1
|
Shanks HRC, Chen K, Reiman EM, Blennow K, Cummings JL, Massa SM, Longo FM, Börjesson-Hanson A, Windisch M, Schmitz TW. p75 neurotrophin receptor modulation in mild to moderate Alzheimer disease: a randomized, placebo-controlled phase 2a trial. Nat Med 2024; 30:1761-1770. [PMID: 38760589 PMCID: PMC11186782 DOI: 10.1038/s41591-024-02977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
p75 neurotrophin receptor (p75NTR) signaling pathways substantially overlap with degenerative networks active in Alzheimer disease (AD). Modulation of p75NTR with the first-in-class small molecule LM11A-31 mitigates amyloid-induced and pathological tau-induced synaptic loss in preclinical models. Here we conducted a 26-week randomized, placebo-controlled, double-blinded phase 2a safety and exploratory endpoint trial of LM11A-31 in 242 participants with mild to moderate AD with three arms: placebo, 200 mg LM11A-31 and 400 mg LM11A-31, administered twice daily by oral capsules. This trial met its primary endpoint of safety and tolerability. Within the prespecified secondary and exploratory outcome domains (structural magnetic resonance imaging, fluorodeoxyglucose positron-emission tomography and cerebrospinal fluid biomarkers), significant drug-placebo differences were found, consistent with the hypothesis that LM11A-31 slows progression of pathophysiological features of AD; no significant effect of active treatment was observed on cognitive tests. Together, these results suggest that targeting p75NTR with LM11A-31 warrants further investigation in larger-scale clinical trials of longer duration. EU Clinical Trials registration: 2015-005263-16 ; ClinicalTrials.gov registration: NCT03069014 .
Collapse
Grants
- R35 AG071476 NIA NIH HHS
- P30 AG072980 NIA NIH HHS
- SG-23-1038904 QC Alzheimer's Association
- 2022-00732 Vetenskapsrådet (Swedish Research Council)
- P20 GM109025 NIGMS NIH HHS
- R01 AG053798 NIA NIH HHS
- R35AG71476 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- ZEN-21-848495 Alzheimer's Association
- R01 AG051596 NIA NIH HHS
- P20GM109025 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- 453677 Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de Recherche en Santé du Canada)
- P20 AG068053 NIA NIH HHS
- 2017-00915 Vetenskapsrådet (Swedish Research Council)
- U01 AG024904 NIA NIH HHS
- R01AG053798 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R25 AG083721-01 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- R25 AG083721 NIA NIH HHS
- Jonathan and Joshua Memorial Foundation Government of Ontario
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- State of Arizona
- Alzheimer’s Association
- the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), La Fondation Recherche Alzheimer (FRA), Paris, France, the Kirsten and Freddy Johansen Foundation, Copenhagen, Denmark, and Familjen Rönströms Stiftelse, Stockholm, Sweden.
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- Alzheimer’s Drug Discovery Foundation (ADDF)
- Ted and Maria Quirk Endowment; Joy Chambers-Grundy Endowment.
- San Francisco VA Health Care System
- National Institutes of Aging (NIA AD Pilot Trial 1R01AG051596) PharmatrophiX (Menlo Park, California)
- Alzheimer’s Society of Canada (176677)
Collapse
Affiliation(s)
- Hayley R C Shanks
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Western Institute for Neuroscience, Western University, London, Ontario, Canada.
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- College of Health Solutions, Arizona State University, Downtown, Phoenix, AZ, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Stephen M Massa
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Anne Börjesson-Hanson
- Clinical Trials, Department of Aging, Karolinska University Hospital, Stockholm, Sweden
| | | | - Taylor W Schmitz
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
- Robarts Research Institute, Western University, London, Ontario, Canada.
- Western Institute for Neuroscience, Western University, London, Ontario, Canada.
