1
|
Zhou F, Deng S, Luo Y, Liu Z, Liu C. Research Progress on the Protective Effect of Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) on the Liver. Nutrients 2025; 17:1101. [PMID: 40218859 PMCID: PMC11990830 DOI: 10.3390/nu17071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
The liver, as the primary metabolic organ, is susceptible to an array of factors that can harm liver cells and give rise to different liver diseases. Epigallocatechin gallate (EGCG), a natural compound found in green tea, exerts numerous beneficial effects on the human body. Notably, EGCG displays antioxidative, antibacterial, antiviral, anti-inflammatory, and anti-tumor properties. This review specifically highlights the pivotal role of EGCG in liver-related diseases, focusing on viral hepatitis, autoimmune hepatitis, fatty liver disease, and hepatocellular carcinoma. EGCG not only inhibits the entry and replication of hepatitis B and C viruses within hepatocytes, but also mitigates hepatocytic damage caused by hepatitis-induced inflammation. Furthermore, EGCG exhibits significant therapeutic potential against hepatocellular carcinoma. Combinatorial use of EGCG and anti-hepatocellular carcinoma drugs enhances the sensitivity of drug-resistant cancer cells to chemotherapeutic agents, leading to improved therapeutic outcomes. Thus, the combination of EGCG and anti-hepatocellular carcinoma drugs holds promise as an effective approach for treating drug-resistant hepatocellular carcinoma. In conclusion, EGCG possesses hepatoprotective properties against various forms of liver damage and emerges as a potential drug candidate for liver diseases.
Collapse
Affiliation(s)
- Fang Zhou
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou 423000, China;
| | - Sengwen Deng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (S.D.); (C.L.)
| | - Yong Luo
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou 423000, China;
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
| | - Changwei Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (S.D.); (C.L.)
| |
Collapse
|
2
|
Capasso L, De Masi L, Sirignano C, Maresca V, Basile A, Nebbioso A, Rigano D, Bontempo P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025; 30:654. [PMID: 39942757 PMCID: PMC11821029 DOI: 10.3390/molecules30030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Epigallocatechin gallate (EGCG), the predominant catechin in green tea, comprises approximately 50% of its total polyphenol content and has garnered widespread recognition for its significant therapeutic potential. As the principal bioactive component of Camellia sinensis, EGCG is celebrated for its potent antioxidant, anti-inflammatory, cardioprotective, and antitumor properties. The bioavailability and metabolism of EGCG within the gut microbiota underscore its systemic effects, as it is absorbed in the intestine, metabolized into bioactive compounds, and transported to target organs. This compound has been shown to influence key physiological pathways, particularly those related to lipid metabolism and inflammation, offering protective effects against a variety of diseases. EGCG's ability to modulate cell signaling pathways associated with oxidative stress, apoptosis, and immune regulation highlights its multifaceted role in health promotion. Emerging evidence underscores EGCG's therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Given the growing prevalence of lifestyle-related diseases and the increasing interest in natural compounds, EGCG presents a promising avenue for novel therapeutic strategies. This review aims to summarize current knowledge on EGCG, emphasizing its critical role as a versatile natural bioactive agent with diverse clinical applications. Further exploration in both experimental and clinical settings is essential to fully unlock its therapeutic potential.
Collapse
Affiliation(s)
- Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy;
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Viviana Maresca
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy;
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| |
Collapse
|
3
|
Yan R, Cao Y. The Safety and Efficacy of Dietary Epigallocatechin Gallate Supplementation for the Management of Obesity and Non-Alcoholic Fatty Liver Disease: Recent Updates. Biomedicines 2025; 13:206. [PMID: 39857788 PMCID: PMC11762999 DOI: 10.3390/biomedicines13010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Epigallocatechin gallate (EGCG) is the predominant bioactive catechin in green tea, and it has been ascribed a range of beneficial health effects. Current increases in obesity and non-alcoholic fatty liver disease (NAFLD) rates represent a persistent and burdensome threat to global public health. While many clinical studies have demonstrated that EGCG is associated with positive effects on various health parameters, including metabolic biomarkers, waist circumference, and body weight when consumed by individuals affected by obesity and NAFLD, there are also some reports suggesting that it may entail some degree of hepatotoxicity. The present review provides a comprehensive summary of the extant clinical findings pertaining to the safety and effectiveness of EGCG in managing obesity and NAFLD, with a particular focus on how treatment duration and dose level affect the bioactivity of this compound.
