant ER+ Breast Cancer with Acquired Resistance to Fulvestrant and Palbociclib. J Med Chem 2020; 63:7186-7210. [PMID: 32453591 DOI: 10.1021/acs.jmedchem.0c00456] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acquired resistance to fulvestrant and palbociclib is a new challenge to treatment of estrogen receptor positive (ER+) breast cancer. ER is expressed in most resistance settings; thus, bromodomain and extra-terminal protein inhibitors (BETi) that target BET-amplified ER-mediated transcription have therapeutic potential. Novel pyrrolopyridone BETi leveraged novel interactions with L92/L94 confirmed by a cocrystal structure of 27 with BRD4. Optimization of BETi using growth inhibition in fulvestrant-resistant (MCF-7:CFR) cells was confirmed in endocrine-resistant, palbociclib-resistant, and ESR1 mutant cell lines. 27 was more potent in MCF-7:CFR cells than six BET inhibitors in clinical trials. Transcriptomic analysis differentiated 27 from the benchmark BETi, JQ-1, showing downregulation of oncogenes and upregulation of tumor suppressors and apoptosis. The therapeutic approach was validated by oral administration of 27 in orthotopic xenografts of endocrine-resistant breast cancer in monotherapy and in combination with fulvestrant. Importantly, at an equivalent dose in rats, thrombocytopenia was mitigated.
Collapse
Affiliation(s)
- Yangfeng Li
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Jiong Zhao
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Lauren M Gutgesell
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Zhengnan Shen
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Kiira Ratia
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States.,Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States.,Research Resources Center, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Katherine Dye
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Oleksii Dubrovskyi
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Huiping Zhao
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Fei Huang
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Debra A Tonetti
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Gregory R J Thatcher
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States.,Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| | - Rui Xiong
- UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States.,Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Wang H, Zhang Z, Xu K, Wei S, Li L, Wang L. Exploration of estrogen receptor-associated hub genes and potential molecular mechanisms in non-smoking females with lung adenocarcinoma using integrated bioinformatics analysis. Oncol Lett 2019; 18:4605-4612. [PMID: 31611968 PMCID: PMC6781748 DOI: 10.3892/ol.2019.10845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to explore important estrogen receptor-associated genes and to determine the potential pathogenic and prognostic factors for lung adenocarcinoma in non-smoking females. The gene expression profiles of the two datasets (GSE32863 and GSE75037) were downloaded from the Gene Expression Omnibus (GEO) database. Data for non-smoking female patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database were also downloaded. The Linear Models for Microarray Data package in R was used to explore the differentially expressed genes (DEGs) between samples from non-smoking female patients with lung adenocarcinoma and samples of adjacent non-cancerous lung tissue. The Database for Annotation, Visualization and Integrated Discovery was used for functional enrichment of the DEGs. The Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape software were used to obtain a protein-protein interaction (PPI) network and to identify the hub genes. In addition, the network between the estrogen receptor and the DEGs was constructed. A Kaplan-Meier survival plot was used to analyze the overall survival (OS). In total, 248 DEGs were identified in the GEO database, and 2,362 DEGs were identified in TCGA database. The intersection of the two datasets (DEGs in GEO and TCGA) revealed 170 DEGs, and these were selected for further investigation. Gene Ontology was used to group the 170 DEGs into biological process, molecular function and cellular component categories. Kyoto Encyclopedia of Genes and Genomes pathway analysis was subsequently performed. A total of 27 hub genes, including caveolin 1 (CAV1), matrix metallopeptidase 9 (MMP9), secreted phosphoprotein 1 (SPP1) and collagen type I α 1 chain (COL1A1), were closely associated with the estrogen receptor. CAV1 and SPP1 were associated with the OS. However, MMP9 and COL1A1 did not have any significant effect on OS. In summary, the identification of CAV1, MMP9, SPP1 and COL1A1 may provide novel insights into the molecular mechanism of lung adenocarcinoma in non-smoking female patients, and the results obtained in the current study may guide future clinical studies.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Zhihong Zhang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Ke Xu
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Song Wei
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Lailing Li
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Lijun Wang
- Department of Respiratory Disease, Tongling People's Hospital, Tongling, Anhui 244000, P.R. China
| |
Collapse
|
3
|
White BP, Molloy ME, Zhao H, Zhang Y, Tonetti DA. Retraction Note to: Extranuclear ERα is associated with regression of T47D PKCα-overexpressing, tamoxifen-resistant breast cancer. Mol Cancer 2017; 16:121. [PMID: 28716023 PMCID: PMC5513358 DOI: 10.1186/s12943-017-0697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022] Open
|
4
|
