1
|
Qin Z, Yang J, Zhang K, Gao X, Ran Q, Xu Y, Wang Z, Lou D, Huang C, Zellmer L, Meng G, Chen N, Ma H, Wang Z, Liao DJ. Updating mRNA variants of the human RSK4 gene and their expression in different stressed situations. Heliyon 2024; 10:e27475. [PMID: 38560189 PMCID: PMC10980951 DOI: 10.1016/j.heliyon.2024.e27475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/11/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
We determined RNA spectrum of the human RSK4 (hRSK4) gene (also called RPS6KA6) and identified 29 novel mRNA variants derived from alternative splicing, which, plus the NCBI-documented ones and the five we reported previously, totaled 50 hRSK4 RNAs that, by our bioinformatics analyses, encode 35 hRSK4 protein isoforms of 35-762 amino acids. Many of the mRNAs are bicistronic or tricistronic for hRSK4. The NCBI-normalized NM_014496.5 and the protein it encodes are designated herein as the Wt-1 mRNA and protein, respectively, whereas the NM_001330512.1 and the long protein it encodes are designated as the Wt-2 mRNA and protein, respectively. Many of the mRNA variants responded differently to different situations of stress, including serum starvation, a febrile temperature, treatment with ethanol or ethanol-extracted clove buds (an herbal medicine), whereas the same stressed situation often caused quite different alterations among different mRNA variants in different cell lines. Mosifloxacin, an antibiotics and also a functional inhibitor of hRSK4, could inhibit the expression of certain hRSK4 mRNA variants. The hRSK4 gene likely uses alternative splicing as a handy tool to adapt to different stressed situations, and the mRNA and protein multiplicities may partly explain the incongruous literature on its expression and comports.
Collapse
Affiliation(s)
- Zhenwei Qin
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Jianglin Yang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Rd, Guiyang, 550004, Guizhou Province, China
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Keyin Zhang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Xia Gao
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Qianchuan Ran
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Yuanhong Xu
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Zhi Wang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Didong Lou
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Chunhua Huang
- Section of Forensic Science and Pathology, School of Basic Medical Sciences, Guizhou University of Traditional Chinese Medicine, Dong-Qing-Nan Road, Guiyang, 550025, Guizhou Province, China
| | - Lucas Zellmer
- Department of Medicine, Hennepin County Medical Center, 730 South 8th St., Minneapolis, MN, 55415, USA
| | - Guangxue Meng
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Na Chen
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Hong Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004, Guizhou Province, China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Dezhong Joshua Liao
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, 4 Beijing Rd, Guiyang, 550004, Guizhou Province, China
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| |
Collapse
|
2
|
Caputo D, Quagliarini E, Pozzi D, Caracciolo G. Nanotechnology Meets Oncology: A Perspective on the Role of the Personalized Nanoparticle-Protein Corona in the Development of Technologies for Pancreatic Cancer Detection. Int J Mol Sci 2022; 23:10591. [PMID: 36142503 PMCID: PMC9505839 DOI: 10.3390/ijms231810591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
In recent years nanotechnology has opened exciting opportunities in the struggle against cancer. In 2007 Dawson and coworkers demonstrated that nanomaterials exposed to biological fluids are coated with plasma proteins that form the so-called "protein corona". A few years later our joint research team made of physicists, chemists, biotechnologists, surgeons, oncologists, and bioinformaticians introduced the concept of "personalized protein corona" and demonstrated that it is unique for each human condition. This concept paved the way for the development of nano-enabled blood (NEB) tests for the diagnosis of pancreatic ductal adenocarcinoma (PDAC). These studies gave an impetus to serious work in the field that came to maturity in the late 2010s. In this special issue, we provide the reader with a comprehensive overview of the most significant discoveries of our research team in the field of PDAC detection. We focus on the main achievements with an emphasis on the fundamental aspects of this arena and how they shaped the integration of different scientific backgrounds towards the development of advanced diagnostic technologies. We conclude the review by outlining future perspectives and opportunities to transform the NEB tests into a reliable clinical diagnostic technology for early diagnosis, follow-up, and management of PDAC patients.
Collapse
Affiliation(s)
- Damiano Caputo
- Department of Surgery, University Campus Bio-Medico di Roma, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Erica Quagliarini
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
3
|
Zhu X, Wang J, Jin X, Chen Y, Hu L, Zhao J. Construction and evaluation of a prognostic risk assessment model of gastric cancer by using hypoxia features. Mutat Res 2022; 825:111795. [PMID: 36049301 DOI: 10.1016/j.mrfmmm.2022.111795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
In this study, mRNA expression of gastric cancer tissue and clinical data of patients in TCGA-STAD dataset were used, together with the hypoxia-related gene sets in the MsigDB database, to screen hypoxia-related differentially expressed genes (DEGs) in GC. Thereafter, univariate and multivariate Cox regression analyses were carried out on hypoxia-related DEGs. The optimal feature genes related to prognosis were obtained to construct a prognostic risk assessment model. According to the model, the riskScore of GC patients was measured, and GC samples were assigned into high- and low-risk groups in accordance with the median riskScore. Based on the Kaplan-Meier curve and Receiver operating characteristic curve, validity of the prognostic risk assessment model was measured. Gene set enrichment analysis was performed on the two risk groups through Gene set enrichment analysis software. The results revealed that in the high-risk group, 9 signaling pathways were remarkably activated in several terms, like focal adhesion, extracellular matrix receptor interaction, Cell adhesion molecules cams, Cytokine-cytokine receptor interaction, TGF-beta signaling pathway, NOD-like receptor signaling pathway, JAK-STAT signaling pathway, Toll-like receptor signaling pathway and MAPK signaling pathway. In combination with riskScore and clinical factors, univariate and multivariate Cox regression analyses verified the independence of the model. Meanwhile, a nomogram was constructed to predict the 1-, 3- and 5-year survival of GC patients. The calibration curve indicated that the survival status predicted by the nomogram fitted better with actual survival status. On the whole, the prognostic risk model of GC on the basis of hypoxia-related genes demonstrated good predictive ability. It can provide more powerful technical support for clinicians to make prognostic determination and therapeutic plans.