Collapse
Affiliation(s)
| | - Yanli Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| |
Collapse
|
4
|
Chen YC, Liao CC, Shui HA, Huang PH, Shih LJ. A Proteomics-Based Identification of the Biological Networks Mediating the Impact of Epigallocatechin-3-Gallate on Trophoblast Cell Migration and Invasion, with Potential Implications for Maternal and Fetal Health. Proteomes 2023; 11:31. [PMID: 37873873 PMCID: PMC10594419 DOI: 10.3390/proteomes11040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023] Open
Abstract
Trophoblast migration and invasion play crucial roles in placental development. However, the effects of (-)-epigallocatechin-3-gallate (EGCG) on trophoblast cell functions remain largely unexplored. In this study, we investigated the impact of EGCG on the survival of trophoblast cells and employed a proteomics analysis to evaluate its influence on trophoblast cell migration and invasion. Be-Wo trophoblast cells were treated with EGCG, and a zone closure assay was conducted to assess the cell migration and invasion. Subsequently, a proteomics analysis was performed on the treated and control groups, followed by a bioinformatics analysis to evaluate the affected biological pathways and protein networks. A quantitative real-time PCR and Western blot analysis were carried out to validate the proteomics findings. Our results showed that EGCG significantly suppressed the trophoblast migration and invasion at a concentration not affecting cell survival. The proteomics analysis revealed notable differences in the protein expression between the EGCG-treated and control groups. Specifically, EGCG downregulated the signaling pathways related to EIF2, mTOR, and estrogen response, as well as the processes associated with the cytoskeleton, extracellular matrix, and protein translation. Conversely, EGCG upregulated the pathways linked to lipid degradation and oxidative metabolism. The quantitative PCR showed that EGCG modulated protein expression by regulating gene transcription, and the Western blot analysis confirmed its impact on cytoskeleton and extracellular matrix reorganization. These findings suggest EGCG may inhibit trophoblast migration and invasion through multiple signaling pathways, highlighting the potential risks associated with consuming EGCG-containing products during pregnancy. Future research should investigate the impact of EGCG intake on maternal and fetal proteoforms.
Collapse
Affiliation(s)
- Yueh-Chung Chen
- Department of Medicine, School of Medicine, National Defense Medical Center, Taipei 114201, Taiwan;
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital, Renai Branch, Taipei 106243, Taiwan
- Department of Health Promotion and Gerontological Care, Taipei University of Marine Technology, Taipei 111078, Taiwan
- Department of Special Education, University of Taipei, Taipei 100234, Taiwan
| | - Chen-Chung Liao
- Mass Spectrometry Facility, Instrumentation Resource Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-C.L.)
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hao-Ai Shui
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
| | - Pei-Hsuan Huang
- Mass Spectrometry Facility, Instrumentation Resource Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-C.L.)