Chan KKL, Siu MKY, Jiang YX, Wang JJ, Wang Y, Leung THY, Liu SS, Cheung ANY, Ngan HYS. Differential expression of estrogen receptor subtypes and variants in ovarian cancer: effects on cell invasion, proliferation and prognosis. BMC Cancer 2017; 17:606. [PMID: 28859612 PMCID: PMC5579953 DOI: 10.1186/s12885-017-3601-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Due to the presence of both classical estrogen receptor (ERα) and another ER subtype (ERβ) in ovarian cancer, hormonal treatment is an attractive option. However, response to tamoxifen in ovarian cancer is modest. The presence of ERβ variants further complicated the issue. We have recently shown that specifically targeting ER subtypes using selective ER modulators showed opposing functions of ER subtypes on cell growth. In the present study, the clinical significance of ERα and ERβ variants (β1, β2 and β5) and the functional effects of ERβ2 and ERβ5 in ovarian cancer was investigated. METHODS ERα, ERβ1, ERβ2 and ERβ5 expression were evaluated by immunohistochemistry in 106 ovarian cancer tissues. The association between ERs expression and clinicopathological parameters or prognosis was analyzed. Ectopic expression of ERβ2 and ERβ5 followed by functional assays were performed in ovarian cancer cell lines in order to detect their effects on cell invasion and proliferation. RESULTS We found significantly higher nuclear (n)ERα and nERβ5 and lower cytoplasmic (c)ERα expression in advanced cancers. Significantly lower ERβ1 expression was also detected in high grade cancers. Significant loss of nERα and cERβ2 expression were observed in clear cell histological subtypes. Higher nERβ5 and lower cERβ5 expression were associated with serous/clear cell subtypes, poor disease-free and overall survival. Positive cERα and higher cERβ1 expression were significantly associated with better disease-free and overall survival. Furthermore, we found nERβ5 as an independent prognostic factor for overall survival. Functionally, overexpression of ERβ5 enhanced ovarian cancer cell migration, invasion and proliferation via FAK/c-Src activation whereas ERβ2 induced cell migration and invasion. CONCLUSIONS Since tamoxifen binds to both ERα and ERβ1 which appear to bear opposing oncogenic roles, the histotypes-specific expression pattern of ERs indicates that personalized treatment for women based on ERs expression using selective estrogen receptor modulators may improve response rate. This study also suggests nERβ5 as a potential prognostic marker and therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Karen K L Chan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China.
| | - Michelle K Y Siu
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| | - Yu-Xin Jiang
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| | - Jing-Jing Wang
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| | - Yan Wang
- Department of Pathology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Thomas H Y Leung
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| | - Stephanie S Liu
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| | - Annie N Y Cheung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, HKSAR, China
| |
Collapse
|
5
|
Xiong R, Zhao J, Gutgesell LM, Wang Y, Lee S, Karumudi B, Zhao H, Lu Y, Tonetti DA, Thatcher GRJ. Novel Selective Estrogen Receptor Downregulators (SERDs) Developed against Treatment-Resistant Breast Cancer. J Med Chem 2017; 60:1325-1342. [PMID: 28117994 DOI: 10.1021/acs.jmedchem.6b01355] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Resistance to the selective estrogen receptor modulator tamoxifen and to aromatase inhibitors that lower circulating estradiol occurs in up to 50% of patients, generally leading to an endocrine-independent ER+ phenotype. Selective ER downregulators (SERDs) are able to ablate ER and thus, theoretically, to prevent survival of both endocrine-dependent and -independent ER+ tumors. The clinical SERD fulvestrant is hampered by intramuscular administration and undesirable pharmacokinetics. Novel SERDs were designed using the 6-OH-benzothiophene (BT) scaffold common to arzoxifene and raloxifene. Treatment-resistant (TR) ER+ cell lines (MCF-7:5C and MCF-7:TAM1) were used for optimization, followed by validation in the parent endocrine-dependent cell line (MCF-7:WS8), in 2D and 3D cultures, using ERα in-cell westerns, ERE-luciferase, and cell viability assays, with 2 (GDC-0810/ARN-810) used for comparison. Two BT SERDs with superior in vitro activity to 2 were studied for bioavailability and shown to cause regression of a TR, endocrine-independent ER+ xenograft superior to that with 2.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Jiong Zhao
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Lauren M Gutgesell
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Yueting Wang
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Sue Lee
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Bhargava Karumudi
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Huiping Zhao
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Yunlong Lu
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Debra A Tonetti
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry & Pharmacognosy, ‡Department of Biopharmaceutical Sciences, University of Illinois College of Pharmacy, University of Illinois at Chicago , 833 S. Wood St., Chicago, Illinois 60612, United States
| |
Collapse
|
6
|
Anwar SL, Wahyono A, Aryandono T, Haryono SJ. Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways. Asian Pac J Cancer Prev 2016; 16:6803-12. [PMID: 26514450 DOI: 10.7314/apjcp.2015.16.16.6803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, TGFβ, and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia E-mail :
| | | | | | | |
Collapse
|
7
|
Abstract