Collapse
Affiliation(s)
- Xiaoling Zhu
- Department of Oncology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China
| | - Jianfang Wang
- Department of Oncology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China
| | - Xueying Jin
- Department of Oncology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China
| | - Yiyi Chen
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Liang Hu
- Assistant Researcher, Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 200231, China
| | - Jianguo Zhao
- Department of Oncology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China.
| |
Collapse
|
4
|
Meng K, Cao J, Dong Y, Zhang M, Ji C, Wang X. Application of Bioinformatics Analysis to Identify Important Pathways and Hub Genes in Ovarian Cancer Affected by WT1. Front Bioeng Biotechnol 2021; 9:741051. [PMID: 34692659 PMCID: PMC8526536 DOI: 10.3389/fbioe.2021.741051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
Wilms tumor gene (WT1) is used as a marker for the diagnosis and prognosis of ovarian cancer. However, the molecular mechanisms involving WT1 in ovarian cancer require further study. Herein, we used bioinformatics and other methods to identify important pathways and hub genes in ovarian cancer affected by WT1. The results showed that WT1 is highly expressed in ovarian cancer and is closely related to the overall survival and progression-free survival (PFS) of ovarian cancer. In ovarian cancer cell line SKOV3, WT1 downregulation increased the mRNA expression of 638 genes and decreased the mRNA expression of 512 genes, which were enriched in the FoxO, AMPK, and the Hippo signaling pathways. The STRING online tool and Cytoscape software were used to construct a Protein-protein interaction (PPI) network and for Module analysis, and 18 differentially expressed genes (DEGs) were selected. Kaplan-Meier plotter analysis revealed that 16 of 18 genes were related to prognosis. Analysis of GEPIA datasets indicated that 7 of 16 genes were differentially expressed in ovarian cancer tissues and in normal tissues. The expression of IGFBP1 and FBN1 genes increased significantly after WT1 interference, while the expression of the SERPINA1 gene decreased significantly. The correlation between WT1 expression and that of these three genes was consistent with that of ovarian cancer tissues and normal tissues. According to the GeneMANIA online website analysis, there were complex interactions between WT1, IGFBP1, FBN1, SERPINA1, and 20 other genes. In conclusion, we have identified important signaling pathways involving WT1 that affect ovarian cancer, and distinguished three differentially expressed genes regulated by WT1 associated with the prognosis of ovarian cancer. Our findings provide evidence outlining mechanisms involving WT1 gene expression in ovarian cancer and provides a rational for novel treatment of ovarian cancer.
Collapse
Affiliation(s)
- Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Jinghe Cao
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Yehao Dong
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Mengchen Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Chunfeng Ji
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
5
|
Cortez NE, Mackenzie GG. Ketogenic Diets in Pancreatic Cancer and Associated Cachexia: Cellular Mechanisms and Clinical Perspectives. Nutrients 2021; 13:nu13093202. [PMID: 34579079 PMCID: PMC8471358 DOI: 10.3390/nu13093202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and extremely therapy-resistant cancer. It is estimated that up to 80% of PDAC patients present with cachexia, a multifactorial disorder characterized by the involuntary and ongoing wasting of skeletal muscle that affects therapeutic response and survival. During the last decade, there has been an increased interest in exploring dietary interventions to complement the treatment of PDAC and associated cachexia. Ketogenic diets (KDs) have gained attention for their anti-tumor potential. Characterized by a very low carbohydrate, moderate protein, and high fat composition, this diet mimics the metabolic changes that occur in fasting. Numerous studies report that a KD reduces tumor growth and can act as an adjuvant therapy in various cancers, including pancreatic cancer. However, research on the effect and mechanisms of action of KDs on PDAC-associated cachexia is limited. In this narrative review, we summarize the evidence of the impact of KDs in PDAC treatment and cachexia mitigation. Furthermore, we discuss key cellular mechanisms that explain KDs’ potential anti-tumor and anti-cachexia effects, focusing primarily on reprogramming of cell metabolism, epigenome, and the gut microbiome. Finally, we provide a perspective on future research needed to advance KDs into clinical use.
Collapse
|
6
|
Klimaszewska-Wiśniewska A, Buchholz K, Neska-Długosz I, Durślewicz J, Grzanka D, Zabrzyński J, Sopońska P, Grzanka A, Gagat M. Expression of Genomic Instability-Related Molecules: Cyclin F, RRM2 and SPDL1 and Their Prognostic Significance in Pancreatic Adenocarcinoma. Cancers (Basel) 2021; 13:859. [PMID: 33670609 PMCID: PMC7922901 DOI: 10.3390/cancers13040859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
In the present study, we aimed to assess the selected components of cell cycle machinery, checkpoint, DNA repair, and synthesis, namely RRM2, cyclin F, and SPDL1 in pancreatic adenocarcinomas (PAC) by in-house immunohistochemistry (IHC) and bioinformatic analysis of public datasets, in terms of expression, correlation with clinicopathological parameters, and patient survival. Sixty eight patients with pancreatic ductal adenocarcinoma (PDAC) were included in our cohort study, and IHC was performed on tissue macroarrays. RNA-Seq-based transcriptome data for 177 PACs were retrieved from the Cancer Genome Atlas (TCGA). We found cyclin F, RRM2, and SPDL1 to be overexpressed at both protein and mRNA levels in tumor tissues compared to respective controls. Based on TCGA dataset, we have demonstrated that CCNF, RRM2, and SPDL1 are potent independent prognostic markers for poor overall survival, both by themselves and even more in combination with each other. Furthermore, high CCNF mRNA expression was associated with features of cancer progression. By contrast, overexpression of cyclin F or SPDL1 proteins denoted a good prognosis in PDAC patients; however, in the case of the former protein, the results did not reach statistical significance. Specifically, high levels of SPDL1 protein emerged as the most powerful independent prognostic factor associated with a better outcome. If validated, the CCNF/RRM2/SPDL1 three-gene panel developed in this study, as well as SPDL1 protein, may provide significant clinical implications for the prognosis prediction of PAC patients.
Collapse
Affiliation(s)
- Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (I.N.-D.); (J.D.); (D.G.); (J.Z.)
| | - Karolina Buchholz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (I.N.-D.); (J.D.); (D.G.); (J.Z.)
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (A.G.); (M.G.)
| | - Izabela Neska-Długosz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (I.N.-D.); (J.D.); (D.G.); (J.Z.)
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (I.N.-D.); (J.D.); (D.G.); (J.Z.)
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (I.N.-D.); (J.D.); (D.G.); (J.Z.)
| | - Jan Zabrzyński
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.B.); (I.N.-D.); (J.D.); (D.G.); (J.Z.)
- Department of General Orthopaedics, Musculoskeletal Oncology and Trauma Surgery, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Paulina Sopońska
- Department of Obstetrics, Gynaecology and Oncology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (A.G.); (M.G.)
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (A.G.); (M.G.)
| |
Collapse
|
7
|
Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020; 11:543564. [PMID: 33335484 PMCID: PMC7736077 DOI: 10.3389/fphys.2020.543564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.