| | - Li-Jane Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325208, Taiwan
| |
Collapse
|
5
|
James A, Wang K, Wang Y. Therapeutic Activity of Green Tea Epigallocatechin-3-Gallate on Metabolic Diseases and Non-Alcoholic Fatty Liver Diseases: The Current Updates. Nutrients 2023; 15:3022. [PMID: 37447347 DOI: 10.3390/nu15133022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Green tea polyphenols have numerous functions including antioxidation and modulation of various cellular proteins and are thus beneficial against metabolic diseases including obesity, type 2 diabetes, cardiovascular and non-alcoholic fatty liver diseases, and their comorbidities. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and is attributed to antioxidant and free radical scavenging activities, and the likelihood of targeting multiple metabolic pathways. It has been shown to exhibit anti-obesity, anti-inflammatory, anti-diabetic, anti-arteriosclerotic, and weight-reducing effects in humans. Worldwide, the incidences of metabolic diseases have been escalating across all age groups in modern society. Therefore, EGCG is being increasingly investigated to address the problems. This review presents the current updates on the effects of EGCG on metabolic diseases, and highlights evidence related to its safety. Collectively, this review brings more evidence for therapeutic application and further studies on EGCG and its derivatives to alleviate metabolic diseases and non-alcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Armachius James
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Tanzania Agricultural Research Institute (TARI), Makutupora Center, Dodoma P.O. Box 1676, Tanzania
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Yousheng Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Yu S, Song JH, Kim HS, Hong S, Park SK, Park SH, Lee J, Chae YC, Park JH, Lee YG. Patulin alleviates hepatic lipid accumulation by regulating lipogenesis and mitochondrial respiration. Life Sci 2023:121816. [PMID: 37271452 DOI: 10.1016/j.lfs.2023.121816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
AIMS The aim of this study is to evaluate the effects of patulin on hepatic lipid metabolism and mitochondrial oxidative function and elucidate the underlying molecular mechanisms. MAIN METHODS The effects of patulin on hepatic lipid accumulation were evaluated in free fatty acid-treated AML12 or HepG2 cells through oil red O staining, triglyceride assay, real-time polymerase chain reaction, and western blotting. Alteration of mitochondrial oxidative capacity by patulin treatment was determined using Seahorse analysis to measure the oxygen consumption rate. KEY FINDINGS The increased amounts of lipid droplets induced by free fatty acids were significantly reduced by patulin treatment. Patulin markedly activated the CaMKII/AMP-activated protein kinase (AMPK)/proliferator-activated receptor-γ coactivator (PGC)-1α signaling pathway in hepatocytes, reduced the expression of sterol regulatory element binding protein 1c (SREBP-1c) and lipogenic genes, and increased the expression of genes related to mitochondrial fatty acid oxidation. In addition, patulin treatment enhanced the mitochondrial consumption rate and increased the expression of mitochondrial oxidative phosphorylation proteins in HepG2 hepatocytes. The effects of patulin on anti-lipid accumulation; SREBP-1c, PGC-1α, and carnitine palmitoyltransferase 1 expression; and mitochondrial oxidative capacity were significantly prevented by compound C, an AMPK inhibitor. SIGNIFICANCE Patulin is a potent inducer of the AMPK pathway, and AMPK-mediated mitochondrial activation is required for the efficacy of patulin to inhibit hepatic lipid accumulation. This study is the first to report that patulin is a promising bioactive compound that prevents the development and worsening of fatty liver diseases, including non-alcoholic fatty liver disease, by improving mitochondrial quality and lipid metabolism.