| |
Collapse
|
2
|
Saraceno GF, Abrego-Guandique DM, Cannataro R, Caroleo MC, Cione E. Machine Learning Approach to Identify Case-Control Studies on ApoE Gene Mutations Linked to Alzheimer’s Disease in Italy. BIOMEDINFORMATICS 2024; 4:600-622. [DOI: 10.3390/biomedinformatics4010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Background: An application of artificial intelligence is machine learning, which allows computer programs to learn and create data. Methods: In this work, we aimed to evaluate the performance of the MySLR machine learning platform, which implements the Latent Dirichlet Allocation (LDA) algorithm in the identification and screening of papers present in the literature that focus on mutations of the apolipoprotein E (ApoE) gene in Italian Alzheimer’s Disease patients. Results: MySLR excludes duplicates and creates topics. MySLR was applied to analyze a set of 164 scientific publications. After duplicate removal, the results allowed us to identify 92 papers divided into two relevant topics characterizing the investigated research area. Topic 1 contains 70 papers, and topic 2 contains the remaining 22. Despite the current limitations, the available evidence suggests that articles containing studies on Italian Alzheimer’s Disease (AD) patients were 65.22% (n = 60). Furthermore, the presence of papers about mutations, including single nucleotide polymorphisms (SNPs) ApoE gene, the primary genetic risk factor of AD, for the Italian population was 5.4% (n = 5). Conclusion: The results show that the machine learning platform helped to identify case-control studies on ApoE gene mutations, including SNPs, but not only conducted in Italy.
Collapse
Affiliation(s)
| | | | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende (CS), Italy
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
| | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Galascreen Laboratories, University of Calabria, 87036 Rende (CS), Italy
| |
Collapse
|
3
|
The Nerve Growth Factor Receptor (NGFR/p75 NTR): A Major Player in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24043200. [PMID: 36834612 PMCID: PMC9965628 DOI: 10.3390/ijms24043200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) represents the most prevalent type of dementia in elderly people, primarily characterized by brain accumulation of beta-amyloid (Aβ) peptides, derived from Amyloid Precursor Protein (APP), in the extracellular space (amyloid plaques) and intracellular deposits of the hyperphosphorylated form of the protein tau (p-tau; tangles or neurofibrillary aggregates). The Nerve growth factor receptor (NGFR/p75NTR) represents a low-affinity receptor for all known mammalians neurotrophins (i.e., proNGF, NGF, BDNF, NT-3 e NT-4/5) and it is involved in pathways that determine both survival and death of neurons. Interestingly, also Aβ peptides can blind to NGFR/p75NTR making it the "ideal" candidate in mediating Aβ-induced neuropathology. In addition to pathogenesis and neuropathology, several data indicated that NGFR/p75NTR could play a key role in AD also from a genetic perspective. Other studies suggested that NGFR/p75NTR could represent a good diagnostic tool, as well as a promising therapeutic target for AD. Here, we comprehensively summarize and review the current experimental evidence on this topic.
Collapse
|
4
|
He C, Wang Z, Shen Y, Shi A, Li H, Chen D, Zeng G, Tan C, Yu J, Zeng F, Wang Y. Association of rs2072446 in the NGFR gene with the risk of Alzheimer's disease and amyloid-β deposition in the brain. CNS Neurosci Ther 2022; 28:2218-2229. [PMID: 36074475 PMCID: PMC9627368 DOI: 10.1111/cns.13965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION AND AIMS Alzheimer's disease (AD) is the most common form of dementia with a complex genetic background. The cause of sporadic AD (sAD) remains largely unknown. Increasing evidence shows that genetic variations play a crucial role in sAD. P75 neurotrophin receptor (p75NTR, encoded by NGFR) plays a critical role in the pathogenesis of AD. Yet, the relationship between NGFR gene polymorphisms and AD was less studied. This study aims to analyze the relationship of NGFR gene polymorphism with the risk of AD in the Chinese Han population and amyloid-β deposition in the ADNI cohort. METHODS This case-control association study was conducted in a Chinese Han cohort consisting of 366 sporadic AD (sAD) patients and 390 age- and sex-matched controls. Twelve tag-SNPs were selected and genotyped with a multiplex polymerase chain reaction-ligase detection reaction (PCR-LDR) method. The associations between tag-SNPs and the risk of AD were analyzed by logistic regression. Moreover, another cohort from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database was included to examine the association of one tag-SNP (rs2072446) with indicators of amyloid deposition. Kaplan-Meier survival analysis and Cox proportional hazards models were used to test the predictive abilities of rs2072446 genotypes for AD progression. The mediation effects of Aβ deposition on this association were subsequently tested by mediation analyses. RESULTS After multiple testing corrections, one tag-SNP, rs2072446, was associated with an increased risk of sAD (additive model, OR = 1.79, Padjustment = 0.0144). Analyses of the ADNI cohort showed that the minor allele (T) of rs2072446 was significantly associated with the heavier Aβ burden, which further contributed to an increased risk of AD progression in APOE ε4 non-carrier. CONCLUSION Our study found that rs2072446 in NGFR is associated with both the risk of sAD in the Chinese Han population and the amyloid burden in the ADNI cohort, which reveals the role of p75NTR in AD from a genetic perspective.
