1
|
Filip K, Lewińska A, Adamczyk-Grochala J, Marino Gammazza A, Cappello F, Lauricella M, Wnuk M. 5-Azacytidine Inhibits the Activation of Senescence Program and Promotes Cytotoxic Autophagy during Trdmt1-Mediated Oxidative Stress Response in Insulinoma β-TC-6 Cells. Cells 2022; 11:cells11071213. [PMID: 35406777 PMCID: PMC8997412 DOI: 10.3390/cells11071213] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
5-Azacytidine (5-azaC), a methyltransferase inhibitor and anticancer drug, can promote several cellular stress responses such as apoptosis, autophagy, and senescence. The action of 5-azaC is complex and can be modulated by dose, time of treatment, and co-administration with oxidants. Insulinoma is a rare pancreatic neuroendocrine tumor with limited chemotherapeutic options. In the present study, two cellular models of insulinoma were considered, namely NIT-1 and β-TC-6 mouse cells, to evaluate the effects of 5-azaC post-treatment during hydrogen peroxide-induced oxidative stress. 5-azaC attenuated the development of oxidant-induced senescent phenotype in both cell lines. No pro-apoptotic action of 5-azaC was observed in cells treated with the oxidant. On the contrary, 5-azaC stimulated an autophagic response, as demonstrated by the increase in phosphorylated eIF2α and elevated pools of autophagic marker LC3B in oxidant-treated β-TC-6 cells. Notably, autophagy resulted in increased necrotic cell death in β-TC-6 cells with higher levels of nitric oxide compared to less affected NIT-1 cells. In addition, 5-azaC increased levels of RNA methyltransferase Trdmt1, but lowered 5-mC and m6A levels, suggesting Trdmt1 inhibition. We postulate that the 5-azaC anticancer action may be potentiated during oxidative stress conditions that can be used to sensitize cancer cells, at least insulinoma cells, with limited drug responsiveness.
Collapse
Affiliation(s)
- Kamila Filip
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (K.F.); (A.M.G.); (F.C.)
| | - Anna Lewińska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, 35959 Rzeszow, Poland; (J.A.-G.); (M.W.)
- Correspondence: (A.L.); (M.L.)
| | - Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, 35959 Rzeszow, Poland; (J.A.-G.); (M.W.)
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (K.F.); (A.M.G.); (F.C.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy; (K.F.); (A.M.G.); (F.C.)
- Euro-Mediterranean Institutes of Science and Technology, 90139 Palermo, Italy
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
- Correspondence: (A.L.); (M.L.)
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Nature Sciences, University of Rzeszow, 35959 Rzeszow, Poland; (J.A.-G.); (M.W.)
| |
Collapse
|
2
|
Fakhrabadi HG, Rabbani-Chadegani A, Ghadam P, Amiri S. Protective effect of bleomycin on 5-azacitidine induced cytotoxicity and apoptosis in mice hematopoietic stem cells via Bcl-2/Bax and HMGB1 signaling pathway. Toxicol Appl Pharmacol 2020; 396:114996. [DOI: 10.1016/j.taap.2020.114996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 02/02/2023]
|
3
|
Wu X, Guo J, Chen Y, Liu X, Yang G, Wu Y, Tian Y, Liu N, Yang L, Wei S, Deng H, Chen W. The 60-kDa heat shock protein regulates energy rearrangement and protein synthesis to promote proliferation of multiple myeloma cells. Br J Haematol 2020; 190:741-752. [PMID: 32155663 DOI: 10.1111/bjh.16569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
To investigate the cellular mechanisms of multiple myeloma (MM), we used liquid chromatography-tandem mass spectrometry for proteomics analysis of CD138+ plasma cells from patients with MM and healthy controls. We found that the 60-kDa heat shock protein (HSP60, also known as HSPD1) was significantly upregulated in myeloma cells. HSP60 is an important chaperone protein that regulates the homeostasis of mitochondrial proteins and maintains mitochondrial function. Knockdown (KD) of HSP60 in myeloma cells resulted in inhibition of proliferation and reduced the quality of the mitochondria. Mitochondrial