Collapse
Affiliation(s)
- Seungmin Yu
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Ji-Hye Song
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Hee Soo Kim
- Aging and Metabolism Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Seulmin Hong
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Seon Kyeong Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Soo Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Jangho Lee
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Young Chan Chae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Ho Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Yu Geon Lee
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
| |
Collapse
|
7
|
Wu J, Wang Z, Xu S, Fu Y, Gao Y, Wu Z, Yu Y, Yuan Y, Zhou L, Li P. Analysis of the role and mechanism of EGCG in septic cardiomyopathy based on network pharmacology. PeerJ 2022; 10:e12994. [PMID: 35287352 PMCID: PMC8917800 DOI: 10.7717/peerj.12994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/02/2022] [Indexed: 01/11/2023] Open
Abstract
Background Septic cardiomyopathy (SC) is a common complication of sepsis that leads to an increase in mortality. The pathogenesis of septic cardiomyopathy is unclear, and there is currently no effective treatment. EGCG (epigallocatechin gallate) is a polyphenol that has anti-inflammatory, antiapoptotic, and antioxidative stress effects. However, the role of EGCG in septic cardiomyopathy is unknown. Methods Network pharmacology was used to predict the potential targets and molecular mechanisms of EGCG in the treatment of septic cardiomyopathy, including the construction and analysis of protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and molecular docking. The mouse model of septic cardiomyopathy was established after intraperitoneal injection of LPS (lipopolysaccharide). The myocardial protective effect of EGCG on septic mice is observed by cardiac ultrasound and HE staining. RT-PCR is used to verify the expression level of the EGCG target in the septic cardiomyopathy mouse model. Results A total of 128 anti-SC potential targets of EGCGareselected for analysis. The GO enrichment analysis and KEGG pathway analysis results indicated that the anti-SC targets of EGCG mainly participate in inflammatory and apoptosis processes. Molecular docking results suggest that EGCG has a high affinity for the crystal structure of six targets (IL-6 (interleukin-6), TNF (tumor necrosis factor), Caspase3, MAPK3 (Mitogen-activated protein kinase 3), AKT1, and VEGFA (vascular endothelial growth factor)), and the experimental verification result showed levated expression of these 6 hub targets in the LPS group, but there is an obvious decrease in expression in the LPS + EGCG group. The functional and morphological changes found by echocardiography and HE staining show that EGCG can effectively improve the cardiac function that is reduced by LPS. Conclusion Our results reveal that EGCG may be a potentially effective drug to improve septic cardiomyopathy. The potential mechanism by which EGCG improves myocardial injury in septic cardiomyopathy is through anti-inflammatory and anti-apoptotic effects. The anti-inflammatory and anti-apoptotic effects of EGCG occur not only through direct binding to six target proteins (IL-6,TNF-α, Caspase3, MAPK3, AKT1, and VEGFA) but also by reducing their expression.
Collapse
Affiliation(s)
- Ji Wu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Zhenhua Wang
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Shanling Xu
- Department of Cardiovascular, Medicine, Fuzhou First People’s Hospital, Fu Zhou, China
| | - Yang Fu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Yi Gao
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Zuxiang Wu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Yun Yu
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Yougen Yuan
- Department of Cardiovascular, The Three Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Lin Zhou
- Department of Cardiovascular, The Three Affiliated Hospital of Nanchang University, Nan Chang, China
| | - Ping Li
- Department of Cardiovascular, The Second Affiliated Hospital of Nanchang University, Nan Chang, China
| |
Collapse
|
8
|
Si W, Zhang Y, Li X, Du Y, Xu Q. Understanding the Functional Activity of Polyphenols Using Omics-Based Approaches. Nutrients 2021; 13:nu13113953. [PMID: 34836207 PMCID: PMC8625961 DOI: 10.3390/nu13113953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Plant polyphenols are the main category of natural active substances, and are distributed widely in vegetables, fruits, and plant-based processed foods. Polyphenols have a beneficial performance in preventing diseases and maintaining body health. However, its action mechanism has not been well understood. Foodomics is a novel method to sequence and widely used in nutrition, combining genomics, proteomics, transcriptomics, microbiome, and metabolomics. Based on multi-omics technologies, foodomics provides abundant data to study functional activities of polyphenols. In this paper, physiological functions of various polyphenols based on foodomics and microbiome was discussed, especially the anti-inflammatory and anti-tumor activities and gut microbe regulation. In conclusion, omics (including microbiomics) is a useful approach to explore the bioactive activities of polyphenols in the nutrition and health of human and animals.
Collapse
Affiliation(s)
- Wenjin Si
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (X.L.); (Y.D.)
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xiang Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (X.L.); (Y.D.)
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (X.L.); (Y.D.)
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (X.L.); (Y.D.)