Collapse
Affiliation(s)
- Chen‐Yang He
- Department of Neurology and Centre for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Department of NeurologyThe General Hospital of Western Theater CommandChengduChina
| | - Zuo‐Teng Wang
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Ying‐Ying Shen
- Department of Neurology and Centre for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - An‐Yu Shi
- Department of Neurology and Centre for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Hui‐Yun Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Dong‐Wan Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Gui‐Hua Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Cheng‐Rong Tan
- Department of Neurology and Centre for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Jin‐Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fan Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping HospitalThird Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- The Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping HospitalThird Military Medical UniversityChongqingChina
| | | |
Collapse
|
5
|
Lan YX, Yang P, Zeng Z, Yadav N, Zhang LJ, Wang LB, Xia HC. Gene and protein expression profiles of olfactory ensheathing cells from olfactory bulb versus olfactory mucosa. Neural Regen Res 2022; 17:440-449. [PMID: 34269221 PMCID: PMC8463967 DOI: 10.4103/1673-5374.317986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Olfactory ensheathing cells (OECs) from the olfactory bulb (OB) and the olfactory mucosa (OM) have the capacity to repair nerve injury. However, the difference in the therapeutic effect between OB-derived OECs and OM-derived OECs remains unclear. In this study, we extracted OECs from OB and OM and compared the gene and protein expression profiles of the cells using transcriptomics and non-quantitative proteomics techniques. The results revealed that both OB-derived OECs and OM-derived OECs highly expressed genes and proteins that regulate cell growth, proliferation, apoptosis and vascular endothelial cell regeneration. The differentially expressed genes and proteins of OB-derived OECs play a key role in regulation of nerve regeneration and axon regeneration and extension, transmission of nerve impulses and response to axon injury. The differentially expressed genes and proteins of OM-derived OECs mainly participate in the positive regulation of inflammatory response, defense response, cytokine binding, cell migration and wound healing. These findings suggest that differentially expressed genes and proteins may explain why OB-derived OECs and OM-derived OECs exhibit different therapeutic roles. This study was approved by the Animal Ethics Committee of the General Hospital of Ningxia Medical University (approval No. 2017-073) on February 13, 2017.
Collapse
Affiliation(s)
- Yuan-Xiang Lan
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ping Yang
- Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhong Zeng
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Neeraj Yadav
- Department of Neurosurgery, General Hospital of Ningxia Medical University; School of International Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li-Jian Zhang
- School of Clinical Medicine, Ningxia Medical University; Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Li-Bin Wang
- Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - He-Chun Xia
- Ningxia Human Stem Cell Institute; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
6
|
Li WW, Shen YY, Chen DW, Li HY, Shi QQ, Mei J, Yang H, Zhou FY, Shi AY, Zhang T, Yao XQ, Xu ZQ, Zeng F, Wang YJ. Genetic Association Between NGFR, ADAM17 Gene Polymorphism, and Parkinson's Disease in the Chinese Han Population. Neurotox Res 2019; 36:463-471. [PMID: 30941646 DOI: 10.1007/s12640-019-00031-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by neuronal loss in the substantia nigra. The p75 neurotrophin receptor (p75NTR, encoded by NGFR) was found to play an important role in the selective neuronal death of dopamine neurons in the substantia nigra, as well as the pathogenesis and development of PD. To assess the association between NGFR gene polymorphism and the susceptibility of PD, this case-control study consisting of 414 PD patients and 623 age- and sex-matched controls in a Chinese Han cohort was conducted. Twelve tag-single nucleotide polymorphisms (tag-SNPs) were selected from the NGFR gene through the construction of linkage disequilibrium blocks. One tag-SNP from the ADAM17 gene was also selected owing to its function of encoding tumor necrosis factor α-converting enzyme, which is responsible for the shedding of the extracellular domain of p75NTR. A multiplex polymerase chain reaction-ligase detection reaction (PCR-LDR) method was applied for genotyping. The associations between tag-SNPs and the risk of PD with the adjustment for age and sex were analyzed by unconditional logistic regression, and five genetic models including codominant, dominant, recessive, over-dominant, and additive models were applied. The results showed that among the 13 tag-SNPs, rs741073 was associated with a reduced risk of PD in the codominant (OR = 0.71, 95% CI = 0.54-0.93, P = 0.037), dominant (OR = 0.76, 95% CI = 0.58-0.98, P = 0.033), and over-dominant models (OR = 0.71, 95% CI = 0.54-0.92, P = 0.010), and rs1804011 was also associated with a reduced risk of PD in the codominant (OR = 0.69, 95% CI = 0.50-0.95, P = 0.049), dominant (OR = 0.69, 95% CI = 0.50-0.93, P = 0.014), over-dominant (OR = 0.70, 95% CI = 0.51-0.96, P = 0.025), and additive models (OR = 0.72, 95% CI = 0.54-0.94, P = 0.016). However, these associations did not retain after Bonferroni correction. Conclusively, our study failed to reveal the association between the selected tag-SNPs within NGFR, ADAM17, and the susceptibility of PD. The role of p75NTR and its gene polymorphisms in the pathogenesis of PD needs to be further studied.