Collapse
|
8
|
Xu JS, Liao KL, Wang X, He J, Wang XZ. Combining bioinformatics techniques to explore the molecular mechanisms involved in pancreatic cancer metastasis and prognosis. J Cell Mol Med 2020; 24:14128-14138. [PMID: 33164330 PMCID: PMC7754005 DOI: 10.1111/jcmm.16023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022] Open
Abstract
This article aims to explore the underlying molecular mechanisms and prognosis-related genes in pancreatic cancer metastasis. Pancreatic cancer metastasis-related gene chip data were downloaded from GENE EXPRESSION OMNIBUS(GEO)database. Differentially expressed genes were screened after R-package pre-treatment. Functional annotations and related signalling pathways were analysed using DAVID software. GEPIA (Gene Expression Profiling Interactive Analysis) was used to perform prognostic analysis, and differential genes associated with prognosis were screened and validated using data from GEO. We screened 40 healthy patients, 40 primary pancreatic cancer and 40 metastatic pancreatic cancer patients, collected serum, designed primers and used qPCR to test the expression of prognosis-related genes in each group. 109 differentially expressed genes related with pancreatic cancer metastasis were screened, of which 49 were up-regulated and 60 were down-regulated. Functional annotation and pathway analysis revealed differentially expressed genes were mainly concentrated in protein activation cascade, extracellular matrix construction, decomposition, etc In the biological process, it is mainly involved in signalling pathways such as PPAR, PI3K-Akt and ECM receptor interaction. Prognostic analysis showed the expression levels of four genes were significantly correlated with the overall survival time of patients with pancreatic cancer, namely SCG5, CRYBA2, CPE and CHGB. qPCR experiments showed the expression of these four genes was decreased in both the primary pancreatic cancer group and the metastatic pancreatic cancer group, and the latter was more significantly reduced. Pancreatic cancer metastasis is closely related to the activation of PPAR pathway, PI3K-Akt pathway and ECM receptor interaction. SCG5, CRYBA2, CPE and CHGB genes are associated with the prognosis of pancreatic cancer, and their low expression suggests a poor prognosis.
Collapse
Affiliation(s)
- Jia-Sheng Xu
- Department of vascular surgery, The Second Affiliated Hospital of NanChang University, NanChang, China
| | - Kai-Li Liao
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinlu Wang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiarui He
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiao-Zhong Wang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Di Santo R, Digiacomo L, Quagliarini E, Capriotti AL, Laganà A, Zenezini Chiozzi R, Caputo D, Cascone C, Coppola R, Pozzi D, Caracciolo G. Personalized Graphene Oxide-Protein Corona in the Human Plasma of Pancreatic Cancer Patients. Front Bioeng Biotechnol 2020; 8:491. [PMID: 32523944 PMCID: PMC7261887 DOI: 10.3389/fbioe.2020.00491] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
The protein corona (PC) that forms around nanomaterials upon exposure to human biofluids (e.g., serum, plasma, cerebral spinal fluid etc.) is personalized, i.e., it depends on alterations of the human proteome as those occurring in several cancer types. This may relevant for early cancer detection when changes in concentration of typical biomarkers are often too low to be detected by blood tests. Among nanomaterials under development for in vitro diagnostic (IVD) testing, Graphene Oxide (GO) is regarded as one of the most promising ones due to its intrinsic properties and peculiar behavior in biological environments. While recent studies have explored the binding of single proteins to GO nanoflakes, unexplored variables (e.g., GO lateral size and protein concentration) leading to formation of GO-PC in human plasma (HP) have only marginally addressed so far. In this work, we studied the PC that forms around GO nanoflakes of different lateral sizes (100, 300, and 750 nm) upon exposure to HP at several dilution factors which extend over three orders of magnitude from 1 (i.e., undiluted HP) to 103. HP was collected from 20 subjects, half of them being healthy donors and half of them diagnosed with pancreatic ductal adenocarcinoma (PDAC) a lethal malignancy with poor prognosis and very low 5-year survival rate after diagnosis. By dynamic light scattering (DLS), electrophoretic light scattering (ELS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nano liquid chromatography tandem mass spectrometry (nano-LC MS/MS) experiments we show that the lateral size of GO has a minor impact, if any, on PC composition. On the other side, protein concentration strongly affects PC of GO nanoflakes. In particular, we were able to set dilution factor of HP in a way that maximizes the personalization of PC, i.e., the alteration in the protein profile of GO nanoflakes between cancer vs. non-cancer patients. We believe that this study shall contribute to a deeper understanding of the interactions among GO and HP, thus paving the way for the development of IVD tools to be used at every step of the patient pathway, from prognosis, screening, diagnosis to monitoring the progression of disease.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Nanodelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Digiacomo
- Nanodelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Damiano Caputo
- General Surgery Unit, University Campus Bio-Medico di Roma, Rome, Italy
| | - Chiara Cascone
- General Surgery Unit, University Campus Bio-Medico di Roma, Rome, Italy
| | - Roberto Coppola
- General Surgery Unit, University Campus Bio-Medico di Roma, Rome, Italy
| | - Daniela Pozzi
- Nanodelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulio Caracciolo
- Nanodelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Thomas D, Radhakrishnan P. Role of Tumor and Stroma-Derived IGF/IGFBPs in Pancreatic Cancer. Cancers (Basel) 2020; 12:E1228. [PMID: 32414222 PMCID: PMC7281733 DOI: 10.3390/cancers12051228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is the utmost stroma-rich cancer, which is accompanied by fibrotic reactions that stimulate interactions between tumor cells and stroma to promote tumor progression. Considerable research evidence denotes that insulin-like growth factor (IGF)/IGF binding proteins (IGFBP) signaling axis facilitate tumor growth, metastasis, drug resistance, and thereby facilitate PC into an advanced stage. The six members of IGFBPs were initially considered as passive carriers of free IGFs; however, current evidence revealed their functions beyond the endocrine role in IGF transport. Though numerous efforts have been made in blocking IGF/IGFBPs, the targeted therapies remain unsuccessful due to the complexity of tumor-stromal interactions in the pancreas. In this review, we explore the emerging evidence of the various roles of the tumor as well as stroma derived IGF/IGFBPs and highlight as a novel therapeutic target against PC progression.
