1
|
Silva DF, Melo ALP, Uchôa AFC, Pereira GMA, Alves AEF, Vasconcellos MC, Xavier-Júnior FH, Passos MF. Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review. Int J Mol Sci 2023; 24:16719. [PMID: 38069043 PMCID: PMC10706257 DOI: 10.3390/ijms242316719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has played a prominent role in biomedical engineering, offering innovative approaches to numerous treatments. Notable advances have been observed in the development of medical devices, contributing to the advancement of modern medicine. This article briefly discusses key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a better understanding, selection, and technical approach to nanomaterials for biomedical purposes, including biological risks, security, and biocompatibility criteria.
Collapse
Affiliation(s)
- Debora F. Silva
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
| | - Ailime L. P. Melo
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| | - Ana F. C. Uchôa
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Graziela M. A. Pereira
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Alisson E. F. Alves
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | | | - Francisco H. Xavier-Júnior
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Marcele F. Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| |
Collapse
|
2
|
Peng YC, Xu JX, Zeng CF, Zhao XH, You XM, Xu PP, Li LQ, Qi LN. Operable hepatitis B virus-related hepatocellular carcinoma: gut microbiota profile of patients at different ages. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:477. [PMID: 35571398 PMCID: PMC9096381 DOI: 10.21037/atm-22-1572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
Background Age was important prognostic factors for operable hepatocellular carcinoma patients. The aim of the present study was to assess the difference in gut microbiota in patients with operable hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) at different ages ; to investigate the features of the microbiota and its function associated with different ages; to provide a preliminary look at effects of the gut microbiota dimension on prognostic. Methods From September 2020 to May 2021, patients with HBV-HCC were able to undergo liver resection and were recruited consecutively and divided into the younger age group (age <45 years) (Y.AG) (n=20), middle age group (age from 45 to 65 years) (M.AG) (n=13) 45–65 years, and older age group (age >65 years) (O.AG) (n=20). The relationships between gut microbiota and different ages were explored using 16S rRNA gene sequencing data. PICRUST2 was used to examine the metagenomic data in PHLF patients. Fisher’s exact and Mann-Whitney U-test were used for the data analysis. Results Pairwise comparison between the three groups showed that the α-diversity of Y.AG was significantly higher than that of O.AG (ACE Index, P=0.017; chao1 Index, P=0.031; observed_species Index, P=0.011; and goods_coverage Index, P=0.041). The β-diversity in the 3 groups differed significantly (stress =0.100), while the composition (β-diversity) differed significantly between the Y.AG and the M.AG (stress =0.090), the M.AG and the O.AG (stress =0.095), and the Y.AG and the O.AG (stress =0.099). At the genus level, 7 bacterial genera were significantly enriched in the O.AG compared with the Y.AG, of which Streptococcus, Blautia, Erysipelotrichaceae_UCG-003, and Fusicatenibacter represented the major variances in O.AG microbiomes. Eleven genera were significantly increased in the O.AG, of which Prevotella, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Ruminiclostridium, and Phascolarctobacterium represented the major variances in the O.AG. The Y.AG and the O.AG were predicted by PICRUSt2 analysis, which found 72 pathways related to differential gut microbiome at the genus level. Redundancy analysis showed that 7 environmental factors were significantly correlated with intestinal microorganisms, especially in the Y.AG compared with the O.AG. Conclusions Analysis of gut microbiota characteristics in patients of different ages could ultimately contribute to the development of novel avenues for the treatment of HCC at different ages.