The successful use of high-dose synthetic estrogens to treat postmenopausal metastatic breast cancer is the first effective 'chemical therapy' proven in clinical trial to treat any cancer. This review documents the clinical use of estrogen for breast cancer treatment or estrogen replacement therapy (ERT) in postmenopausal hysterectomized women, which can either result in breast cancer cell growth or breast cancer regression. This has remained a paradox since the 1950s until the discovery of the new biology of estrogen-induced apoptosis at the end of the 20th century. The key to triggering apoptosis with estrogen is the selection of breast cancer cell populations that are resistant to long-term estrogen deprivation. However, estrogen-independent growth occurs through trial and error. At the cellular level, estrogen-induced apoptosis is dependent upon the presence of the estrogen receptor (ER), which can be blocked by nonsteroidal or steroidal antiestrogens. The shape of an estrogenic ligand programs the conformation of the ER complex, which, in turn, can modulate estrogen-induced apoptosis: class I planar estrogens (e.g., estradiol) trigger apoptosis after 24 h, whereas class II angular estrogens (e.g., bisphenol triphenylethylene) delay the process until after 72 h. This contrasts with paclitaxel, which causes G2 blockade with immediate apoptosis. The process is complete within 24 h. Estrogen-induced apoptosis is modulated by glucocorticoids and cSrc inhibitors, but the target mechanism for estrogen action is genomic and not through a nongenomic pathway. The process is stepwise through the creation of endoplasmic reticulum stress and inflammatory responses, which then initiate an unfolded protein response. This, in turn, initiates apoptosis through the intrinsic pathway (mitochondrial) with the subsequent recruitment of the extrinsic pathway (death receptor) to complete the process. The symmetry of the clinical and laboratory studies now permits the creation of rules for the future clinical application of ERT or phytoestrogen supplements: a 5-year gap is necessary after menopause to permit the selection of estrogen-deprived breast cancer cell populations to cause them to become vulnerable to apoptotic cell death. Earlier treatment with estrogen around menopause encourages growth of ER-positive tumor cells, as the cells are still dependent on estrogen to maintain replication within the expanding population. An awareness of the evidence that the molecular events associated with estrogen-induced apoptosis can be orchestrated in the laboratory in estrogen-deprived breast cancers now supports the clinical findings regarding the treatment of metastatic breast cancer following estrogen deprivation, decreases in mortality following long-term antihormonal adjuvant therapy, and the results of treatment with ERT and ERT plus progestin in the Women's Health Initiative for women over the age of 60. Principles have emerged for understanding and applying physiological estrogen therapy appropriately by targeting the correct patient populations.
Collapse
Affiliation(s)
- V Craig Jordan
- Departments of Breast Medical Oncology and Molecular and Cellular OncologyMD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Molloy ME, White BEP, Gherezghiher T, Michalsen BT, Xiong R, Patel H, Zhao H, Maximov PY, Jordan VC, Thatcher GRJ, Tonetti DA. Novel selective estrogen mimics for the treatment of tamoxifen-resistant breast cancer. Mol Cancer Ther 2014; 13:2515-26. [PMID: 25205655 DOI: 10.1158/1535-7163.mct-14-0319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endocrine-resistant breast cancer is a major clinical obstacle. The use of 17β-estradiol (E2) has reemerged as a potential treatment option following exhaustive use of tamoxifen or aromatase inhibitors, although side effects have hindered its clinical usage. Protein kinase C alpha (PKCα) expression was shown to be a predictor of disease outcome for patients receiving endocrine therapy and may predict a positive response to an estrogenic treatment. Here, we have investigated the use of novel benzothiophene selective estrogen mimics (SEM) as an alternative to E2 for the treatment of tamoxifen-resistant breast cancer. Following in vitro characterization of SEMs, a panel of clinically relevant PKCα-expressing, tamoxifen-resistant models were used to investigate the antitumor effects of these compounds. SEM treatment resulted in growth inhibition and apoptosis of tamoxifen-resistant cell lines in vitro. In vivo SEM treatment induced tumor regression of tamoxifen-resistant T47D:A18/PKCα and T47D:A18-TAM1 tumor models. T47D:A18/PKCα tumor regression was accompanied by translocation of estrogen receptor (ER) α to extranuclear sites, possibly defining a mechanism through which these SEMs initiate tumor regression. SEM treatment did not stimulate growth of E2-dependent T47D:A18/neo tumors. In addition, unlike E2 or tamoxifen, treatment with SEMs did not stimulate uterine weight gain. These findings suggest the further development of SEMs as a feasible therapeutic strategy for the treatment of endocrine-resistant breast cancer without the side effects associated with E2.
Collapse
Affiliation(s)
- Mary Ellen Molloy
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Bethany E Perez White
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Teshome Gherezghiher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Bradley T Michalsen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Rui Xiong
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hitisha Patel
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Huiping Zhao
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Philipp Y Maximov
- Department of Oncology, Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - V Craig Jordan
- Department of Oncology, Georgetown University, Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Debra A Tonetti
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|