Collapse
Affiliation(s)
- Divya Thomas
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA;
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
12
|
Huo Z, Zhai S, Weng Y, Qian H, Tang X, Shi Y, Deng X, Wang Y, Shen B. PRPF40A as a potential diagnostic and prognostic marker is upregulated in pancreatic cancer tissues and cell lines: an integrated bioinformatics data analysis. Onco Targets Ther 2019; 12:5037-5051. [PMID: 31303762 PMCID: PMC6610298 DOI: 10.2147/ott.s206039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Background Pre-mRNA processing factor 40 homolog A (PRPF40A) is an important protein involved in pre-mRNA splicing and is expressed in a variety of cell types. However, the function of PRPF40A in pancreatic cancer remains unclear. Therefore, our study is to investigate the role of PRPF40A in the pathogenesis of pancreatic cancer. Materials and methods We extracted expression data and clinical information of PRPF40A from different online databases, including the Cancer Genome Atlas (TCGA), Oncomine and the Gene Expression Omnibus (GEO). Subsequently, samples were collected from patients to validate gene expression using qPCR, Western blotting and immunohistochemical (IHC) analyses. Receiver operating characteristic (ROC) and Kaplan-Meier curve were used to evaluate the diagnostic and prognostic potential. Colony formation assays and CCK-8 assays were performed to measure the proliferative capacity of pancreatic cancer. Finally, gene ontology (GO) and pathway enrichment analyses of co-expressed genes of PRPF40A were conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Results We found that PRPF40A was upregulated based on data from both the online databases and our samples. PRPF40A possessed a significant diagnostic value, and its overexpression was associated with poor prognosis. PRPF40A knockdown inhibited cell proliferation in pancreatic cancer. GO and pathway analysis showed that the co-expressed genes were mainly involved in viral processing, mRNA splicing and the AMPK signaling pathway. Conclusion The results suggest that PRPF40A is an oncogene and can serve as a diagnostic and prognostic biomarker for pancreatic cancer. However, the underlying mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Zhen Huo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Shuyu Zhai
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yuanchi Weng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Hao Qian
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiaomei Tang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yusheng Shi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Xiaxing Deng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yue Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Baiyong Shen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| |
Collapse
|
13
|
Asadzadeh-Aghdaei H, Zadeh-Esmaeel MM, Esmaeili S, Rezaei Tavirani M, Rezaei Tavirani S, Mansouri V, Montazer F. Effects of high fat medium conditions on cellular gene expression profile: a network analysis approach. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:S130-S135. [PMID: 32099613 PMCID: PMC7011064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AIM This study aimed to evaluate high fat medium (HFM) effect on the gene expression profile of human Sk-hep1 cells and to determine critical differential proteins. BACKGROUND There is a correlation between high fat diet (HFD), obesity, and non-alcoholic fatty liver disease. Despite wide range of investigations, understanding molecular mechanism of HFD effect on onset and progression of NAFLD warrants further examination. In this study, network analysis is applied to obtain a clear perspective about HFD effects and NAFLD. METHODS Gene expression profiles of human Sk-hep1 cells treated with HFM versus controls were extracted from GEO. Data were analyzed by GEO2R where the significant and characterized DEGs were included in the PPI network. The top 10 nodes of query DEGs based on four centrality parameters were selected to determine central nodes. The common hub nodes with at least other one central group were identified as central nodes. Action map was provided for the introduced central nodes. RESULTS Heterogeneous nuclear ribonucleoprotein family including A1, A2/B1, D, R, and D-like, and five proteins (PRPF40A, SRSF1, PCF11, LSM8, and HSP90AA1) were introduced as differential proteins. CONCLUSION mRNA processing and several biological terms including hypoxia and oxidative stress, apoptosis, regulation of cell morphology and cytoskeletal organization, and differentiation of micro tubes were introduced as dysregulated terms under HFM condition.
Collapse
Affiliation(s)
- Hamid Asadzadeh-Aghdaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Zadeh-Esmaeel
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Esmaeili
- Traditional Medicine and Materia Medica Research Center, Department of Traditional Pharmacy, School of Traditional Medicine,, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Rezaei Tavirani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Montazer
- Firoozabadi Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Xi T, Zhang G. Integrated analysis of tumor differentiation genes in pancreatic adenocarcinoma. PLoS One 2018; 13:e0193427. [PMID: 29596435 PMCID: PMC5875763 DOI: 10.1371/journal.pone.0193427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/09/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Tumor differentiation is an important process in the development of cancer. It is valuable to identify key differentiation related genes in the prognosis and therapy of pancreatic adenocarcinoma. METHODS The mRNA expression data were downloaded from the Cancer Genome Atlas database. Then, differentially expressed tumor differentiation related genes were identified. Additionally, Gene Ontology functional categories and Kyoto Encyclopedia of Genes and Genomes biochemical pathway was used to explore the function. In addition, receiver operating characteristic and survival analysis were carried out to assess the diagnosis and prognosis value. Finally, the electronic validation of selected tumor differentiation related genes was performed. RESULTS A total of 932 genes were identified. Among which, 8 genes including JUB, ERLIN1, HMGA2, FAM110B, EGFR, MCM2, TCTA and SSTR1 were differentially expressed in all different tumor differentiation grades. Functional analysis revealed those genes between highly differentiated and other differentiation were remarkably enriched in pancreatic adenocarcinoma and cell cycle pathway. Finally, ERLIN1, HMGA2, FAM110B, EGFR, MCM2, BCL2L1, E2F1 and RAC1 were associated with the survival time of pancreatic adenocarcinoma patient. Among these genes, JUB, ERLIN1, FAM110B, MCM2 and BCL2L1 also had a diagnosis value for pancreatic adenocarcinoma. Additionally, the expression trend of JUB, HMGA2 and MCM2 was increased along with the tumor differentiation grades. And the expression trend of FAM110B was decreased along with the tumor differentiation grades. The electronic validation result was consistent with the bioinformatics analysis. CONCLUSIONS 12 tumor differentiation related genes including JUB, ERLIN1, HMGA2, FAM110B, EGFR, MCM2, TCTA, SSTR1, BCL2L1, E2F1, RAC1 and STAT1 played crucial roles in the differentiation of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Ting Xi
- Department of Gastroenterology, First People’s Hospital of Liaocheng, Liaocheng, Shandong Province, China
- * E-mail:
| | - Guizhi Zhang
- Department of Gastroenterology, Second People’s Hospital of Liaocheng, Liaocheng, Shandong Province, China
| |
Collapse
|
15
|
COL1A1, PRPF40A, and UCP2 correlate with hypoxia markers in non-small cell lung cancer. J Cancer Res Clin Oncol 2017; 143:1133-1141. [PMID: 28258342 PMCID: PMC5486546 DOI: 10.1007/s00432-017-2381-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022]
Abstract
Purpose Collagen 1A1 (COL1A1), RNA-binding and pre-mRNA Processing Factor (PRPF40A), and Uncoupling Protein 2 (UCP2) were identified as downstream effectors of cytoglobin (CYGB), which was shown implicated in tumour biology. Although these three genes have been previously associated with cancer, little is known about their status in lung malignancies. Methods Hereby, we investigated the expression and promoter methylation of COL1A1, PRPF40A, and UCP2 in 156 non-small cell lung cancer (NSCLC) and adjacent normal tissues. Results We demonstrate that COL1A1 and PRPF40A mRNAs are significantly overexpressed in NSCLC (p < 1 × 10−4), while UCP2 exhibits a trend of upregulation (p = 0.066). Only COL1A1 promoter revealed hypermethylation in NSCLCs (36%), which was particularly evident in squamous cell carcinomas (p = 0.024) and in the tumours with moderate-to-good differentiation (p = 0.01). Transcript level of COL1A1, as well as PRPF40A and UCP2, exhibited striking association (p ≤ 0.001) with the expression of hypoxia markers. In addition, we demonstrate in lung cancer cell lines exposed to hypoxia or oxidative stress that COL1A1 transcription significantly responds to oxygen depletion, while other genes showed the modest upregulation in stress conditions. Conclusion In conclusion, our data revealed that COL1A1, UCP2, and PRPF40A are novel players implicated in the complex network of hypoxia response in NSCLC.