Collapse
Affiliation(s)
- Yu-Chong Peng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Jing-Xuan Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Chuan-Fa Zeng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Xin-Hua Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Xue-Mei You
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Ping-Ping Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
| |
Collapse
|
3
|
Enhancement of bioavailability through transdermal drug delivery of paliperidone palmitate-loaded nanostructured lipid carriers. Ther Deliv 2021; 12:583-596. [PMID: 34286598 DOI: 10.4155/tde-2021-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The work describes enhanced bioavailability of paliperidone palmitate through transdermal delivery using nanostructured lipid carriers (NLC). Materials & methods: NLCs were formulated by nanoprecipitation method followed by incorporation in transdermal patch and physicochemical characterization. Results: NLCs showed high percentage entrapment efficiency of 83.44 ± 0.8%, drug loading of 24.75 ± 1.10% (w/w), particle size of 173.8 ± 3.25 nm, polydispersity index of 0.143 ± 0.05 and zeta potential of -15.9 ± 0.75 mV. In vitro and ex vivo studies indicated zero-order controlled drug release from NLCs and transdermal patch up to 48 h. Pharmacokinetic studies indicated 1.76-fold enhanced bioavailability by transdermal route as compared with oral drug delivery. Conclusion: From the results, it was concluded that drug-loaded NLCs-transdermal patch is promising drug delivery system for poorly bioavailable drugs.
Collapse
|
4
|
Singh A, Shafi S, Upadhyay T, Najmi AK, Kohli K, Pottoo FH. Insights into Nanotherapeutic Strategies as an Impending Approach to Liver Cancer Treatment. Curr Top Med Chem 2021; 20:1839-1854. [PMID: 32579503 DOI: 10.2174/1568026620666200624161801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Liver cancer, being the utmost prevalent fatal malignancy worldwide, is ranked as the fifth leading cause of deaths associated with cancer. Patients with liver cancer are diagnosed often at an advanced stage, contributing to poor prognosis. Of all forms of liver cancer, hepatocellular carcinoma (HCC) contributes to 90% of cases, with chemotherapy being the treatment of choice. However, unfavorable toxicity of chemotherapy drugs and the vulnerability of nucleic acid-based drugs to degradation, have limited their application in clinical settings. So, in order to improvise their therapeutic efficacy in HCC treatment, various nanocarrier drug delivery systems have been explored. Furthermore, nanoparticle based imaging provides valuable means of accurately diagnosing HCC. Thus, in recent years, the advent of nanomedicine has shown great potential and progress in dramatically altering the approach to the diagnosis as well as treatment of liver cancer. Nanoparticles (NPs) are being explored as potential drug carriers for small molecules, miRNAs, and therapeutic genes used for liver cancer treatment. This review emphasizes on the current developments and applications of nanomedicine based therapeutic and diagnostic approaches in HCC.
Collapse
Affiliation(s)
- Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Sadat Shafi
- Department of Pharmacology, Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Tanya Upadhyay
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh-201313, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul rahman Bin Faisal University, P.O.BOX 1982, Damman 31441, Saudi Arabia
| |
Collapse
|
5
|
Meyer LF, Shah DK. Development and validation of an LC-MS/MS method for tyrphostin A9. J Pharm Anal 2019; 9:163-169. [PMID: 31297293 PMCID: PMC6598168 DOI: 10.1016/j.jpha.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/04/2022] Open
Abstract
Here we have presented a sensitive and selective LC-MS/MS method for the quantification of tyrphostin A9, which is a selective inhibitor for platelet derived growth factor receptor tyrosine kinase and has been investigated in vitro as a potent oxidative phosphorylation uncoupler. The murine analytical method was developed for three biological matrices: cell culture media, 3T3-L1 cell lysate, and murine plasma. For each matrix the limit of detection and the limit of quantification were found to be 0.5 ng/mL and 1.0 ng/mL, respectively. The range of standard curve for each matrix was 1.0–100 ng/mL, linearity was >0.99, and the precision and accuracy were within 20%. 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoic acid was found to be the most suitable internal standard. The validated LC-MS/MS method was used to investigate stability and in vitro pharmacokinetics of tyrphostin A9. It was found that tyrphostin A9 is susceptible to hydrolysis, and the degradation product was identified as 3,5-di-tert-butyl-4-hydroxybenzaldehyde. Tyrphostin A9 was not stable in biological matrices, and the rate of its degradation in murine plasma was faster than that in cell culture media. In vitro pharmacokinetic studies revealed that tyrphostin A9 concentrations in the cell culture media declined in a bi-exponential manner and the concentrations inside the adipocytes remained constant, suggesting tyrphostin A9 has an intracellular binding site and is retained within the cell. The LC-MS/MS method presented here paves the way for further quantitative investigations involving tyrphostin A9.