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence:
| |
Collapse
|
9
|
Foodomics technology: promising analytical methods of functional activities of plant polyphenols. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03781-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Cheng C, Li Z, Zhao X, Liao C, Quan J, Bode AM, Cao Y, Luo X. Natural alkaloid and polyphenol compounds targeting lipid metabolism: Treatment implications in metabolic diseases. Eur J Pharmacol 2020; 870:172922. [DOI: 10.1016/j.ejphar.2020.172922] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 01/06/2023]
|
11
|
Chen C, Liu Q, Liu L, Hu YY, Feng Q. Potential Biological Effects of (-)-Epigallocatechin-3-gallate on the Treatment of Nonalcoholic Fatty Liver Disease. Mol Nutr Food Res 2018. [PMID: 28799714 DOI: 10.1002/mnfr.201700483.epub2017oct12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health issue throughout the world. However, no validated treatments for NAFLD are currently available. In-depth studies have demonstrated the efficacy of (-)-epigallocatechin-3-gallate (EGCG), a main bioactive chemical extracted from green tea, in treating NAFLD. EGCG exhibits multi-pronged preventive and therapeutic activities, including promoting lipid and glucose metabolism, anti-lipid peroxidation and anti-inflammation activities, anti-fibrosis, and anti-NAFLD related tumor, thus contributing to the mitigation of NAFLD occurrence and progression. The objectives of this paper are to review and discuss the currently known targets, signaling pathways and roles of EGCG that interfere with NAFLD pathogenesis, then providing additional experimental evidence and the foundation for the further studies and clinical applications of EGCG in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Liu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Yang Hu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory, Traditional Chinese Clinical Medicine, Shanghai, China.,E-Institute of Shanghai Municipal Education Committee, Shanghai, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Chen C, Liu Q, Liu L, Hu Y, Feng Q. Potential Biological Effects of (-)-Epigallocatechin-3-gallate on the Treatment of Nonalcoholic Fatty Liver Disease. Mol Nutr Food Res 2017; 62. [PMID: 28799714 PMCID: PMC6120134 DOI: 10.1002/mnfr.201700483] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/31/2017] [Indexed: 12/25/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health issue throughout the world. However, no validated treatments for NAFLD are currently available. In‐depth studies have demonstrated the efficacy of (‐)‐epigallocatechin‐3‐gallate (EGCG), a main bioactive chemical extracted from green tea, in treating NAFLD. EGCG exhibits multi‐pronged preventive and therapeutic activities, including promoting lipid and glucose metabolism, anti‐lipid peroxidation and anti‐inflammation activities, anti‐fibrosis, and anti‐NAFLD related tumor, thus contributing to the mitigation of NAFLD occurrence and progression. The objectives of this paper are to review and discuss the currently known targets, signaling pathways and roles of EGCG that interfere with NAFLD pathogenesis, then providing additional experimental evidence and the foundation for the further studies and clinical applications of EGCG in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Liver DiseasesShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qian Liu
- Institute of Liver DiseasesShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lin Liu
- Institute of Liver DiseasesShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yi‐yang Hu
- Institute of Liver DiseasesShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
- Shanghai Key Laboratory, Traditional Chinese Clinical MedicineShanghaiChina
- E‐Institute of Shanghai Municipal Education CommitteeShanghaiChina
| | - Qin Feng
- Institute of Liver DiseasesShuguang Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
13
|
Chardonnay Grape Seed Flour Ameliorates Hepatic Steatosis and Insulin Resistance via Altered Hepatic Gene Expression for Oxidative Stress, Inflammation, and Lipid and Ceramide Synthesis in Diet-Induced Obese Mice. PLoS One 2016; 11:e0167680. [PMID: 27977712 PMCID: PMC5157984 DOI: 10.1371/journal.pone.0167680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 11/18/2016] [Indexed: 01/04/2023] Open
Abstract
To identify differentially expressed hepatic genes contributing to the improvement of high-fat (HF) diet-induced hepatic steatosis and insulin resistance following supplementation of partially defatted flavonoid-rich Chardonnay grape seed flour (ChrSd), diet-induced obese (DIO) mice were fed HF diets containing either ChrSd or microcrystalline cellulose (MCC, control) for 5 weeks. The 2-h insulin area under the curve was significantly lowered by ChrSd, indicating that ChrSd improved insulin sensitivity. ChrSd intake also significantly reduced body weight gain, liver and adipose tissue weight, hepatic lipid content, and plasma low-density lipoprotein (LDL)-cholesterol, despite a significant increase in food intake. Exon microarray analysis of hepatic gene expression revealed down-regulation of genes related to triglyceride and ceramide synthesis, immune response, oxidative stress, and inflammation and upregulation of genes related to fatty acid oxidation, cholesterol, and bile acid synthesis. In conclusion, the effects of ChrSd supplementation in a HF diet on weight gain, insulin resistance, and progression of hepatic steatosis in DIO mice were associated with modulation of hepatic genes related to oxidative stress, inflammation, ceramide synthesis, and lipid and cholesterol metabolism.