stress tests showed that HSP60 KD inhibited glycolysis and mitochondrial activity. Metabolomics showed a decrease in glycolysis and tricarboxylic acid cycle metabolites, and inhibited the formation of creatine and phosphocreatine by the reaction of S-adenosylmethionine (SAM) with amino acids mediated by demethyladenosine transferase 1, mitochondrial (TFB1M) and reduced energy storage substances. Moreover, HSP60 silencing influenced the synthesis of ribonucleotides and nicotinamide adenine dinucleotide phosphate (NADPH) by the pentose phosphate pathway to inhibit cell proliferation. HSP60 KD inhibited 5' adenosine monophosphate-activated protein kinase (AMPK), which inhibited the key enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), effecting the metabolism of fatty acids by inhibiting malonyl-coenzyme A. Our data suggest that reduced HSP60 expression alters metabolic reprogramming in MM, inhibits tumour progression and reduces mitochondrial-dependent biosynthesis, suggesting that HSP60 is a potential therapeutic target for MM treatment.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jianying Guo
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guangzhong Yang
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yin Wu
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Tian
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Nian Liu
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lin Yang
- Department of Hematology, The Second Hospital of Hebei medical University, Shi Jia Zhuang, China
| | - Songren Wei
- Department of Pharmacy, Foshan Maternal and Child Healthy Research Institute, Affiliated Hospital of Southern Medical University, Foshan, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Sobočan N, Katušić Bojanac A, Sinčić N, Himelreich-Perić M, Krasić J, Majić Ž, Jurić-Lekić G, Šerman L, Vlahović M, Ježek D, Bulić-Jakuš F. A Free Radical Scavenger Ameliorates Teratogenic Activity of a DNA Hypomethylating Hematological Therapeutic. Stem Cells Dev 2019; 28:717-733. [PMID: 30672391 PMCID: PMC6585171 DOI: 10.1089/scd.2018.0194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
The spin-trap free radical scavenger N-tert-butyl-α-phenylnitron (PBN) ameliorated effects of several teratogens involving reactive oxygen species (ROS). We investigated for the first time whether PBN could ameliorate teratogenesis induced by a DNA hypomethylating hematological therapeutic 5-azacytidine (5azaC). At days 12 and 13 of gestation, Fisher rat dams were pretreated by an i.v. injection of PBN (40 mg/kg) and 1 h later by an i.p. injection of 5azaC (5mg/kg). Development was analyzed at gestation day 15 in embryos and day 20 in fetuses. PBN alone did not significantly affect development. PBN pretreatment restored survival of 5azaC-treated dams' embryos to the control level, restored weight of embryos and partially of fetuses, and partially restored crown-rump lengths. PBN pretreatment converted limb adactyly to less severe oligodactyly. PBN pretreatment restored global DNA methylation level in the limb buds to the control level. Cell proliferation in limb buds of all 5azaC-treated dams remained significantly lower than in controls. In the embryonic liver, PBN pretreatment normalized proliferation diminished significantly by 5azaC; whereas in embryonic vertebral cartilage, proliferation of all 5azaC-treated dams was significantly higher than in PBN-treated dams or controls. Apoptotic indices significantly enhanced by 5azaC in liver and cartilage were not influenced by PBN pretreatment. However, PBN significantly diminished ROS or reactive nitrogen species markers nitrotyrosine and 8-hydroxy-2'deoxyguanosine elevated by 5azaC in embryonic tissues, and, therefore, activity of this DNA hypomethylating agent was associated to the activation of free radicals. That pretreatment with PBN enhanced proliferation in the liver and not in immature tissue is interesting for the treatment of 5azaC-induced hepatotoxicity and liver regeneration.