Collapse
|
16
|
Giulietti M, Occhipinti G, Principato G, Piva F. Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis. Cell Oncol (Dordr) 2017; 40:181-192. [PMID: 28205147 DOI: 10.1007/s13402-017-0315-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal prognosis which is, among others, due to a lack of suitable biomarkers and therapeutic targets. Previously, basic gene expression analysis methods have been used for their identification, but recently new algorithms have been developed allowing more comprehensive data analyses. Among them, weighted gene co-expression network analysis (WGCNA) has already been applied to several cancer types with promising results. METHODS We applied WGCNA to miRNA expression data from PDAC patients. Specifically, we processed microarray-based expression data of 2555 miRNAs in serum from 100 PDAC patients and 150 healthy subjects. We identified network modules of co-expressed miRNAs in the healthy subject dataset and verified their preservation in the PDAC dataset. In the non-preserved modules, we selected key miRNAs and carried out functional enrichment analyses of their experimentally known target genes. Finally, we tested their prognostic significance using overall survival analyses. RESULTS Through WGCNA we identified several miRNAs that discriminate healthy subjects from PDAC patients and that, therefore, may play critical roles in PDAC development. At a functional level, we found that they regulate p53, FoxO and ErbB associated cellular signalling pathways, as well as cell cycle progression and various genes known to be involved in PDAC development. Some miRNAs were also found to serve as novel prognostic biomarkers, whereas others have previously already been proposed as such, thereby validating the WGCNA approach. In addition, we found that these novel data may explain at least some of our previous PDAC gene expression analysis results. CONCLUSIONS We identified several miRNAs critical for PDAC development using WGCNA. These miRNAs may serve as biomarkers for PDAC diagnosis/prognosis and patient stratification, and as putative novel therapeutic targets.
Collapse
Affiliation(s)
- M Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - G Occhipinti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - G Principato
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - F Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
17
|
Kugel S, Sebastián C, Fitamant J, Ross KN, Saha SK, Jain E, Gladden A, Arora KS, Kato Y, Rivera MN, Ramaswamy S, Sadreyev RI, Goren A, Deshpande V, Bardeesy N, Mostoslavsky R. SIRT6 Suppresses Pancreatic Cancer through Control of Lin28b. Cell 2016; 165:1401-1415. [PMID: 27180906 DOI: 10.1016/j.cell.2016.04.033] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/16/2016] [Accepted: 04/14/2016] [Indexed: 12/13/2022]
Abstract
Chromatin remodeling proteins are frequently dysregulated in human cancer, yet little is known about how they control tumorigenesis. Here, we uncover an epigenetic program mediated by the NAD(+)-dependent histone deacetylase Sirtuin 6 (SIRT6) that is critical for suppression of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal malignancies. SIRT6 inactivation accelerates PDAC progression and metastasis via upregulation of Lin28b, a negative regulator of the let-7 microRNA. SIRT6 loss results in histone hyperacetylation at the Lin28b promoter, Myc recruitment, and pronounced induction of Lin28b and downstream let-7 target genes, HMGA2, IGF2BP1, and IGF2BP3. This epigenetic program defines a distinct subset with a poor prognosis, representing 30%-40% of human PDAC, characterized by reduced SIRT6 expression and an exquisite dependence on Lin28b for tumor growth. Thus, we identify SIRT6 as an important PDAC tumor suppressor and uncover the Lin28b pathway as a potential therapeutic target in a molecularly defined PDAC subset. PAPERCLIP.
Collapse
Affiliation(s)
- Sita Kugel
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Carlos Sebastián
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Julien Fitamant
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth N Ross
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Supriya K Saha
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Esha Jain
- The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Adrianne Gladden
- Broad Technology Labs (BTL), The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kshitij S Arora
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Yasutaka Kato
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Miguel N Rivera
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Sridhar Ramaswamy
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, The Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alon Goren
- Broad Technology Labs (BTL), The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Vikram Deshpande
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel Bardeesy
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The MGH Center for Regenerative Medicine, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
18
|
Transcriptional profiling revealed the anti-proliferative effect of MFN2 deficiency and identified risk factors in lung adenocarcinoma. Tumour Biol 2016; 37:8643-55. [DOI: 10.1007/s13277-015-4702-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/20/2015] [Indexed: 01/11/2023] Open
|
19
|
Tang Y, Liu H, Li H, Peng T, Gu W, Li X. Hypermethylation of the HLA-G promoter is associated with preeclampsia. Mol Hum Reprod 2015; 21:736-44. [PMID: 26116450 DOI: 10.1093/molehr/gav037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/22/2015] [Indexed: 01/09/2023] Open
Abstract
Preeclampsia (PE) is a severe pregnancy-induced disorder characterized by hypertension and proteinuria and a leading cause of perinatal maternal-fetal mortality and morbidity in developing countries. Dysregulated human leukocyte antigen (HLA)-G was found in placentas as well as in maternal sera from PE patients; however, the reason for this difference is unknown. As accumulating evidence has confirmed that DNA methylation is an important mechanism for regulating gene expression, we sought to test the hypothesis that alteration in the DNA methylation of the HLA-G promoter region is responsible for decreased expression of HLA-G in PE. Bisulfite pyrosequencing showed that a series of CpG sites in the HLA-G promoter region were significantly more highly methylated in PE than in normal pregnancy (NP). Interestingly, the hypermethylated CpG sites were mostly reported to be binding sites of active transcription factors. To further investigate the regulation of HLA-G methylation, we also defined the expression patterns of DNA methyltransferases (DNMTs) in placental tissue using immunohistochemistry and quantitative polymerase chain reaction analyses. Here, we demonstrate that DNMT-1 is overexpressed and HLA-G expression is reduced in PE women when compared with NP. Furthermore, both treatment with the DNMT inhibitor 5-aza-2'-deoxycytidine and specific knockdown of DNMT-1 using siRNAs can significantly increase the expression level of HLA-G in a trophoblastic cell line, indicating the potential mechanism of DNMT-1-mediated DNA methylation in HLA-G regulation. Taken together, our research confirms that DNMT-1-mediated promoter hypermethylation of HLA-G is associated with PE. These findings provide new insights into the diagnosis and treatment of PE.