Collapse
|
14
|
Xiao RY, Hao J, Ding YH, Che YY, Zou XJ, Liang B. Transcriptome Profile Reveals that Pu-Erh Tea Represses the Expression of Vitellogenin Family to Reduce Fat Accumulation in Caenorhabditis elegans. Molecules 2016; 21:E1379. [PMID: 27763516 PMCID: PMC6274137 DOI: 10.3390/molecules21101379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 01/14/2023] Open
Abstract
Due to misbalanced energy surplus and expenditure, obesity has become a common chronic disorder that is highly associated with many metabolic diseases. Pu-erh tea, a traditional Chinese beverage, has been believed to have numerous health benefits, such as anti-obesity. However, the underlying mechanisms of its anti-obesity effect are yet to be understood. Here, we take the advantages of transcriptional profile by RNA sequencing (RNA-Seq) to view the global gene expression of Pu-erh tea. The model organism Caenorhabditis elegans was treated with different concentrations of Pu-erh tea water extract (PTE, 0 g/mL, 0.025 g/mL, and 0.05 g/mL). Compared with the control, PTE indeed decreases lipid droplets size and fat accumulation. The high-throughput RNA-Sequence technique detected 18073 and 18105 genes expressed in 0.025 g/mL and 0.05 g/mL PTE treated groups, respectively. Interestingly, the expression of the vitellogenin family (vit-1, vit-2, vit-3, vit-4 and vit-5) was significantly decreased by PTE, which was validated by qPCR analysis. Furthermore, vit-1(ok2616), vit-3(ok2348) and vit-5(ok3239) mutants are insensitive to PTE triggered fat reduction. In conclusion, our transcriptional profile by RNA-Sequence suggests that Pu-erh tea lowers the fat accumulation primarily through repression of the expression of vit(vitellogenin) family, in addition to our previously reported (sterol regulatory element binding protein) SREBP-SCD (stearoyl-CoA desaturase) axis.
Collapse
Affiliation(s)
- Ru-Yue Xiao
- Pharmaceutical College, Heilongjiang University of Chinese Medicine, #24Heping Road, Harbin 150040, China.
| | - Junjun Hao
- State Key Laboratory of Genetic Resources and Evolutionary & Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yi-Hong Ding
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Yan-Yun Che
- Pharmaceutical College, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.
| | - Xiao-Ju Zou
- Department of Life Science and Biotechnology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming 650214, China.
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
15
|
Shimada T, Nakayama Y, Harasawa Y, Matsui H, Kobayashi H, Sai Y, Miyamoto KI, Tomatsu S, Aburada M. Salacia reticulata has therapeutic effects on obesity. J Nat Med 2014; 68:668-76. [DOI: 10.1007/s11418-014-0845-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/27/2014] [Indexed: 02/06/2023]
|