Collapse
Affiliation(s)
- Nikola Sobočan
- Department of Gastroenterology, School of Medicine, University Hospital Merkur, University of Zagreb, Zagreb, Croatia
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
| | - Ana Katušić Bojanac
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nino Sinčić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marta Himelreich-Perić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jure Krasić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Željka Majić
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gordana Jurić-Lekić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ljiljana Šerman
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maja Vlahović
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Ježek
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Floriana Bulić-Jakuš
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Wang Z, Liu G, Jiang J. Profiling of apoptosis- and autophagy-associated molecules in human lung cancer A549 cells in response to cisplatin treatment using stable isotope labeling with amino acids in cell culture. Int J Oncol 2019; 54:1071-1085. [PMID: 30664195 DOI: 10.3892/ijo.2019.4690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/01/2018] [Indexed: 11/06/2022] Open
Abstract
Cis‑diammine‑dichloro‑platinum II‑based adjuvant chemotherapy provides an alternative therapy to improve the survival of patients with lung tumors, especially those with non‑small cell lung cancer (NSCLC). However, drug resistance is a large clinical problem and its underlying mechanism remains unclear. In the present study, NSCLC A549 cells were treated with a low concentration of cisplatin in order to observe and determine the development of chemoresistance, via growth curves, colony forming assays and apoptosis assays. Then the induction of autophagy was examined in the cisplatin‑treated A549 cells with a fluorescence reporter. Profiled proteins in the cisplatin‑treated A549 cells were also assessed using the stable isotope labeling by amino acids in cell culture (SILAC) method, and then the differentially expressed molecules were verified. The results demonstrated that A549 cells became less sensitive to cisplatin [resistant A549 cells (A549R)] following 20 passages in the medium containing a low concentration of cisplatin, with less apoptotic cells post‑cisplatin treatment. A549R cells grew more efficiently in the cisplatin medium, with more colony formation and more cells migrating across the baseline. In addition, NSCLC results demonstrated that more autophagy‑related proteins (ATGs) were expressed in the A549R cells. Furthermore, the western blotting results confirmed this upregulation of ATGs in A549R cells. In addition, two repeated SILAC screening experiments recognized 15 proteins [glucose‑regulated protein, 78 kDa (GRP78), heat shock protein 71, pre‑mRNA processing factor 19, polypyrimidine tract binding protein 1, translationally controlled tumor protein, Cathepsin D, Cytochrome c, thioredoxin domain containing 5, MutS homolog (MSH) 6, Annexin A2 (ANXA2), BRCA2 and Cyclin dependent kinase inhibitor 1A interacting protein, MSH2, protein phosphatase 2A 55 kDa regulatory subunit Bα, Rho glyceraldehyde‑3‑phosphate‑dissociation inhibitor 1 and ANXA4] that were upregulated by >1.5‑fold in heavy (H)‑ and light (L)‑labeled A549R cells. In addition, 16 and 14 proteins were downregulated by >1.5‑fold in the H‑ and L‑labeled A549R cells, respectively. The majority of the downregulated proteins were associated with apoptosis. In conclusion, the present study isolated a cisplatin‑resistant human lung cancer A549 cell clone, with reduced apoptosis and high levels of autophagy, in response to cisplatin treatment. In cisplatin‑resistant A549R cells, SILAC proteomics recognized the high expression of GRP78 and other proteins that are associated with anti‑apoptosis and/or autophagy promotion.