Collapse
Affiliation(s)
- Lyndsey F Meyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
6
|
Martinelli C, Pucci C, Ciofani G. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng 2019; 3:011502. [PMID: 31069332 PMCID: PMC6481740 DOI: 10.1063/1.5079943] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer accounts for millions of deaths every year and, due to the increase and aging of the world population, the number of new diagnosed cases is continuously rising. Although many progresses in early diagnosis and innovative therapeutic protocols have been already set in clinical practice, still a lot of critical aspects need to be addressed in order to efficiently treat cancer and to reduce several drawbacks caused by conventional therapies. Nanomedicine has emerged as a very promising approach to support both early diagnosis and effective therapy of tumors, and a plethora of different inorganic and organic multifunctional nanomaterials have been ad hoc designed to meet the constant demand for new solutions in cancer treatment. Given their unique features and extreme versatility, nanocarriers represent an innovative and easily adaptable tool both for imaging and targeted therapy purposes, in order to improve the specific delivery of drugs administered to cancer patients. The current review reports an in-depth analysis of the most recent research studies aiming at developing both inorganic and organic materials for nanomedical applications in cancer diagnosis and therapy. A detailed overview of different approaches currently undergoing clinical trials or already approved in clinical practice is provided.
Collapse
Affiliation(s)
- Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera (Pisa) 56025, Italy
| | - Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera (Pisa) 56025, Italy
| | - Gianni Ciofani
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
7
|
Di Gesù R, Bondì ML, Azzolina A, Craparo EF, Botto C, Amore E, Giammona G, Cervello M. Correction to: Entrapment of an EGFR inhibitor into nanostructured lipid carriers (NLC) improves its antitumor activity against human hepatocarcinoma cells. J Nanobiotechnology 2018; 16:3. [PMID: 29331149 PMCID: PMC5767036 DOI: 10.1186/s12951-017-0325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 11/15/2022] Open
Affiliation(s)
- Roberto Di Gesù
- Polymer Science Lab, Chemistry Dept "G.Ciamician", Alma Mater Studiorum, University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Maria Luisa Bondì
- Istituto per lo Studio dei Materiali Nanostrutturati, U.O.S. Palermo, Consiglio Nazionale delle Ricerche, Via Ugo la Malfa 153, 90146, Palermo, Italy.
| | - Antonina Azzolina
- Istituto di Biomedicina e Immunologia Molecolare Alberto Monroy, Consiglio Nazionale delle Ricerche, Via Ugo la Malfa 153, 90146, Palermo, Italy
| | - Emanuela Fabiola Craparo
- Lab. of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123, Palermo, Italy
| | - Chiara Botto
- Lab. of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123, Palermo, Italy
| | - Erika Amore
- Istituto per lo Studio dei Materiali Nanostrutturati, U.O.S. Palermo, Consiglio Nazionale delle Ricerche, Via Ugo la Malfa 153, 90146, Palermo, Italy
| | - Gaetano Giammona
- Lab. of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123, Palermo, Italy
| | - Melchiorre Cervello
- Istituto di Biomedicina e Immunologia Molecolare Alberto Monroy, Consiglio Nazionale delle Ricerche, Via Ugo la Malfa 153, 90146, Palermo, Italy
| |
Collapse
|
8
|
Lasoń E, Sikora E, Miastkowska M, Socha P, Ogonowski J. NLC delivery systems for alpha lipoic acid: Physicochemical characteristics and release study. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Amore E, Ferraro M, Manca ML, Gjomarkaj M, Giammona G, Pace E, Bondì ML. Mucoadhesive solid lipid microparticles for controlled release of a corticosteroid in the chronic obstructive pulmonary disease treatment. Nanomedicine (Lond) 2017; 12:2287-2302. [DOI: 10.2217/nnm-2017-0072] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Therapeutic efficacy of pulmonary diseases is often limited and drug delivery systems offer new solutions to clinical problems. Solid lipid microparticles (SLMs) are suggested as systems for the delivery of therapeutics to the lung as, because of their size, they are able to deposit into secondary bronchi. Materials & methods: Here, we describe two novel different SLMs using chitosan and alginate such as mucoadhesive polymers and we also studied their biocompatibility and their effectiveness compared with the free drug in controlling senescence and inflammatory processes in cigarette smoke extracts. Results: Data reported show that fluticasone propionate (FP)-loaded SLMs are more effective than FP alone in controlling oxidative stress. Conclusion: The therapeutic approach using FP-loaded microparticles could be a promising strategy for the treatment of the chronic inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Erika Amore