Collapse
Affiliation(s)
- Wei-Wei Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Ying-Ying Shen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Dong-Wan Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Hui-Yun Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Qian-Qian Shi
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jing Mei
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Heng Yang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Fa-Ying Zhou
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - An-Yu Shi
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Tao Zhang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xiu-Qing Yao
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhi-Qiang Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Fan Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| |
Collapse
|
7
|
Stepanyan A, Zakharyan R, Simonyan A, Tsakanova G, Arakelyan A. Involvement of polymorphisms of the nerve growth factor and its receptor encoding genes in the etiopathogenesis of ischemic stroke. BMC MEDICAL GENETICS 2018; 19:33. [PMID: 29499660 PMCID: PMC5834891 DOI: 10.1186/s12881-018-0551-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 02/23/2018] [Indexed: 11/25/2022]
Abstract
Background Despite the important role of the nerve growth factor in the survival and maintenance of neurons in ischemic stroke, data regarding the relationships between variations in the encoding gene and stroke are lacking. In the present study, we evaluated the association of the functional polymorphisms in NGF (rs6330) and NGFR (rs2072446 and rs734194) genes with ischemic stroke in an Armenian population. Methods In total, 370 unrelated individuals of Armenian nationality were enrolled in this study. Genomic DNA samples of patients and healthy controls were genotyped using polymerase chain reaction with sequence-specific primers. Results The results obtained indicate that the minor allele of rs6330 (Pcorr = 2.4E-10) and rs2072446 (Pcorr = 0.02) are significantly overrepresented in stroke group, while the minor allele of rs734194 (Pcorr = 8.5E-10) was underrepresented in diseased subjects. Single nucleotide polymorphisms in NGF gene (rs6330) and NGFR gene (rs2072446 and rs734194) are associated with the disease. Furthermore, it was shown that the carriage of the NGF rs6330*T minor allele is associated with increased infarct volume and higher risk of recurrent stroke. Conclusions In conclusion, our findings suggest that the NGF rs6330*T and NGFR rs2072446*T minor alleles might be nominated as a risk factor for developing ischemic stroke and NGFR rs734194*G minor allele as a protective against this disease at least in Armenian population.
Collapse
Affiliation(s)
- Ani Stepanyan
- Institute of Molecular Biology NAS RA, 7 Hasratyan Str, 0014, Yerevan, Armenia.
| | - Roksana Zakharyan
- Institute of Molecular Biology NAS RA, 7 Hasratyan Str, 0014, Yerevan, Armenia
| | - Arsen Simonyan
- Hospital and Polyclinic №2 CJSC, 54 Aram Str, 0002, Yerevan, Armenia
| | - Gohar Tsakanova
- Institute of Molecular Biology NAS RA, 7 Hasratyan Str, 0014, Yerevan, Armenia
| | - Arsen Arakelyan
- Institute of Molecular Biology NAS RA, 7 Hasratyan Str, 0014, Yerevan, Armenia
| |
Collapse
|
8
|
Aghdaei FH, Soltani BM, Dokanehiifard S, Mowla SJ, Soleimani M. Overexpression of hsa-miR-939 follows by NGFR down-regulation and apoptosis reduction. J Biosci 2017; 42:23-30. [DOI: 10.1007/s12038-017-9669-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Gassó P, Ortiz AE, Mas S, Morer A, Calvo A, Bargalló N, Lafuente A, Lázaro L. Association between genetic variants related to glutamatergic, dopaminergic and neurodevelopment pathways and white matter microstructure in child and adolescent patients with obsessive-compulsive disorder. J Affect Disord 2015; 186:284-92. [PMID: 26254621 DOI: 10.1016/j.jad.2015.07.