Collapse
Affiliation(s)
- Yao Tang
- The Department of Obstetrics, Obstetrics and Gynecology Hospital, Fudan University, 419 FangXie Road, Shanghai 200011, PR China Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, PR China
| | - Haiyan Liu
- The Department of Obstetrics, Obstetrics and Gynecology Hospital, Fudan University, 419 FangXie Road, Shanghai 200011, PR China
| | - Han Li
- The Department of Obstetrics, Obstetrics and Gynecology Hospital, Fudan University, 419 FangXie Road, Shanghai 200011, PR China
| | - Ting Peng
- The Department of Obstetrics, Obstetrics and Gynecology Hospital, Fudan University, 419 FangXie Road, Shanghai 200011, PR China
| | - Weirong Gu
- The Department of Obstetrics, Obstetrics and Gynecology Hospital, Fudan University, 419 FangXie Road, Shanghai 200011, PR China Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, PR China
| | - Xiaotian Li
- The Department of Obstetrics, Obstetrics and Gynecology Hospital, Fudan University, 419 FangXie Road, Shanghai 200011, PR China Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, PR China
| |
Collapse
|
20
|
Liu Z, Dai S, Bones J, Ray S, Cha S, Karger BL, Li JJ, Wilson L, Hinckle G, Rossomando A. A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells. Biotechnol Prog 2015; 31:1026-38. [PMID: 25857574 DOI: 10.1002/btpr.2090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 03/11/2015] [Indexed: 12/12/2022]
Abstract
A goal in recombinant protein production using Chinese hamster ovary (CHO) cells is to achieve both high specific productivity and high cell density. Addition of glucose to the culture media is necessary to maintain both cell growth and viability. We varied the glucose concentration in the media from 5 to 16 g/L and found that although specific productivity of CHO-DG44 cells increased with the glucose level, the integrated viable cell density decreased. To examine the biological basis of these results, we conducted a discovery proteomic study of CHO-DG44 cells grown under batch conditions in normal (5 g/L) or high (15 g/L) glucose over 3, 6, and 9 days. Approximately 5,000 proteins were confidently identified against an mRNA-based CHO-DG44 specific proteome database, with 2,800 proteins quantified with at least two peptides. A self-organizing map algorithm was used to deconvolute temporal expression profiles of quantitated proteins. Functional analysis of altered proteins suggested that differences in growth between the two glucose levels resulted from changes in crosstalk between glucose metabolism, recombinant protein expression, and cell death, providing an overall picture of the responses to high glucose environment. The high glucose environment may enhance recombinant dihydrofolate reductase in CHO cells by up-regulating NCK1 and down-regulating PRKRA, and may lower integrated viable cell density by activating mitochondrial- and endoplasmic reticulum-mediated cell death pathways by up-regulating HtrA2 and calpains. These proteins are suggested as potential targets for bioengineering to enhance recombinant protein production.
Collapse
Affiliation(s)
- Zhenke Liu
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Shujia Dai
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Jonathan Bones
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Somak Ray
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Sangwon Cha
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Barry L Karger
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Jingyi Jessica Li
- Dept. of Statistics, University of California, Los Angeles, CA, 90095
| | - Lee Wilson
- Alnylam Pharmaceuticals, Cambridge, MA, 02142
| | | | | |
Collapse
|
21
|
Qin X, Chen Q, Sun C, Wang C, Peng Q, Xie L, Liu Y, Li S. High-throughput screening of tumor metastatic-related differential glycoprotein in hepatocellular carcinoma by iTRAQ combines lectin-related techniques. Med Oncol 2013; 30:420. [PMID: 23292873 DOI: 10.1007/s12032-012-0420-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/05/2012] [Indexed: 02/06/2023]
Abstract
Glycoproteomics is an important aspect in the research of cancer biomarker discovery. The objective of our study is to screen the profile of serum glycoproteins in hepatocellular carcinoma (HCC) patients and to discover differentially expressed glycoproteins in HCC with or without metastasis. We collected serum from HCC patients and divided them into two groups (non-metastatic HCC group and metastatic HCC group) according to 2002 UICC TNM staging system. Wheat germ agglutinin (WGA) lectin was used to enrich the serum glycoproteins by lectin affinity chromatography. The enriched glycoproteins were labeled with mass-balanced isobaric tags (iTRAQ) and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two differential glycoproteins were validated by Western blot and biochemical methods, respectively. Fifteen differential serum glycoproteins with WGA affinity were identified (p < 0.05). Among them, nine proteins were up-regulated (>1.5-folds) and six were down-regulated (<0.5-folds) in HCC patients with metastasis. Expression of alpha-1-antitrypsin (SERPINA1) and apolipoprotein A-I (APOA1) was validated by Western blot and biochemical methods, respectively (p < 0.05). Our study has obtained a set of HCC metastasis-associated glycoproteins which may serve as novel prognostic candidates and potential therapeutic targets for HCC metastasis. SERPINA1 might act as a potential glycoprotein biomarker of HCC metastasis.
Collapse
Affiliation(s)
- Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, NO. 22, Shuangyong Road, Nanning 530021, Guangxi, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu W, Juan WC, Liang CRMY, Yeoh KG, So J, Chung MCM. S100A9, GIF and AAT as potential combinatorial biomarkers in gastric cancer diagnosis and prognosis. Proteomics Clin Appl 2012; 6:152-62. [PMID: 22532451 DOI: 10.1002/prca.201100050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE We have mined the gastric fluid proteome for potential gastric cancer (GC) biomarkers that may enhance disease detection and facilitate prognostic monitoring. EXPERIMENTAL DESIGN In biomarker discovery, a total of 12 patient gastric fluid samples (stages I, III, IV and gastritis) were analysed by 2DE for expression changes that correlated with GC status or disease progression. Gastric fluid proteins showing differential expression with GC were identified by MALDI-TOF/TOF MS as putative biomarkers. Levels of these potential biomarker candidates were independently validated by Western blotting in further 60 gastritis and GC patients. A targeted approach that recruits biomarker candidates for panel consideration was adopted to test if two or more biomarkers in combination improved diagnostic power. RESULTS From the 15 differentially regulated proteins identified, expression levels of S100A9, GIF and AAT in the gastric fluid clearly correlated with GC status. S100A9/AAT (AUC = 0.81) and S100A9/GIF (AUC = 0.92) were revealed as promising biomarker pairs for early GC diagnosis and disease monitoring, respectively. CONCLUSION AND CLINICAL RELEVANCE Early diagnosis, accurate staging and constant disease monitoring remain the prerequisites for effective treatment against GC. As current biomarkers like CA19-9 and carcinoembryonic antigen (CEA) lack sensitivity and specificity, there is a pressing need for novel GC detection and monitoring methods. To this end, S100A9, GIF and AAT from the gastric fluid may significantly augment existing methods of GC detection and monitoring, and eliminate the need for invasive tissue biopsies.