Collapse
Affiliation(s)
- Zongqiang Wang
- Department of Medical Services, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jinlan Jiang
- Science Research Center, Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
6
|
Dimopoulos K, Søgaard Helbo A, Fibiger Munch-Petersen H, Sjö L, Christensen J, Sommer Kristensen L, Asmar F, Hermansen NEU, O'Connel C, Gimsing P, Liang G, Grønbaek K. Dual inhibition of DNMTs and EZH2 can overcome both intrinsic and acquired resistance of myeloma cells to IMiDs in a cereblon-independent manner. Mol Oncol 2017; 12:180-195. [PMID: 29130642 PMCID: PMC5792743 DOI: 10.1002/1878-0261.12157] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 01/22/2023] Open
Abstract
Thalidomide and its derivatives, lenalidomide and pomalidomide (also known as IMiDs), have significantly changed the treatment landscape of multiple myeloma, and the recent discovery of cereblon (CRBN) as their direct biological target has led to a deeper understanding of their complex mechanism of action. In an effort to comprehend the precise mechanisms behind the development of IMiD resistance and examine whether it is potentially reversible, we established lenalidomide‐resistant (‐LR) and pomalidomide‐resistant (‐PR) human myeloma cell lines from two IMiD‐sensitive cell lines, OPM2 and NCI‐H929, by continuous culture in the presence of lenalidomide or pomalidomide for 4–6 months, until acquirement of stable resistance. By assessing genome‐wide DNA methylation and chromatin accessibility in these cell lines, we found that acquired IMiD resistance is associated with an increase in genome‐wide DNA methylation and an even greater reduction in chromatin accessibility. Transcriptome analysis confirmed that resistant cell lines are mainly characterized by a reduction in gene expression, identifying SMAD3 as a commonly downregulated gene in IMiD‐resistant cell lines. Moreover, we show that these changes are potentially reversible, as combination of 5‐azacytidine and EPZ‐6438 not only restored the observed accessibility changes and the expression of SMAD3, but also resensitized the resistant cells to both lenalidomide and pomalidomide. Interestingly, the resensitization process was independent of CRBN. Our data suggest that simultaneous inhibition of DNA methyl transferases and EZH2 leads to an extensive epigenetic reprogramming which allows myeloma cells to (re)gain sensitivity to IMiDs.
Collapse
Affiliation(s)
- Konstantinos Dimopoulos
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Alexandra Søgaard Helbo
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | | | - Lene Sjö
- Department of Pathology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | - Jesper Christensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Lasse Sommer Kristensen
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Fazila Asmar
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | | | - Casey O'Connel
- Department of Urology and Hematology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Peter Gimsing
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | - Gangning Liang
- Department of Urology and Hematology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Kirsten Grønbaek
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| |
Collapse
|
7
|
15d-PGJ 2 as an endoplasmic reticulum stress manipulator in multiple myeloma in vitro and in vivo. Exp Mol Pathol 2017; 102:434-445. [DOI: 10.1016/j.yexmp.2017.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
|
8
|
Misra SC, Gabriel L, Nacoulma E, Dine G, Guarino V. How to Diagnose Early 5-Azacytidine-Induced Pneumonitis: A Case Report. DRUG SAFETY - CASE REPORTS 2017; 4:4. [PMID: 28217822 PMCID: PMC5316516 DOI: 10.1007/s40800-017-0047-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Interstitial pneumonitis is a classical complication of many drugs. Pulmonary toxicity due to 5-azacytidine, a deoxyribonucleic acid methyltransferase inhibitor and cytotoxic drug, has rarely been reported. We report a 67-year-old female myelodysplastic syndrome patient treated with 5-azacytidine at the conventional dosage of 75 mg/m2 for 7 days. One week after starting she developed moderate fever along with dry cough and subsequently her temperature rose to 39.5 °C. She was placed under broad-spectrum antibiotics based on the protocol for febrile neutropenia, including ciprofloxacin 750 mg twice daily, ceftazidime 1 g three times daily (tid), and sulfamethoxazole/trimethoprim 400 mg/80 mg tid. High-resolution computed tomography of the chest disclosed diffuse bilateral opacities with ground-glass shadowing and pleural effusion bilaterally. Mediastinal and hilar lymph nodes were moderately enlarged. polymerase chain reaction for Mycobacterium tuberculosis, Pneumocystis jiroveci, and cytomegalovirus were negative. Cultures including viral and fungal were all negative. A diagnosis of drug-induced pneumonitis was considered and, given the negative bronchoalveolar lavage in terms of an infection, corticosteroid therapy was given at a dose of 1 mg/kg body weight. Within 4 weeks, the patient became afebrile and was discharged from hospital. Development of symptoms with respect to drug administration, unexplained fever, negative workup for an infection, and marked response to corticosteroid therapy were found in our case. An explanation could be a delayed type of hypersensitivity (type IV) with activation of CD8 T cell which could possibly explain most of the symptoms. We have developed a decision algorithm in order to anticipate timely diagnosis of 5-azacitidine-induced pneumonitis, and with the aim to limit antibiotics abuse and to set up emergency treatment.