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Alterations in white matter (WM) integrity observed in patients with obsessive-compulsive disorder (OCD) may be at least partly determined genetically. Neuroimaging measures of WM microstructure could serve as promising intermediate phenotypes for genetic analysis of the disorder. The objective of the present study was to explore the association between variability in genes related to the pathophysiology of OCD and altered WM microstructure previously identified in child and adolescent patients with the disease. METHODS Fractional anisotropy (FA) and mean diffusivity (MD) measured by diffusion tensor imaging (DTI) and 262 single nucleotide polymorphisms (SNPs) in 35 candidate genes were assessed concomitantly in 54 child and adolescent OCD patients. RESULTS Six polymorphisms located in the glutamate transporter gene (SLC1A1 rs3087879), dopamine transporter gene (SLC6A3 rs4975646), dopamine receptor D3 (DRD3 rs3773679), nerve growth factor receptor gene (NGFR rs734194 and rs2072446), and cadherin 9 gene (CDH9 rs6885387) showed significant p-values after Bonferroni correction (p≤0.00019). More specifically, the vast majority of these associations were detected with MD in the right and left anterior and posterior cerebellar lobes. LIMITATIONS Patients were under pharmacological treatment at the time of the DTI examination. Sample size is limited. CONCLUSIONS The results provide the first evidence of the involvement of genetic variants related to glutamatergic, dopaminergic, and neurodevelopmental pathways in determining the WM microstructure of child and adolescent patients with OCD, which could be related to the neurobiology of the disorder.
Collapse
Affiliation(s)
- Patricia Gassó
- Department Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Ana E Ortiz
- Department Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
| | - Sergi Mas
- Department Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Astrid Morer
- Department Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Anna Calvo
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain
| | - Nuria Bargalló
- Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain; Image Diagnostic Cernter, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Amalia Lafuente
- Department Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Luisa Lázaro
- Department Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic, Barcelona, Spain; Department Psychiatry and Clinical Psychobiology, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
10
|
Chang CC, Fang WH, Chang HA, Huang SY. Functional Ser205Leu polymorphism of the nerve growth factor receptor (NGFR) gene is associated with vagal autonomic dysregulation in humans. Sci Rep 2015; 5:13136. [PMID: 26278479 PMCID: PMC4538378 DOI: 10.1038/srep13136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/20/2015] [Indexed: 12/19/2022] Open
Abstract
Evidence indicates that reduced cardiac vagal (parasympathetic) tone, a robust cardiovascular risk factor, is a trait vulnerability marker of major depressive disorder (MDD). The Ser205/Ser205 genotype of the functional polymorphism (Ser205Leu) of the nerve growth factor receptor (NGFR), also called p75 neurotrophin receptor (p75NTR), gene is reported to increase the risk of MDD. Here, we hypothesized that the NGFR Ser205Leu polymorphism may have an effect on vagal control. A sample of 810 healthy, drug-free, unrelated Han Chinese (413 males, 397 females; mean age 35.17 ± 8.53 years) was included in the NGFR genotyping. Short-term heart rate variability (HRV) was used to assess vagus-mediated autonomic function. Potential HRV covariates, such as mood/anxiety status and serum metabolic parameters, were assessed. Homozygotes of the Ser205 allele had significantly lower high frequency power and root mean square of successive heartbeat interval differences, both HRV indices of vagal modulation, compared to Leu205 allele carriers. Even after adjusting for relevant confounders, these associations remained significant. Further stratification by sex revealed that the associations were observed only in males. Our results implicate that decreased parasympathetic activity is associated with the NGFR Ser205/Ser205 genotype in a gender-specific manner, suggesting a potential role of NGFR polymorphism in modulating cardiac autonomic function.