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Ferraro
- Istituto di Biomedicina e Immunologia Molecolare (IBIM), CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Maria Letizia Manca
- Dipartimento Scienze della Vita e dell'Ambiente, Sezione Scienze del Farmaco, Università degli Studi di Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Mark Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare (IBIM), CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Elisabetta Pace
- Istituto di Biomedicina e Immunologia Molecolare (IBIM), CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Maria Luisa Bondì
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), U.O.S. Palermo, CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
10
|
Polyaspartamide-Based Nanoparticles Loaded with Fluticasone Propionate and the In Vitro Evaluation towards Cigarette Smoke Effects. NANOMATERIALS 2017; 7:nano7080222. [PMID: 28805713 PMCID: PMC5575704 DOI: 10.3390/nano7080222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
This paper describes the evaluation of polymeric nanoparticles (NPs) as a potential carrier for lung administration of fluticasone propionate (FP). The chosen polymeric material to produce NPs was a copolymer based on α,β-poly(N-2-hydroxyethyl)-d,l-aspartamide (PHEA) whose backbone was derivatised with different molecules, such as poly(lactic acid) (PLA) and polyethylenglycol (PEG). The chosen method to produce NPs from PHEA-PLA-PEG2000 was the method based on high-pressure homogenization and subsequent solvent evaporation by adding Pluronic F68 during the process and trehalose before lyophilisation. Obtained colloidal FP-loaded NPs showed a slightly negative surface charge and nanometric dimensions that are maintained after storage for one year at −20 °C and 5 °C. The FP loading was about 2.9 wt % and the drug was slowly released in simulated lung fluid. Moreover, the obtained NPs, containing the drug or not, were biocompatible and did not induce cell necrosis and cell apoptosis on bronchial epithelial cells (16-HBE). Further in vitro testing on cigarette smoke extract (CSE)-stimulated 16-HBE revealed that FP-loaded NPs were able to reduce the survivin expression, while either free FP or empty NPs were not able to significantly reduce this effect.
Collapse
|
11
|
Carbone C, Arena E, Pepe V, Prezzavento O, Cacciatore I, Turkez H, Marrazzo A, Di Stefano A, Puglisi G. Nanoencapsulation strategies for the delivery of novel bifunctional antioxidant/σ1 selective ligands. Colloids Surf B Biointerfaces 2017; 155:238-247. [PMID: 28432957 DOI: 10.1016/j.colsurfb.2017.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 11/15/2022]
Abstract
Nowadays sigma-1 receptors are considered as new therapeutic objectives for central nervous system neurodegenerative diseases. Among different molecules, alpha lipoic acid has been identified as a natural potent antioxidant drug, whose therapeutic efficacy is limited by its many drawbacks, such as fast metabolism, poor bioavailability and high physico-chemical instability. Alfa-lipoic acid derivatives have been recently developed demonstrating their neuroprotective activity and effectiveness in different types of oxidative stress. In this work, two derivatives containing an amide or an ester functional group with different lipophilicity, were selected for their important affinity for sigma-1 receptors. Herein, in order to improve the in vitro stability and antioxidant effectiveness of alpha-lipoic acid derivatives, we focused our efforts in the nanoencapsulation strategies. Aqueous-core nanocapsules for the delivery of the hydrophilic compound and nanostructured lipid carrier for the lipophilic derivative, were properly designed and prepared using a direct or inverse eco-friendly organic solvent-free procedure. All nanosystems were characterized in terms of mean size, polydispersity, stability, morphology, encapsulation efficiency and in vitro release profiles. In order to evaluate the nanocarriers biocompatibility and antioxidant effectiveness, in vitro biological studies (cell viability, total antioxidant capacity and total oxidative status) were developed on primary human whole blood cell cultures, on both unloaded and derivatives-loaded nanodevices.