Collapse
Affiliation(s)
- Wei Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
23
|
Sun Y, Cao S, Yang M, Wu S, Wang Z, Lin X, Song X, Liao DJ. Basic anatomy and tumor biology of the RPS6KA6 gene that encodes the p90 ribosomal S6 kinase-4. Oncogene 2012; 32:1794-810. [PMID: 22614021 PMCID: PMC3427418 DOI: 10.1038/onc.2012.200] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RPS6KA6 gene encodes the p90 ribosomal S6 kinase-4 (RSK4) that is still largely uncharacterized. In this study we identified a new RSK4 transcription initiation site and several alternative splice sites with a 5’RACE approach. The resulting mRNA variants encompass four possible first start codons. The first 15 nucleotides (nt) of exon 22 in mouse and the penultimate exon in both human (exon 21) and mouse (exon 24) RSK4 underwent alternative splicing, although the penultimate exon deleted variant appeared mainly in cell clines, but not in most normal tissues. Demethylation agent 5-azacytidine inhibited the deletion of the penultimate exon whereas two indolocarbazole-derived inhibitors of cyclin dependent kinase 4 or 6 induced deletion of the first 39 nt from exon 21 of human RSK4. In all human cancer cell lines studied, the 90-kD wild type RSK4 was sparse but, surprisingly, several isoforms at or smaller than 72-kD were expressed as detected by seven different antibodies. On immunoblots, each of these smaller isoforms often appeared as a duplet or triplet and the levels of these isoforms varied greatly among different cell lines and culture conditions. Cyclin D1 inhibited RSK4 expression and serum starvation enhanced the inhibition, whereas c-Myc and RSK4 inhibited cyclin D1. The effects of RSK4 on cell growth, cell death and chemoresponse depended on the mRNA variant or the protein isoform expressed, on the specificity of the cell lines, as well as on the anchorage-dependent or -independent growth conditions and the in vivo situation. Moreover, we also observed that even a given cDNA might be expressed to multiple proteins; therefore, when using a cDNA, one needs to exclude this possibility before attribution of the biological results from the cDNA to the anticipated protein. Collectively, our results suggest that whether RSK4 is oncogenic or tumor suppressive depends on many factors.
Collapse
Affiliation(s)
- Y Sun
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sun L, Hu H, Peng L, Zhou Z, Zhao X, Pan J, Sun L, Yang Z, Ran Y. P-cadherin promotes liver metastasis and is associated with poor prognosis in colon cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:380-90. [PMID: 21703417 DOI: 10.1016/j.ajpath.2011.03.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 02/08/2023]
Abstract
P-cadherin belongs to the family of classic cadherins, which is important for maintaining cellular localization and tissue integrity. Recently, it has become evident that P-cadherin contributes to the oncogenesis of many tumor types, including melanoma, prostate, breast, and colon carcinomas. Although cadherin switching is a crucial step in metastasis, the role of P-cadherin in colon cancer metastasis to the liver is unknown. In this study, we performed gene expression analysis and found that the level of P-cadherin was higher in tissue from liver metastases of colon cancer than in the corresponding primary colon cancer tissues. IHC analysis also showed that P-cadherin expression was significantly higher in liver metastases than in paired primary colorectal cancer tumors. Knockdown of P-cadherin in colon cancer cells inhibited wound healing, proliferation, and colony formation and resulted in developing fewer liver metastatic foci and reducing the tumor burden in vivo. Inhibition of P-cadherin expression also induced the up-regulation of E-cadherin and the down-regulation of β-catenin and its downstream target molecules, including survivin and c-Myc. In summary, these results uncover a novel function of P-cadherin in the regulation of colon cancer metastasis to the liver, suggesting that blocking the activity of P-cadherin or its associated signaling may be a valuable target for the treatment of hepatic metastases of colon carcinomas.
Collapse
Affiliation(s)
- Lichao Sun
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xu B, Zeng DQ, Wu Y, Zheng R, Gu L, Lin X, Hua X, Jin GH. Tumor suppressor menin represses paired box gene 2 expression via Wilms tumor suppressor protein-polycomb group complex. J Biol Chem 2011; 286:13937-44. [PMID: 21378168 DOI: 10.1074/jbc.m110.197830] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tumor suppressor menin, the product of the MEN1 gene, plays a key role in controlling histone 3 lysine 4 trimethylation (H3K4me3) and gene transcription, which can regulate proliferation, apoptosis, and differentiation. However, little is known as to whether menin controls gene expression and cell proliferation and survival via regulating Polycomb group (PcG) protein complex/H3K27me3. Here we show that menin specifically represses transcription factor Paired box gene 2 (Pax2) through PcG-mediated H3K27me3 and Wilms tumor suppressor protein (WT1), a zinc finger domain-containing DNA-binding protein. Menin does not directly bind to the Pax2 locus, instead, it up-regulates WT1 expression. WT1 recruits PcG complex to the Pax2 promoter and represses expression of Pax2 through PcG-dependent H3K27me3. Moreover, WT1 also interacts with DNA methyltransferase 1 (DNMT1), and recruits DNMT1 to the Pax2 promoter, resulting in hypermethylation of CpG in the Pax2 promoter. Together, these studies have uncovered a novel epigenetic mechanism whereby menin regulates H3K27me3 and promoter DNA methylation via WT1 and suggest that WT1 protein plays an important, yet previously unappreciated role in regulating the function of the menin/PcG axis, H3K27 methylation, and DNA methylation, resulting in repression of gene transcription.
Collapse
Affiliation(s)
- Bin Xu
- Department of Basic Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, China 361005
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Similar expression profiles of a core of genes and proteins in cells that have acquired a metastatic phenotype, genetically or by in vivo evolution. Clin Exp Metastasis 2009; 27:409-18. [PMID: 19904617 DOI: 10.1007/s10585-009-9297-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 10/22/2009] [Indexed: 01/29/2023]
Abstract
We compared gene expression patterns related to cancer progression, cell adhesion and cytokine expression in v-Src-transformed isogenic cell lines with different levels of metastatic aggressiveness in syngenic animals: a high (HM) and a low metastatic (LM) cell lines, both predetermined by in vitro oncogenic transformation, and a high metastatic (NM) cell line resulting from in vivo selection of grafted LM cells. While LM and NM shared a common v-Src transforming variant different from that of HM, gene expression patterns were similar in HM and NM but different from that of LM. In this model, the induction of the metastatic phenotype by an oncogene variant or by the host environment led to highly similar expression profiles. If confirmed in other models, these results would be relevant for the diagnosis and treatment of metastasis.