Collapse
Affiliation(s)
- Srimanta Chandra Misra
- Department of Hematology Biology Clinic, Hôpital des Hauts Clos, 101 Avenue Anatole France, 10000, Troyes, France
| | - Laurence Gabriel
- Central Pharmacy, Hôpital des Hauts Clos, 101 Avenue Anatole France, 10000, Troyes, France.
| | - Eric Nacoulma
- Department of Hematology Biology Clinic, Hôpital des Hauts Clos, 101 Avenue Anatole France, 10000, Troyes, France
| | - Gérard Dine
- Department of Hematology Biology Clinic, Hôpital des Hauts Clos, 101 Avenue Anatole France, 10000, Troyes, France
| | - Valentina Guarino
- Central Pharmacy, Hôpital des Hauts Clos, 101 Avenue Anatole France, 10000, Troyes, France
| |
Collapse
|
9
|
Rabilloud T, Lescuyer P. Proteomics in mechanistic toxicology: History, concepts, achievements, caveats, and potential. Proteomics 2014; 15:1051-74. [DOI: 10.1002/pmic.201400288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/25/2014] [Accepted: 08/25/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals; CNRS UMR; 5249 Grenoble France
- Laboratory of Chemistry and Biology of Metals; Université Grenoble Alpes; Grenoble France
- Laboratory of Chemistry and Biology of Metals; CEA Grenoble; iRTSV/CBM; Grenoble France
| | - Pierre Lescuyer
- Department of Human Protein Sciences; Clinical Proteomics and Chemistry Group; Geneva University; Geneva Switzerland
- Toxicology and Therapeutic Drug Monitoring Laboratory; Department of Genetic and Laboratory Medicine; Geneva University Hospitals; Geneva Switzerland
| |
Collapse
|
10
|
Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJL. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 2013; 18:185-208. [PMID: 24286280 DOI: 10.1517/14728222.2014.856417] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hsp60 (Cpn60) assembles into a tetradecamer that interacts with the co-chaperonin Hsp10 (Cpn10) to assist client polypeptides to fold, but it also has other roles, including participation in pathogenic mechanisms. AREA COVERED Hsp60 chaperonopathies are pathological conditions, inherited or acquired, in which the chaperone plays a determinant etiologic-pathogenic role. These diseases justify selection of Hsp60 as a target for developing agents that interfere with its pathogenic effects. We provide information on how to proceed. EXPERT OPINION The information available encourages the development of ways to improve Hsp60 activity (positive chaperonotherapy) when deficient or to block it (negative chaperonotherapy) when pathogenic. Many questions are still unanswered and obstacles are obvious. More information is needed to establish when and why autologous Hsp60 becomes a pathogenic autoantigen, or induces cytokine formation and inflammation, or favors carcinogenesis. Clarification of these points will take considerable time. However, analysis of the Hsp60 molecule and a search for active compounds aimed at structural sites that will affect its functioning should continue without interruption. No doubt that some of these compounds will offer therapeutic hopes and will also be instrumental for dissecting structure-function relationships at the biochemical and biological (using animal models and cultured cells) levels.
Collapse
Affiliation(s)
- Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| | | | | | | | | | | | | |
Collapse
|