Collapse
Affiliation(s)
- Claudia Carbone
- Department of Drug Sciences, University of Catania, v.le A. Doria 6, 95100, Catania, Italy.
| | - Emanuela Arena
- Department of Drug Sciences, University of Catania, v.le A. Doria 6, 95100, Catania, Italy
| | - Veronica Pepe
- Department of Drug Sciences, University of Catania, v.le A. Doria 6, 95100, Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, University of Catania, v.le A. Doria 6, 95100, Catania, Italy
| | - Ivana Cacciatore
- Department of Pharmacy, University G. d'Annunzio Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Hasan Turkez
- Department of Pharmacy, University G. d'Annunzio Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy; Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25240, Turkey
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, v.le A. Doria 6, 95100, Catania, Italy
| | - Antonio Di Stefano
- Department of Pharmacy, University G. d'Annunzio Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | - Giovanni Puglisi
- Department of Drug Sciences, University of Catania, v.le A. Doria 6, 95100, Catania, Italy
| |
Collapse
|
12
|
Bondì ML, Emma MR, Botto C, Augello G, Azzolina A, Di Gaudio F, Craparo EF, Cavallaro G, Bachvarov D, Cervello M. Biocompatible Lipid Nanoparticles as Carriers To Improve Curcumin Efficacy in Ovarian Cancer Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1342-1352. [PMID: 28111949 DOI: 10.1021/acs.jafc.6b04409] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Curcumin is a natural molecule with proved anticancer efficacy on several human cancer cell lines. However, its clinical application has been limited due to its poor bioavailability. Nanocarrier-based drug delivery approaches could make curcumin dispersible in aqueous media, thus overtaking the limits of its low solubility. The aim of this study was to increase the bioavailability and the antitumoral activity of curcumin, by entrapping it into nanostructured lipid carriers (NLCs). For this purpose here we describe the preparation and characterization of three kinds of curcumin-loaded NLCs. The nanosystems allowed the achievement of a controlled release of curcumin, the amounts of curcumin released after 24 h from Compritol-Captex, Compritol-Miglyol, and Compritol NLCs being, respectively, equal to 33, 28, and 18% w/w on the total entrapped curcumin. Considering the slower curcumin release profile, Compritol NLCs were chosen to perform successive in vitro studies on ovarian cancer cell lines. The results show that curcumin-loaded NLCs maintain anticancer activity, and reduce cell colony survival more effectively than free curcumin. As an example, the ability of A2780S cells to form colonies was decreased after treatment with 5 μM free curcumin by 50% ± 6, whereas, at the same concentration, the delivery of curcumin with NLC significantly (p < 0.05) inhibited colony formation to approximately 88% ± 1, therefore potentiating the activity of curcumin to inhibit A2780S cell growth. The obtained results clearly suggest that the entrapment of curcumin into NLCs increases curcumin efficacy in vitro, indicating the potential use of NLCs as curcumin delivery systems.