Collapse
|
27
|
Abstract
Pancreatic cancer is a deadly disease with an annual incidence rate nearly equal to its mortality rate. Incremental improvement in outcome has been seen in the last 25 years, illustrating the critical need for novel approaches and intensive research investment. Expression profiling of pancreatic cancers has led to an explosion of informative gene-expression changes and the identification of new diagnostic and prognostic markers. However, the search for genes that are of functional significance in these large datasets continues to be much more challenging. One approach to focusing on genes or pathways that are likely to be more biologically relevant is to study those that are of prognostic significance. This review will therefore focus on the advantages of a prognostic gene signature for pancreatic cancer, the advances that have been made thus far, the approaches used and the challenges that remain.
Collapse
Affiliation(s)
- Jen Jen Yeh
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Division of Surgical Oncology, Campus Box 7213, 1150 POB, 170 Manning Drive, Chapel Hill, NC 27599-7213, USA.
| |
Collapse
|
28
|
Luhtala N, Parker R. LSM1 over-expression in Saccharomyces cerevisiae depletes U6 snRNA levels. Nucleic Acids Res 2009; 37:5529-36. [PMID: 19596813 PMCID: PMC2760792 DOI: 10.1093/nar/gkp572] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lsm1 is a component of the Lsm1-7 complex involved in cytoplasmic mRNA degradation. Lsm1 is over-expressed in multiple tumor types, including over 80% of pancreatic tumors, and increased levels of Lsm1 protein have been shown to induce carcinogenic effects. Therefore, understanding the perturbations in cell process due to increased Lsm1 protein may help to identify possible therapeutics targeting tumors over-expressing Lsm1. Herein, we show that LSM1 over-expression in the yeast Saccharomyces cerevisiae inhibits growth primarily due to U6 snRNA depletion, thereby altering pre-mRNA splicing. The decrease in U6 snRNA levels causes yeast strains over-expressing Lsm1 to be hypersensitive to loss of other proteins required for production or function of the U6 snRNA, supporting a model wherein excess Lsm1 reduces the availability of the Lsm2-7 proteins, which also assemble with Lsm8 to form a complex that binds and stabilizes the U6 snRNA. Yeast strains over-expressing Lsm1 also display minor alterations in mRNA decay and demonstrate increased susceptibility to mutations inhibiting cytoplasmic deadenylation, a process required for both 5′-to-3′ and 3′-to-5′ pathways of exonucleolytic decay. These results suggest that inhibition of splicing and/or deadenylation may be effective therapies for Lsm1-over-expressing tumors.
Collapse
Affiliation(s)
- Natalie Luhtala
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721-0106, USA
| | | |
Collapse
|
29
|
Shivapurkar N, Stastny V, Okumura N, Girard L, Xie Y, Prinsen C, Thunnissen FB, Wistuba II, Czerniak B, Frenkel E, Roth JA, Liloglou T, Xinarianos G, Field JK, Minna JD, Gazdar AF. Cytoglobin, the newest member of the globin family, functions as a tumor suppressor gene. Cancer Res 2008; 68:7448-56. [PMID: 18794132 DOI: 10.1158/0008-5472.can-08-0565] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytoglobin (CYGB) is a recently discovered vertebrate globin distantly related to myoglobin with unknown function. CYGB is assigned to chromosomal region 17q25, which is frequently lost in multiple malignancies. Previous studies failed to detect evidence for mutations in the CYGB gene. Recent studies provided preliminary evidence for increased methylation of the gene in lung cancer. Our study was aimed at investigating the role of CYGB as a tumor suppressor gene. By nested methylation-specific DNA sequencing analysis of lung and breast cancer cell lines and bronchial and mammary epithelial cell lines, we identified that methylation of a 110-bp CpG-rich segment of the CYGB promoter was correlated with gene silencing. We specifically targeted this sequence and developed a quantitative methylation-specific PCR assay, suitable for high-throughput analysis. We showed that the tumor specificity of CYGB methylation in discriminating patients with and without lung cancer, using biopsies and sputum samples. We further showed the tumor specificity of this assay with multiple other epithelial and hematologic malignancies. To show tumor suppressor activity of CYGB, we performed the following: (a) RNA interference-mediated knockdown of CYGB gene on colony formation in a CYGB expression-positive lung cancer cell line, resulting in increased colony formation; (b) enforced gene expression in CYGB expression-negative lung and breast cancer cell lines, reducing colony formation; and (c) identification of potential proximate targets down-stream of the CYGB genes. Our data constitute the first direct functional evidence for CYGB, the newest member of the globin family, as a tumor suppressor gene.
Collapse
Affiliation(s)
- Narayan Shivapurkar
- Hamon Center for Therapeutic Oncology Research, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun Y, Wu J, Wu SH, Thakur A, Bollig A, Huang Y, Liao DJ. Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Res Treat 2008; 118:185-96. [PMID: 18777135 DOI: 10.1007/s10549-008-0171-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/21/2008] [Indexed: 12/19/2022]
Abstract
c-Myc is a transcription factor overexpression of which induces mammary cancer in transgenic mice. To explore whether certain microRNAs (mirRNA) mediate c-Myc induced mammary carcinogenesis, we studied mirRNA expression profile in mammary tumors developed from MMTV-c-myc transgenic mice, and found 50 and 59 mirRNAs showing increased and decreased expression, respectively, compared with lactating mammary glands of wild type mice. Twenty-four of these mirRNAs could be grouped into eight clusters because they had the same chromosomal localizations and might be processed from the same primary RNA transcripts. The increased expression of mir-20a, mir-20b, and mir-9 as well as decreased expression of mir-222 were verified by RT-PCR, real-time RT-PCR, and cDNA sequencing. Moreover, we fortuitously identified a novel non-coding RNA, the level of which was decreased in proliferating mammary glands of MMTV-c-myc mice was further decreased to undetectable level in the mammary tumors. Sequencing of this novel RNA revealed that it was transcribed from a region of mouse chromosome 19 that harbored the metastasis associated lung adenocarcinoma transcript-1 (Malat-1), a non-protein-coding gene. These results suggest that certain mirRNAs and the chromosome 19 derived non-coding RNAs may mediate c-myc induced mammary carcinogenesis.
Collapse
MESH Headings
- Animals
- Cell Transformation, Viral/genetics
- Chromosome Mapping
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Genes, myc
- Lactation/genetics
- Mammary Glands, Animal/metabolism
- Mammary Neoplasms, Experimental/genetics
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
Collapse
Affiliation(s)
- Yuan Sun
- Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | | | | | | | | | | | | |
Collapse
|