Collapse
Affiliation(s)
- Chuan-Chia Chang
- 1] Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan [2] Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Hui Fang
- Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - San-Yuan Huang
- 1] Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan [2] Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
11
|
Poser R, Dokter M, von Bohlen Und Halbach V, Berger SM, Busch R, Baldus M, Unsicker K, von Bohlen Und Halbach O. Impact of a deletion of the full-length and short isoform of p75NTR on cholinergic innervation and the population of postmitotic doublecortin positive cells in the dentate gyrus. Front Neuroanat 2015; 9:63. [PMID: 26074780 PMCID: PMC4444824 DOI: 10.3389/fnana.2015.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/06/2015] [Indexed: 12/19/2022] Open
Abstract
Analyses of mice carrying a deletion of the pan-neurotrophin receptor p75NTR have allowed identifying p75NTR as an important structural regulator of the hippocampus. Most of the previous analyses were done using p75NTR (ExIII) knockout mice which still express the short isoform of p75NTR. To scrutinize the role of p75NTR in the hippocampus, we analyzed adult and aged p75NTR (ExIV) knockout mice, in which both, the short and the full-length isoform are deleted. Deletion of these isoforms induced morphological alterations in the adult dentate gyrus (DG), leading to an increase in the thickness of the molecular and granular layer. Based on these observations, we next determined the morphological substrates that might contribute to this phenotype. The cholinergic innervation of the molecular and granular layer of the DG was found to be significantly increased in the knockout mice. Furthermore, adult neurogenesis in the DG was found to be significantly altered with increased numbers of doublecortin (DCX) positive cells and reduced numbers of apoptotic cells in p75NTR (ExIV) knockout mice. However, cell proliferation as measured by phosphohiston H3 (PH3) positive cell numbers was not affected. These morphological alterations (number of DCX-positive cells and increased cholinergic fiber densities) as well as reduced cell death in the DG are likely to contribute to the observed thickening of the granular layer in p75NTR (ExIV) knockout mice. In addition, Sholl-analysis of DCX-positive neurons revealed a higher dendritic complexity and could thus be a possible morphological correlate for the increased thickness of the molecular layer in p75NTR deficient animals. Our data clearly demonstrate that deletion of both, the short and the full-length isoform of p75NTR affects DG morphology, due to alterations of the cholinergic system and an imbalance between neurogenesis and programmed cell death within the subgranular zone.
Collapse
Affiliation(s)
- Robert Poser
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald Greifswald, Germany
| | - Martin Dokter
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald Greifswald, Germany
| | | | - Stefan M Berger
- Department of Molecular Biology, Central Institute of Mental Health and Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Ruben Busch
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald Greifswald, Germany
| | - Marian Baldus
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald Greifswald, Germany
| | - Klaus Unsicker
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University of Freiburg Freiburg, Germany
| | | |
Collapse
|
12
|
Nerve growth factor and its receptor in schizophrenia. BBA CLINICAL 2014; 1:24-9. [PMID: 26675984 PMCID: PMC4633968 DOI: 10.1016/j.bbacli.2014.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/03/2014] [Accepted: 05/08/2014] [Indexed: 01/18/2023]
Abstract
Promising studies suggest that defects in synaptic plasticity detected in schizophrenia may be linked to neurodevelopmental and neurodegenerative abnormalities and contribute to disease-associated cognitive impairment. We aimed to clarify the role of the synaptic plasticity regulatory proteins, nerve growth factor (NGF) and its receptor (NGFR) in the pathogenesis of schizophrenia by comparative analysis of their blood levels and functional single nucleotide polymorphisms (SNPs) in genes encoding these proteins (NGF and NGFR) in schizophrenia-affected and healthy subjects. Relationships between the selected SNPs' genotypes and NGF and NGFR plasma levels were also assessed. Our results demonstrated a positive association between schizophrenia and the NGF rs6330 as well as the NGFR rs11466155 and rs2072446 SNPs. Also, a negative association between this disorder and NGF rs4839435 as well as NGFR rs734194 was found. In both, haloperidol-treated and antipsychotic-free patients decreased blood levels of the NGF and NGFR were found, and a positive interrelation between rs6330 and rs2072446 carriage and decreased NGF and NGFR levels, respectively, was revealed. In conclusion, our results demonstrate association of schizophrenia with the rs6330, rs4839435 and rs734194, rs11466155, rs2072446 as well as with the decreased blood levels of corresponding proteins. Our findings indicate the implication of alterations in NGFR and NGFR genes in schizophrenia, particularly, in defects of synaptic plasticity. Furthermore, the data obtained suggests that at least in Armenian population the NGF rs6330*T and NGFR rs11466155*T, rs2072446*T alleles might be nominated as risk factors, whereas the NGF rs4839435*A and NGFR rs734194*G alleles might be protective against developing schizophrenia. The NGF and NGFR functional polymorphisms in schizophrenia-affected and healthy subjects were studied. Blood plasma levels of these proteins were also evaluated. Decreased NGF and NGFR levels in schizophrenia patients were detected. The rs6330*T and rs2072446*T carriage was interrelated with low NGF and NGFR levels, respectively. The NGF rs6330*T and NGFR rs11466155*T, rs2072446*T alleles might be nominated as risk factors.
Collapse
|