Collapse
Affiliation(s)
- Maria Luisa Bondì
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), CNR, U.O.S. Palermo , via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Maria Rita Emma
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM) "Alberto Monroy", CNR , via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Chiara Botto
- Laboratorio di Polimeri Biocompatibili, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) , Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppa Augello
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM) "Alberto Monroy", CNR , via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Antonina Azzolina
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM) "Alberto Monroy", CNR , via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Francesca Di Gaudio
- Dipartimento di Biopatologia e Biotecnologie Mediche (DIBIMED), Scuola di Medicina e Chirurgia , via Del Vespro 129, 90127 Palermo, Italy
| | - Emanuela Fabiola Craparo
- Laboratorio di Polimeri Biocompatibili, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) , Via Archirafi 32, 90123 Palermo, Italy
| | - Gennara Cavallaro
- Laboratorio di Polimeri Biocompatibili, Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) , Via Archirafi 32, 90123 Palermo, Italy
| | - Dimcho Bachvarov
- Cancer Research Centre, Hôpital L'Hotel-Dieu de Québec, Centre Hospitalier Universitaire de Québec , Quebec City, Quebec, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University , Quebec City, Quebec, Canada
| | - Melchiorre Cervello
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM) "Alberto Monroy", CNR , via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
13
|
|
14
|
Wang C, Su L, Wu C, Wu J, Zhu C, Yuan G. RGD peptide targeted lipid-coated nanoparticles for combinatorial delivery of sorafenib and quercetin against hepatocellular carcinoma. Drug Dev Ind Pharm 2016; 42:1938-1944. [PMID: 27142812 DOI: 10.1080/03639045.2016.1185435] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONTEXT Combination therapies provide a potential solution to address the tumor heterogeneity and drug resistance issues by taking advantage of distinct mechanisms of action of the multiple therapeutics. OBJECTIVE To design arginine-glycineaspartic acid (RGD) modified lipid-coated nanoparticles (NPs) for the co-delivery of the hydrophobic drugs against hepatocellular carcinoma (HCC). MATERIALS AND METHODS RGD modified lipid-coated PLGA NPs were developed for the targeted delivery of both sorafenib (SRF) and quercetin (QT) (RGD-SRF-QT NPs). Chemical-physical characteristics and release profiles were evaluated. In vitro cell viability assays were carried out on HCC cells. In vivo antitumor efficacies were evaluated in HCC animal model. RESULTS AND DISCUSSION The combination of SRF and QT formulations was more effective than the single drug formulations in both NPs and solution groups. RGD-SRF-QT NPs achieved the most significant tumor growth inhibition effect in vitro and in vivo. CONCLUSION The resulting NPs could provide a promising platform for co-delivery of multiple anticancer drugs for achievement of combinational therapy and could offer potential for enhancing the therapeutic efficacy on HCC.
Collapse
Affiliation(s)
- Can Wang
- a Department of Hepatology , Jinan Infectious Disease Hospital , Ji'nan , Shandong , 250021 , P.R. China
| | - Liang Su
- b Department of Infectious Disease , Jinan Infectious Disease Hospital , Ji'nan , Shandong , 250021 , P.R. China
| | - Chengsheng Wu
- c Department of Hepatology , Taian TCM Hospital , Taian , Shandong , 271000 , P.R. China
| | - Jianlin Wu
- d Basic Medical College of Shandong University of Traditional Chinese Medicine , Ji'nan , Shandong , 250355 , P.R. China
| | - Chengbao Zhu
- e Department of Clinical Laboratory , Jinan Infectious Disease Hospital , Ji'nan , Shandong , 250021 , P.R. China
| | - Guangying Yuan
- e Department of Clinical Laboratory , Jinan Infectious Disease Hospital , Ji'nan , Shandong , 250021 , P.R. China
| |
Collapse
|
15
|
Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B Biointerfaces 2016; 140:505-513. [DOI: 10.1016/j.colsurfb.2016.01.025] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 01/23/2023]
|
16
|
Lipid nanocarriers containing sorafenib inhibit colonies formation in human hepatocarcinoma cells. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|